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Abstract1

Marker gene sequencing of microbial communities has generated big datasets2

of microbial relative abundances varying across environmental conditions, sam-3

ple sites and treatments. These data often come with putative phylogenies,4

providing unique opportunities to investigate how shared evolutionary history5

a�ects microbial abundance patterns. Here, we present a method to identify the6

phylogenetic factors driving patterns in microbial community composition. We7

use the method, �phylofactorization�, to re-analyze datasets from human body8

and soil microbial communities, demonstrating how phylofactorization can be9

a dimensionality-reducing tool, an ordination-visualization tool, and also mass-10

produce inferences on the edges in the phylogeny in which meaningful di�erences11

arose.12

Background13

Microbial communities play important roles in human [6], livestock [16] and14

plant [3] health, biogeochemical cycles [2, 12], the maintenance of ecosystem pro-15

ductivity, bioremediation, and other ecosystem services. Given the importance16

of microbial communities and the vast number of uncultured and undescribed17

microbes associated with animal and plant hosts and in natural and engineered18

systems, understanding the factors determining microbial community structure19

and function is major challenge for modern biology.20

Marker gene sequencing (e.g. 16S rRNA gene sequencing to assess bacterial and21

archaeal diversity and 18S markers for Eukaryotic diversity) is now one of the22

most commonly used approaches for describing microbial communities, quanti-23

fying the relative abundances of individual microbial taxa, and characterizing24

how microbial communities change across space, time, or in response to known25

biotic or abiotic gradients.26

Analyzing these data is challenging due to the peculiar noise structure of sequence-27

count data [30], the inherently compositional nature of the data [15], deciding28

the taxonomic scale of investigation [7, 8, 31], and the high-dimensionality of29

species-rich microbial communities [13]. There is a great need and opportunity30

to develop tools to more e�ciently analyze these datasets and leverage infor-31

mation on the phylogenetic relationships among taxa to better identify which32
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clades are driving di�erences in microbial community composition across sample33

categories or measured biotic or abiotic gradients [24]. In this paper, we take on34

these challenges by developing a means to perform regression of biotic/abiotic35

gradients on branches in the phylogenetic tree, allowing dimensionality reduc-36

tion to a series of branches in the phylogeny in a manner consistent with the37

compositional nature of the data.38

Many of these challenges can be resolved by performing regression on clades39

identi�ed in the phylogeny. Consider a study on the e�ect of oxazolidinones,40

which a�ect gram-positive bacteria, on microbial community composition. Rather41

than regression of antibiotic treatment on abundance at numerous taxonomic42

levels, statistical analysis of bacterial communities treated with an oxazolidinone43

should instantly identify the split between gram-positive and gram-negative bac-44

teria as the most important phylogenetic factor determining response to oxazo-45

lidinones. Subsequent factors should then be identi�ed by comparing bacteria46

within the previously-identi�ed groups: identify clades within gram-positives47

which may be more resistant or susceptible than the remaining gram-positives.48

Splitting the phylogeny at each inference and making comparisons within the49

split groups ensures that subsequent inferences are independent of the gram pos-50

itive - gram negative split which we have already obtained. All of this analysis51

must be done consistent with the compositional nature of sequence count data.52

Here, we provide a method to analyze phylogenetically-structured compositional53

data. The algorithm, referred to as �phylofactorization�, iteratively identi�es54

the most important clades driving variation in the data through their associa-55

tions with independent variables. Clades are chosen based on some metric of56

the strength or importance of their regressions with meta-data, and subsequent57

clades are chosen by comparison of sub-clades within the previously-identi�ed58

bins of phylogenetic groups. Each �factor� identi�ed corresponds to an edge in59

the phylogeny, and phylofactorization builds on literature from compositional60

data analysis to construct a set of orthogonal axes corresponding to those edges;61

the output orthonormal basis allows the projection of sequence-count relative62

abundances onto these phylogenetic axes for dimensionality reduction, visual-63

ization, and standard multivariate statistical analyses. The visualizations and64

inferences drawn from phylofactorization can be tied back to splits in a given65

phylogenetic tree and thereby allow researchers to annotate the microbial phy-66

logeny from the results of microbiome datasets.67

We show with simulations that phylofactor is able to correctly identify a�ected68
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clades. We then phylofactor a dataset of human oral and fecal microbiomes69

to determine the phylogenetic factors driving variation in human body site [4],70

and a dataset of soil microbes using a multiple regression of pH, carbon concen-71

tration and nitrogen concentration [28]. In the human microbiome dataset, we72

�nd three splits in the phylogeny that together capture 17.6% of the variation73

community composition across two body sites. Phylofactorization reveals splits74

between unclassi�ed OTUs not identi�able by taxonomic grouping, important75

clades of monophyletic yet para-taxonomic OTUs, and a spectrum of taxo-76

nomic scales for binning and analyzing taxonomic units that varies across taxa77

- all features that would be missed by standard taxonomy-based analysis. In78

the soil microbiome dataset, we use phylofactor-based dimensionality reduction79

and ordination-visualization - either using the orthogonal axes corresponding to80

splits in the phylogeny, or binning OTUs based on their inferred phylogenetic81

factors - to �nd that pH drives most of the variation in the dominant clades in82

the soil dataset, and con�rm this �nding by dominance analysis on the under-83

lying regressions in phylofactorization, indicating that >%90 of the explained84

variation in the �rst three factors is explained by pH. The axes in our ordination-85

visualization plots correspond to identi�able edges on the phylogeny that have86

clear biological interpretations and can be used and tested across studies. User-87

friendly code for implementing, summarizing and visualizing phylofactorization88

is provided in an R package - 'phylofactor'.89

Results90

We �nd three main results. First, we �nd that our algorithm out-performs a91

standard tool for analyzing compositions of parts related by a tree - what we92

refer to as the �rooted ILR� transform - and that we can obtain a conservative93

estimate of the number of phylogenetic factors in simulated datasets a with a94

known number of a�ected clades. Second, we phylofactor a dataset of the human95

oral and fecal microbiomes and �nd three edges in the phylogeny that account96

for 17.6% of the variation in microbial communities across these sample sites,97

edges that are not assigned a unique taxonomic label and are thus invisible to98

taxonomic-based analyses. Third, we show that phylofactorization can be com-99

bined with multiple regression to reveal that pH drives the main phylogenetic100

patterns of community composition in soil microbiomes, and show that in four101
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factors we split the Acidobacteria three times - including one split that identi-102

�es a monophyletic clade of Acidobacteria that consists of alkaliphiles. Finally,103

using the soil dataset, we demonstrate how phylofactorization yields two compli-104

mentary methods for dimensionality reduction and ordination-visualization that105

tell a simpli�ed story of how the major phylogenetic groups of OTUs change106

with pH.107

Power Analysis and Conservative Stopping of Phylofactor-108

ization109

Phylofactorization remedies the structured residuals from the rooted ILR re-110

gression on data with fold-changes in abundances within clades. Phylofac-111

torization also remedies the problem of high false-positive rates arising from112

the nested-dependence and correlated coordinates of the rooted ILR transform,113

as sequential inferences in phylofactorization are independent. Phylofactoriza-114

tion out-performs the rooted ILR in identifying the correct clades with a given115

fold-change in abundance (Figs. 1a and 1b), and can be paired with other116

algorithms assessing residual structure to stop factorization when there is no117

residual structure and thus accurately identify the number of a�ected clades118

(Fig. 1c). Finally, by focusing the inferences on edges instead of nodes in the119

phylogeny, this algorithm works on trees with polytomies and doesn't require a120

forced resolution of polytomies to construct a sequential binary partition of the121

OTUs. Since edges are the locations of the phylogeny where functional traits122

arise, the identi�cation of edges that drive variation yields a clear, biological123

interpretation.124

Oral-Fecal Microbiome125

Phylofactorization of the oral-fecal microbiome dataset, with 290 OTUs and 40126

samples, yields three factors that explain 17.6% of the variation in the dataset,127

factors which correspond to clearly visible blocks in phylogenetic heatmaps of128

the OTU table (Fig. 1). The factors span a range of taxonomic scales and all of129

them would be invisible to taxonomic-based analyses. Below, we summarize the130

factors - the P-values from regression, the taxa split at each factor, the body131

site associations predicted by generalized linear modeling of the ILR coordinate132

against body site, and �ner detail about the taxonomic identities and known133

ecology of monophyletic taxa being split. Phylofactorization of these data indi-134
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Figure 1: (a) Power Analysis - 1 Clade. The rooted ILR transform that minimizes residual

variance when regressed against sample site is less able to identify the correct clade compared

to phylofactorization for a variety of e�ect sizes, a, and sample sizes. (b) Three Signi�cant

Clades: When three signi�cant clades are chosen and given a set of e�ects increasing in intensity

with the parameter b, choosing the top rooted ILR coordinates under performs phylofactorization

in correctly identifying the a�ected clades. Phylofactorization also explains more variation in the

data: across e�ect sizes, phylofactorization explains 2 orders of magnitude more of the variance

in the dataset than the sequential rooted ILR. (c) Stopping Phylofactorization: Plots of the

true number of a�ected clades in simulated datasets against the number of clades identi�ed by the

R package 'phylofactor'. One can terminate phylofactorization when the true number of a�ected

clade is unknown by choosing a stopping function aimed at stopping when there is no evidence of

a remaining signal. By stopping the iteration when the distribution of P-values from analyses of

variance of regression on candidate ILR basis elements is uniform (speci�cally, stopping when a

KS test against a uniform distribution yields P > 0.05), we obtain a conservative estimate of the

number of phylogenetic factors in the data.
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cates that a few clades explain a large fraction of the variation in the data, and135

many more clades can be identi�ed as containing the same intricate detail as the136

phylogenetic factors presented below. The biology of microbial human-body-site137

association can focus on these dominant factors - which traits and evolutionary138

history drive these monophyletic groups' strong, common association with body139

sites?140

The �rst factor (P = 4.90 × 10−30) split Actinobacteria and Alpha-, Beta-141

, Gamma-, and Delta-proteobacteria from Epsilonproteobacteria and the rest142

(Fig. S4). The underlying generalized linear model predicts the Actinobacteria143

and non-Epsilon-proteobacteria to be 0.4x as abundant as the rest in the gut and144

3.7x as abundant as the rest in the tongue. The Actinobacteria identi�ed as more145

abundant in the tongue include four members of the plaque-associated family146

Actinomycetaceae, one unclassi�ed species of Cornybacterium, three members147

of the mouth-associated genus Rothia [20], and one unclassi�ed species of the148

vaginal-associated genus Atopobium [9]. With a standard multivariate analysis149

of the CLR-transformed data, all nine of these Actinobacteria were identi�ed150

as signi�cantly more abundant in the tongue from regression of the individual151

OTUs when using either a 1% false-discovery rate or a Bonferonni correction -152

these monophyletic taxa all individually show a strong preference for the same153

body site, and their basal branch was identi�ed as our �rst phylogenetic fac-154

tor. The remaining Alpha-, Beta-, Gamma- and Delta-proteobacteria grouped155

with the Actinobacteria consisted of 31 OTUs, and the Epsilonproteobacteira156

split from the rest were three unclassi�ed species of the genus Campylobacter.157

The grouping of Actinobacteria with the non-Epsilon Proteobacteria motivates158

the need for accurate phylogenies in phylofactorization, but also illustrates the159

promise of identifying clades of interest where the phylogeny is correct and the160

taxonomy is not.161

The second factor (P = 1.15 × 10−31) splits 16 Firmicutes of the class Bacilli162

from the obligately anaerobic Firmicutes class Clostridia and the remaining163

paraphyletic group containing Epsilonproteobacteria and the rest. The Bacilli164

are, on average, 0.3x as abundant in the gut as the paraphyletic remaining OTUs165

and 3.9x as abundant in the tongue. The 16 Bacilli OTUs factored here contain166

12 unclassi�ed species of the genus Streptococcus, well known for its association167

with the mouth [18], one member of the genus Lactococcus, one unclassi�ed168

species of the mucosal-associated genus Gemella, and two members the family169

Carnobacteriaceae often associated with �sh and meat products [22].170
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The third factor (P = 1.37× 10−28) separated 15 members of the Bacteroidetes171

family Prevotellaceae from all other Bacteroidetes and the remaining para-172

phyletic group of OTUs not split by previous factors. The Prevotellaceae split in173

the third factor were all of the genus Prevotella, including the species Prevotella174

melaninogenica and Prevotella nanceiensis found to have abundances 0.3x as175

abundant in the gut and 4.0x as abundant in the tongue relative to the other176

taxa from which they were split.177

These �rst three factors capture major blocks visible in the dataset (Fig. 1) can178

be used as dimensionality reduction tool with a phylogenetic interpretation (Fig.179

1). While traditional ordination-visualization tools may capture larger fractions180

of variation of the data, phylogenetic factorization yields a few variables - ratios181

of clades - which capture large blocks of variation in the data and can be traced182

to single edges in the phylogeny corresponding to meaningful splits between183

taxa, edges where traits likely arose which govern the di�erential abundances184

across sample sites and environmental gradients or responses to treatments (Fig.185

1b, supplemental Figs. S4-S8).186

Using the KS-test stopping criterion, phylofactorization was terminated at 142187

factors, each corresponding to a branch in the phylogenetic tree separating two188

groups of OTUs based on their di�erential abundances in the tongue and fe-189

ces. These 142 factors de�ne 143 groups, or what we call 'bins', of taxa which190

remain unsplit by the phylofactorization. The bins vary in size; 112 bins con-191

tained only single OTUs, whereas 8 were monophyletic clades and the rest are192

paraphyletic groups of OTUs, the result of taxa within a monophyletic group193

being factored, yielding one monophyletic group and one paraphyletic group. Of194

the 112 single-OTU bins extracted from phylofactorization, 78 were also iden-195

ti�ed as signi�cant at a false-discovery rate of 1%. Some monophyletic bins196

included groups of unclassi�ed genera that would not be grouped at the genus197

level under standard taxonomy-based analyses. For instance, two monophyletic198

clades of the Firmicutes family Lachnospiraceae were identi�ed as having dif-199

ferent preferred body sites, yet both clades were unclassi�ed at the genus level.200

Taxonomic-based analyses would either omit these unclassi�ed genera, or group201

them together and make it di�cult to observe a signal due to the two sub-groups202

having di�erent responses to body site.203

Performing regression on centered log-ratio (CLR) transformed OTU tables204

yielded 236 signi�cant OTUs at a false-discovery rate of 1%, and the phylo-205

genetic signal of these OTUs may be di�cult to parse out. However, three206
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iterations of phylofactorizaiton yielded the three major splits in the phylogeny,207

all of which are consistent with known distributions of taxa. Algorithms such as208

phylosignal [19], which track P-values up the tree, identify clades with common209

signi�cance, yet not necessarily clades with common signal - it is a common210

signal, not a common signi�cance, which better indicates a putative trait driv-211

ing predictable responses in microbes. In the 142 factors above, phylofactor212

identi�ed numerous clades with common signi�cance yet di�erent signals.213
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Figure 2: Phylofactorization of human feces/tongue dataset identi�es clades di�erenti-

ating sites. (a) Phylogenetic structure is visible as blocks using a phylogenetic heatmap from the

R package 'phytools' [29]. The �rst factor separates Actinobacteria and some Proteobacteria from

the rest, the second factor separates the class Bacilli from the remaining non-Proteobacteria and

non-Actinobacteria, the third factor pulls out the genus Prevotella from Bacteroidetes and indi-

cates that it, unlike many other taxa in Bacteroidetes, is unrepresented in the tongue. Each factor

captures a major block of variation in the data, and the orthogonality of the ILR coordinates from

each factor allow multiple factors to be combined easily for estimates of community composition.

(b) These three factors splits the phylogeny into four bins. Three of those bins are monophyletic

and the �nal bin is a �remainder� bin, containing taxa split o� by the previous monophyletic bins.

The three factors are identi�able edges between nodes that can be mapped to an online database

containing those nodes.
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Soil Microbiome214

The soil microbiome dataset was much larger - 3,379 OTUs and 580 samples -215

and a much smaller fraction of the variation could be explained by phylofactor-216

ization. Phylofactorization allows meaningful dimensionality reduction by both217

factors - plots of the ILR coordinates for the dominant factors - and by bins of218

taxa that remain un-split at a given level of factorization. Phylofactorization219

con�rmed that the pH of the environment plays a dominant role in the micro-220

bial community composition, consistent with previous analyses based on Mantel221

tests [28]. Dominance analysis of the generalized linear models associated with222

each factor determined pH to account for approximately 92.87%, 89.78%, and223

92.94% of the explained variance in the �rst, second, and third factor, respec-224

tively. C and N were relatively unimportant, and the dominance of pH in the225

�rst three factors can be visualized by ordination-visualization plots of the ILR226

coordinates of the �rst three factors (Fig. 2a).227

The �rst factor splits a group of 206 OTUs in two classes of Acidobacteria from228

all other bacteria: class Acidobacteriia and class DA052 are shown to decrease in229

relative abundance with increasing pH. The second factor split 31 OTUs in the230

order Actinomycetales (some from the family Thermomonosporaceae and the231

rest unclassi�ed at the family level) from the remainder of all other bacteria,232

and these monophyletic Actinomycetales also decrease in relative abundance233

with increasing pH. The third factor identi�ed another clade within the phylum234

Acidobacteria to decrease with pH: 115 bacteria from the classes Solibacteres235

and TM1.236

Interestingly, the fourth factor identi�es a large collection of 193 OTUs in the re-237

mainder of phylum Acidobacteria (i.e. those Acidobacteria not mentioned above238

in factors 1 and 3) as having relative abundances that increase with pH (dom-239

inance analysis: 94.79% of explained variance attributable to pH). Unlike the240

previous three factors above which were acidophiles, this monophyletic group of241

Acidobacteria consists of alkaliphiles, which includes the classes Acidobacteria-6,242

Chloracidobacteria, S053 and three OTUs unclassi�ed at the class level.243

The �rst four factors can be used to de�ne 5 bins of OTUs that we refer to as244

�binned phylogenetic units� or BPUs: a monophyletic group of Acidobacteria245

(classes Chloracidobacteria, Acidobacteria-6, and S035), another monophyletic246

group of Acidobacteria (classes Solibacteres and TM1), a monophyletic group of247

several families of the order Actinomycetales, a monophyletic group of Acidobac-248

teria (classes Acidobacteriia and DA0522), and a paraphyletic amalagamation249
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of the remaining taxa. Binning the OTUs based on these BPUs tells a simpli�ed250

story of how pH drives microbial community composition (Fig. 2b).251

Figure 3: Dimensionality Reduction and Ordination-Visualization of soil microbiome

dataset. Phylofactor presents two complementary methods for projecting and visualizing the high-

dimensional phylogenetically-structured compositional data. (a) The ILR coordinates have asymp-

totic normality properties and provide biologically informative ordination-visualization plots. Here,

we we see that pH is a much better predictor than N of the major phylogenetic factors in Central

Park soils. Dominance analysis indicated that pH accounts for approximately 92.87%, 89.78%, and

92.94% of the explained variance in the �rst, second, and third factor, resepectively, consistent with

previous results based on Bray-Curtis distances and Mantel tests showing the dominance of pH in

structuring soil microbiomes [28]. (b) Every edge separates one group of taxa into two, and those

split groups of taxa - what we refer to as bins - can be used to amalgamate taxa and construct a

lower-dimensional, compositional dataset of �binned phylogenetic units� (BPUs). Bin 5 is an amal-

gamation of a monophyletic group of Acidobacteria (classes Chloracidobacteria, Acidobacteria-6,

and S035) that increase in relative abundance with pH. Bin 4 is a monophyletic group of Aci-

dobacteria (classes Solibacteres and TM1), Bin 3 is a monophyletic group of several families of the

order Actinomycetales, Bin 2 is a monophyletic group of Acidobacteria (classes Acidobacteriia and

DA0522), and Bin 1 is a paraphyletic amalagamation of the remaining taxa.
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Discussion252

Overview253

We have introduced a simple and generalizable exploratory data analysis al-254

gorithm, phylofactorization, to identify clades driving variation in microbiome255

datasets. Phylofactorization integrates both the compositional and phylogenetic256

structure of microbiome datasets and produces outputs that contain biological257

information: e�ects of independent variables on edges in the phylogeny, includ-258

ing the tips of the tree traditionally analyzed. The output of phylofactorization259

contains a sequence of �factors�, or splits in the tree identifying sub-groups of260

taxa which respond di�erently to treatment relative to one-another. The splits261

identi�ed in phylofactorization need not be splits in the Linean taxonomy but262

can identify strong responses in clades of unclassi�ed taxa. The researcher263

does not need to choose a taxonomic level at which to perform analysis - those264

taxonomic levels are output based on whichever clades maximize the objective265

function, and so researchers will be able to identify multiple taxonomic scales266

of importance.267

Phylofactorization outputs an isometric log-ratio transform of the data with268

known asymptotic normality properties, coordinates that can be analyzed with269

standard multivariate methods [25]. The resulting coordinates correspond to270

particular edges between clearly identi�able nodes in the tree of life, allow-271

ing researchers to annotate a given phylogenetic tree with correlations between272

clades and various environmental meta-data, sample categories, or experimental273

treatments.274

Future Work275

The generality of phylofactorization opens the door to future work employing276

phylofactorization with other objective functions. As we showed with the human277

oral/fecal microbiomes, phylofactorization is not restricted to basal clades, but278

includes the tips as possible clades of interest, but the objective function we used279

minimized residual variance in the whole community and thereby may prioritize280

deeply rooted edges or abundant taxa with weaker e�ects over individual OTUs281

with stronger e�ects. Other objective functions could be constructed to meet282

the needs of the researcher. If researchers are interested in identifying basal283

lineages, their objective function can weight edges based on distance from the284
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tips. If researchers are interested in identifying putative traits, they may be285

interested in an objective function weighting edges based on edge length under286

an assumption that the probability of a trait arising increases with the amount287

of time elapsed.288

Each edge identi�ed in phylofactorization corresponds to two bins of taxa on289

each side of the edge, and consequently phylofactorization brings in two com-290

plementary perspectives for analyzing the data: factor-based analysis and bin-291

based analysis. Factor-based analysis looks at the each factor as an inference292

on an edge in the phylogeny, conditioned on the previous inferences already293

made, and indicating that taxa on one side of an edge respond di�erently to294

the independent variable compared to taxa on the other side of the edge. Bin-295

based analysis, on the other hand, looks at the set of clades resulting from a296

certain number of factors - what we call a �binned phylogenetic unit� (BPU).297

These bins will create a lower-dimensional, compositional dataset and can be298

freed from the underlying ILR coordinates for di�erent analyses on these amal-299

gamated clades. While factor-based analysis provides inferences about the splits300

in the phylogeny, BPU-based analysis conditions on the factors and bins OTUs301

based on which factors they contain. BPU-based analysis can inform sequence302

binning in future research aimed at controlling for previously-identi�ed phyloge-303

netic causes of variation, and combine the e�ects of multiple up-stream factors304

for predictions of OTU abundance. See the supplementary text for a more305

detailed discussion of factor-based and bin-based analyses.306

Phylofactorization will bene�t from community discussion and further research307

overcoming general statistical challenges common to greedy algorithms and anal-308

ysis of phylogenetically-structured compositional data. For instance, the log-309

ratio transform at the heart of phylofactorization requires researchers deal with310

zeros in compositional datasets. While there are many methods for dealing with311

zeros [1, 23, 25], it's unclear which method is most robust for downstream phylo-312

factorization of sparse OTU tables. Second, phylofactorization as presented here313

does not allow for multiple regression of ILR basis elements - the set of factors314

identi�ed after n iterations may explain less variation combined than an al-315

ternative set of factors that did not maximize the explained variance at each316

iteration. This limitation may be overcome by running many replicates of a317

stochastic greedy algorithm and choosing that which maximizes the explained318

variance after n factors. Third, the researcher must choose an objective function319

which matches her question, and future research can map out which objective320
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functions are appropriate for which questions in microbial ecology. Fourth, like321

any method performing inference based on phylogenetic structure, phylofactor-322

ization assumes an accurate phylogeny. Accurate statistical statements about a323

researcher's con�dence in phylofactors must incorporate the uncertainty in our324

constructed phylogeny. Finally, future research can investigate the unique kinds325

of errors in phylofactorization: in addition to the multiple-hypothesis testing of326

edges, phylofactorization may propagate errors in the greedy algorithm, and,327

even when taxa are correctly factored into the appropriate functional bins, the328

presence of multiple factors in the same region of the tree can lead to uncer-329

tainty about the exact edge along which a putative trait arose (see supplement330

for more discussion on the uncertainty of which edge to annotate).331

Incorporating that phylogenetic structure into the analysis of microbiome datasets332

has been a major challenge [24], and now phylofactorization provides a general333

framework for rigorous exploration of phylogenetically-structured compositional334

datasets. The soil dataset analyzed above, for instance, contains 3,379 OTUs335

and 580 samples, and phylofactorization of the clades a�ected by pH in the336

soil dataset yielded not just the three dominant factors used for ordination-337

visualization, but 2,091 factors in all, each with an intricate phylogenetic story.338

Many Acidobacteria are acidophiles, but some - Chloracidobacteria, Acidobacteria-339

6, S035, and some undescribed classes of bacteria factored here - appear to be al-340

kaliphiles. By incorporating the phylogenetic structure of microbiome datasets,341

the big data of the modern sequence-count boom just got bigger, and future342

research will need to consider how to organize, analyze and visualize the large343

amounts of phylogenetic detail that can now be obtained from the analysis of344

microbiome datasets.345

Conclusions346

Phylofactorization is a robust tool for analyzing marker gene sequence-count347

datasets for phylogenetic patterns underlying microbial community responses348

to independent variables. Phylofactorization accounts for the compositional na-349

ture of the data and the underlying phylogeny and produces inferences that are350

independent and more powerful than application of the ILR transform to the351

rooted phylogeny. The R package 'phylofactor' has built-in parallelization that352

can be used to analyze large microbiome datasets, and allows generalized linear353
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modeling to identify clades which respond to treatments or multiple environ-354

mental gradients.355

Phylofactorization can connect the pipeline of microbiome studies to focused356

studies of microbial physiology. As researchers identify lineages with putative357

functional ecological responses, taxa within those lineages - even if they are not358

the same OTUs - can be cultivated and their genomes screened to uncover the359

physiological mechanisms underlying the lineages' shared response.360

Phylofactorization improves the pipeline for analyzing microbiome datasets by361

allowing researchers to objectively determine the appropriate phylogenetic scales362

for analyzing microbiome datasets - a family here, an unclassi�ed split there -363

instead of performing multiple comparisons at each taxonomic level. Instead of364

principle components analysis or principle coordinates analysis, phylofactoriza-365

tion can be used as for exploratory data analysis and dimensionality reduction366

tool in which the �components� are identi�able clades in the tree of life, a far367

more intuitive and informative component for biological variation than multi-368

species loadings.369

Phylofactorization can allow researchers to annotate online databases of the370

microbial tree of life, permitting predictions about the physiology of unclassi-371

�ed and uncharacterized life forms based on previous phylogenetic inferences in372

sequence-count data. By allowing researchers to make inferences on the same373

tree and potentially annotate an online tree of life, phylofactorization may bring374

on a new era of characterizing high-throughput phylogenetic annotations, �lling375

in the gaps the microbial tree of life.376

An R package for phylofactorization with user-friendly parallelization is now377

available online at https://github.com/reptalex/phylofactor.378

Methods379
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Figure 4: Phylofactorization: (a) Phylofactorization changes variables from tips of the phy-

logeny (OTUs used in analysis of microbiome datasets) to edges of the phylogeny with the largest

predictable di�erences between taxa on each side of the edge. To illustrate this method, we consider

the treatment of a bacterial community with an oxazolidinone. Oxazolidinones target gram-positive

bacteria and will likely lead to a decrease in the relative abundances of gram-positive bacteria

(antibiotic susceptible clade, A, having the antibiotic target). Among the antibiotic susceptible

bacteria, phylofactor can identify monophyletic clades that are resistant relative to other antibiotic-

susceptible bacteria due to a vertically-transmitted trait (B) such as the loss of the antibiotic target

or enzymes that break down the antibiotic. (b) The two phylogenetic factors produce three mean-

ingful bins of taxa - those susceptible to antibiotics (A), those within the susceptible clade that are

resistant to antibiotics (A+B), and a potentially paraphyletic remainder. (c) Phylofactorization

is a greedy algorithm to extract the edges which capture the most predictable di�erences in the

response of relative abundances among taxa on the two sides of each edge. (c, top row) For the

�rst iteration, all edges are considered - an ILR coordinate is created for each edge using equation

(1) and the ILR coordinate is regressed against the independent variable. The edge which max-

imizes the objective function is chosen. Depicted above, the �rst factor corresponds to the edge

separating antibiotic susceptible bacteria from the rest. Then, the tree is split - all subsequent

comparisons along edges will be contained within the sub-trees. The conceptual justi�cation for

limiting comparisons within sub-trees is to prevent over-lapping comparisons: once we identify the

antibiotic susceptible clade, we want to look at which taxa within that clade behave di�erently from

other taxa within that clade. (c, bottom row) For the second iteration, the remaining edges are

considered, ILR coordinates within sub-trees are constructed. The edge maximizing the objective

function is selected and the tree is split at that edge. For more details, see the section �PhyloFactor�

in the supplemental info.
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Phylogenetically-Structured compositional data380

Microbiome datasets are �phylogenetically-structured compositional data�, com-381

positions of parts linked together by a phylogeny for which only inferences on382

relative abundances can be drawn. The phylogeny is the sca�olding for the383

evolution of vertically-transmitted traits, and vertically-transmitted traits may384

underlie an organism's functional ecology and response to perturbations or envi-385

ronmental gradients. Performing inference on the edges in a phylogeny driving386

variation in the data can be useful for identifying clades with putative traits387

causing related taxa to respond similarly to treatments, but such inferences388

must account for the compositional nature of the sequence-count data.389

A standard analysis of microbiome datasets uses only the distal edges of the390

tree - the OTUs - and a few edges within the tree separating Linean taxonomic391

groups. However, a phylogeny of D taxa and no polytomies is composed of392

2D − 3 edges, each connecting two disjoint sets of taxa in the tree with no393

guarantee that splits in Linean taxonomy corresponds to phylogenetic splits394

driving variation in our dataset. Thus, instead of analyzing just the tips and395

a series of Linean splits in the tree, a more robust analysis of phylogenetically-396

structured compositional data should analyze all of the edges in the tree. To397

do that, we draw on the isometric log-ratio transform from compositional data398

analysis, which has been used to search for a taxonomic signature of obesity399

in the human gut �ora [14] and incorporated into packages for downstream400

principal components analysis [21]. However, to the best of our knowledge,401

the previous literature using the isometric log-ratio transform in microbiome402

datasets has used random or standard sequential binary partitions, and not403

explicitly incorporated the phylogeny as their sequential binary partition.404

The Isometric Log-Ratio Transform of a rooted phylogeny405

The isometric log-ratio (ILR) transform was developed as a way to transform406

compositional data from the simplex into real space where standard statistical407

tools can be applied [11, 10]. A sequential binary partition is used to construct a408

new set of coordinates, and the phylogeny is a natural choice for the sequential409

binary partition in microbiome datasets. Instead of analyzing relative abun-410

dances, yi, of D di�erent OTUs, the ILR transform produces D−1 coordinates,411

x∗i (called �balances�). Each balance corresponds to a single internal node of the412

tree and represents the averaged di�erence in relative abundance between the413
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taxa in the two sister clades descending from that node (the di�erence being414

appropriately measured as a log-ratio due to the compositional nature of the415

data; see SI for more detailed description of the ILR transform). For an arbi-416

trary node indicating the split of a group, R with r elements from the group, S417

with s elements, the ILR balance can be written as418

x∗{R,S} =

√
rs

r + s
log

(
g(yR)

g(yS)

)
(1)

where g(yR) is the geometric mean of all yi for i ∈ R.419

We refer to the ILR transform corresponding to a rooted phylogeny as the420

�rooted ILR�. The rooted ILR creates a set of ILR coordinates, {x∗i }, where421

each coordinate corresponds to the �balance� between sister clades at each split422

in the phylogenetic tree. The balances in a rooted ILR transform in equation (1)423

can be intuited as the average di�erence between taxa in two groups, and splits424

in the tree which meaningfully di�erentiate taxa will be those splits in which425

the average di�erence between taxa in two groups changes predictably with an426

independent variable. Inferences on ILR coordinates, then, map to inferences427

on lineages in the phylogenetic tree.428

The rooted ILR coordinates provide a natural way to analyze microbiota data as429

they measure the di�erence in the relative abundances of sister clades and may430

be useful in identifying e�ects contained within clades such as zero-sum com-431

petition of close relatives or the substitution of one relative for another across432

environments. However, if we desire to link the e�ect of an external covariate433

(e.g. antibiotics vs. no antibiotic treatment) to clades within the phylogeny,434

the best comparison may not be between sister clades, but instead between all435

other clades, controlling for any other phylogenetic splits or factors we may436

know of (e.g. we may compare a lineage within gram-positives with all other437

gram-positives, once we've identi�ed the gram-positive vs. gram-negative split438

as an important factor for antibiotic susceptibility). We refer to this unrooted439

approach as 'phylofactorization'.440

For the task of linking an external covariate to individual clades in the phy-441

logeny, we examine three features of the rooted ILR that can be improved on442

by phylofactorization by considering a treatment that decreases the abundance443

of one and only one clade, B, whose closest relative is clade A. Regression on444

the rooted ILR coordinates may identify the balance x∗{A,B} corresponding to445

the most recent common ancestor of clades A and B as having that strongest446
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response to the treatment, but regression on this coordinate will suggest that447

clade B decreases relative to A, leading to structured residuals in the original448

dataset due to an inability to account for the increase in clade B relative to the449

rest of the OTUs in the data (Fig. 4a). Second, all partitions between a�ected450

clade and the root will be a�ected. If each balance is tested independently,451

the rooted ILR may identify many clades that are a�ected by antibiotics; the452

correlations between coordinates can yield a high false-positive rate if just one453

clade is a�ected (Fig. 4b). Finally, the ILR transformation does not work with454

polytomies common in real, unresolved phylogenies. Any polytomy will produce455

a split in the phylogeny between three or more taxa, and there is no general456

way to describe the balance of relative abundances of three or more parts using457

only one coordinate.458

Nonetheless, the simplicity and theoretical foundations underlying the ILR, and459

the instant appeal of applying it to the sequential-binary partition of the phy-460

logeny, motivate the rooted ILR as a simple tool for analysis of the phylogenetic461

structure in compositional data. For that reason, we use the rooted ILR as a462

baseline for comparison of our more complicated method of phylogenetic factor-463

ization.464

Phylofactorization465

The shortcomings of the rooted ILR can be remedied by modifying the ILR466

transform to apply not to the nodes or splits in a phylogeny, but to the edges in467

an unrooted phylogeny. While ILR coordinates of nodes allow a comparison of468

sister clades, ILR coordinates along edges allow comparison of taxa with putative469

traits that arose along the edge against all taxa without those putative traits.470

Traits arise along edges of the phylogeny and so, for annotation of online trees471

of life, e�ects in a clade are best mapped to a chain of edges in the phylogeny.472

However, the ILR transform requires a sequential binary partition, and the edges473

don't immediately provide a clear candidate for a sequential binary partition. In474

what we refer to as �phylofactorization�, one can iteratively construct a sequen-475

tial binary partition from the unrooted phylogeny by using a greedy algorithm476

by sequentially choosing edges which maximize a researcher's objective function.477

Phylofactorization consists of 3 steps (Box 1): (1) Consider the set of possible478

primary ILR basis elements corresponding to a partition along any edge in the479

tree (including the tips). (2) Choose the edge whose corresponding ILR basis480
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Figure 5: Shortcomings of Rooted ILR (a) The isometric log-ratio transform corresponding to

a phylogeny rooted at the common ancestor is inaccurate for geometric changes within clades. Here,

absolute abundances of 50 taxa in 30 samples per site were simulated across two sites. An a�ected

clade, B, is up-represented in the second site. Regression on the rooted ILR coordinates, x∗i , against

the sample site indicated that the partition separating clade A,B, referred to as x∗{A,B}, had the

highest test-statistic, but the rooted ILR predicts fold-changes in B relative to A, not fold changes

in B relative to the rest of the taxa. (b) Consequently, when one clade increase in abundance

while the rest remain una�ected, partitions between the a�ected clade and the root will also have a

signal leading to a correlation in the coordinates along the path from B to the root. The correlation

plotted here is the absolute value of the correlation coe�cient, and the baseline correlation was

estimated as the average absolute value of the correlation coe�cient between ILR coordinates not

along the root-path of the a�ected clade.
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element maximizes some objective function - such as the test-statistic from re-481

gression or the percent of variation explained in the original dataset - and the482

groups of taxa split by that edge form the �rst partition. (3) Repeat steps 1 and483

2, constructing subsequent ILR basis elements corresponding to remaining edges484

in the phylogeny and made orthogonal to all previous partitions by limiting the485

comparisons to taxa within the groups of taxa un-split by previous partitions.486

Explicitly, the �rst iteration of phylofactorization considers a set of candi-487

date ILR coordinates, {x∗e} corresponding to the two groups of taxa split by488

each edge, e. Then, regression is performed on each of the ILR coordinates,489

x∗e ∼ f(X) for an appropriate function, f and a set of independent variables,490

X. The edge, e+1 , which maximizes the objective function is chosen as the �rst491

phylogenetic factor. In this paper, our objective function is the di�erence be-492

tween the null deviance of the ILR coordinate and the deviance of the generalized493

linear model explaining that ILR coordinate as a function of the independent494

variables. We use this objective function as a measure of the amount of variance495

explained by regression on each edge because the total variance in a composi-496

tional dataset is constant and equal to the sum of the variances of all ILR497

coordinates corresponding to any sequential binary partition. Consequently, at498

each iteration there is a �xed amount of the total variance remaining in the499

dataset, and so at the candidate ILR coordinate which captures the greatest500

fraction of the total variance in the dataset is the one with the greatest amount501

of variance explained by the regression. After identifying e+1 , we cut the tree in502

two sub-trees along the edge, e+1 .503

For the second iteration, another set of candidate ILR coordinates is constructed504

such that their underlying balancing elements are orthogonal to the �rst ILR505

coordinate. Orthogonality is ensured by constructing ILR coordinates contrast-506

ing the abundances of taxa along each edge, restricting the contrast to all taxa507

within the sub-tree in which the edge is found. A new edge, e+2 , which maximizes508

the objective function is chosen as the second factor, the sub-tree containing this509

edge is cut along this edge to produce two sub-trees, and the process is repeated510

until a desired number of factors is reached or until a stopping criterion is met.511

More details on the algorithm, along with a discussion on objective functions,512

is contained in the SI.513

While one could use other methods of amalgamating abundances along edges,514

the conceptual importance of using the ILR transform is twofold: the ILR trans-515

form has proven asymptotic normality properties for compositional data to allow516
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the application of standard multivariate methods [11], and the ILR transform517

serves as a measure of contrast between two groups. The log-ratio used in phylo-518

factor is an averaged ratio of abundances of taxa on two sides of an edge (see519

supplement for more detail), thus phylofactorization searches the tree for the520

edge which has the most predictable di�erence between taxa on each side of the521

edge, or, put di�erently, the edge which best di�erentiates taxa on each side.522

Thus, each edge that di�erentiates taxa and their responses to independent523

variables is considered a phylogenetic �factor� driving variation in the data.524

The output of phylofactorization is a set of orthogonal, sequentially �less im-525

portant� ILR basis elements, their predicted balances, and all other information526

obtained from regression. After the �rst iteration of phylofactorization, we are527

left with an ILR basis element corresponding to the edge which maximized our528

objective function and split the dataset into two disjoint sub-trees, or sets of529

OTUs that we henceforth refer to as �bins�, and we have an estimated ILR530

balancing element, x̂∗1(X), where X is our set of independent variables. Sub-531

sequent factors will split the bins from previous steps, and after n iterations532

one has n factors that can be mapped to the phylogeny, n + 1 bins for bin-533

ning taxa based on their phylogenetic factors, n estimates of ILR balancing534

elements, and an orthonormal ILR basis that can be used to project the data535

onto a lower dimensional space. The sequential splitting of bins in phylofactor-536

ization ensures sequentially independent inferences - having already identi�ed537

group B as hyper-abundant relative to group A in the example illustrated in538

Fig. 4, downstream factors must analyze sub-compositions entirely within B539

and within A.540

Computational Tools541

Phylofactorization was done using the R package �phylofactor� available at542

https://github.com/reptalex/phylofactor. The R package contains detailed help543

�les that demo the use of the package, and the exact code used in analyses and544

visualization in this paper are available in the supplementary materials. The545

rooted ILR transform was performed as described in [10] where the sequential546

binary partition was the rooted phylogeny.547
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Power Analysis of Rooted ILR and Phylofactorization548

To compare the ability of phylofactorization and the rooted ILR to identify549

clades of OTUs with shared associations with independent variables, we simu-550

lated random communities of D = 50 OTUs and p = 40 samples by simulating551

random absolute abundances, Ni,j , such that logNi,j were i.i.d Gaussian ran-552

dom variables with mean µ = 8 and standard deviation σ = 0.5. The OTUs553

were connected by a random tree (the tree remained constant across all simula-554

tions), and then either 1 or 3 clades were randomly chosen to have associations555

with a binary �environment� independent variable with p = 20 samples for each556

of its two values to represent an equal sampling of microbial communities across557

two environments.558

For simulations with one signi�cant clade, the abundances of all the OTUs559

within that clade increased by a factor a in the second environment where a ∈560

{1.5, 3, 6}. For simulations with three signi�cant clades, the three clades were561

drawn at random and randomly assigned a fold-change from the set {πb, 0.5b, exp(−b)}562

in a randomly chosen environment where b ∈ {1, 2, 5}. For each fold-change,563

500 replicates were run to compare the power of the rooted ILR and phylofac-564

torization in correctly identifying the a�ected clades.565

Regression of rooted ILR coordinates was performed and the coordinates were566

ranked by the di�erence between their null deviance and the model deviance.567

The ability of a rooted ILR coordinate to identify the correct 1 clade or 3 clades568

was measured by the percent of its top 1 or 3 ILR coordinates, respectively,569

which corresponded to the node on the tree from which the a�ected clade(s)570

originated. The ability of phylofactor to identify the correct 1 clade or 3 clades571

was measured by the percent of the factors that correctly split an a�ected clade572

from the rest (e.g. the percent of factors corresponding to edges along which a573

trait arose).574

For the 3 clade simulations, we also compared the amount of variance explained575

by 3 factors in phylofactorization with the amount of variance explained by the576

top 3 ILR coordinates in the rooted ILR. The amount of variance explained577

was measured as the di�erence in the null deviance and the model deviance,578

summed across all three factors or the top 3 ILR coordinates.579
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KS-based Stopping Function for PhyloFactor580

While a researcher can iterate through phylofactorization until a full basis of581

D − 1 ILR coordinates is constructed, there is value in stopping the iteration582

when all of the clades have been identi�ed or at a conservative underestimate of583

the true number of phylogenetic factors. We implemented a stopping function584

based on a Kolmogorov-Smirnov (KS) test of the distribution of P-values from585

analyses of variance of the regressions on candidate ILR coordinates. If there586

is no phylogenetic signal, we anticipate the true distribution of P-values to be587

uniform (albeit with some dependence among the P-values due to overlap in the588

OTUs used in the ILR coordinates). Thus, we tested the ability of phylofactor589

to correctly identify the number of clades if phylofactorization is stopped when590

a KS test of the P-values produces its own P-value PKS > 0.05.591

We simulated 300 replicate communities withM clades for eachM ∈ {1, ..., 10}.592

For simulations withM clades, D = 50 and p = 40 communities were simulated593

as above and fold changes, c, were drawn as log-normal random variables where594

log(ck) were i.i.d Gaussian random variables with µ = 0 and σ = 3 for k =595

1, ...,M . The number of clades identi�ed by phylofactor for a given true number596

of clades, KM,r, was tallied for r = 1, ..., 300. We calculate the mean K̄M across597

all replicates and, for visualization purposes, interpolate the α = 0.025 and598

α = 0.975 quantiles by �nding the best �t of a logistic function to the cumulative599

distribution of {KM,r}r=300
r=1 for each M .600

Analysis of Fecal/Oral microbiome data601

16S amplicon sequencing data from Caporaso et al. (2011) [4] were downloaded602

from the MG-RAST database (http://metagenomics.anl.gov/) along with as-603

sociated metadata. QIIME [5] was used to trim primers from these data, and604

to cluster OTUs with the Greengenes reference database (May 2013 version;605

http://greengenes.lbl.gov). Longer sequence lengths in the greengenes database606

(~1400 BP) compared to the original Illumina sequences (~123 BP) allows more607

informative base pairs for phylogenetic tree construction. We used the phylo-608

genetic tree that is included with the greengenes database for all analyses. The609

resulting OTU table was rare�ed to 6000 sequences per sample.610

10 time points were randomly drawn from each of the male tongue, female611

tongue, male feces and female feces datasets, giving a total of n=20 samples at612

each site. Taxa present in fewer than 30 of the 40 samples were discarded, and613
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phylofactorization was done by adding pseudo-counts of 0.65 to all 0 entries in614

the dataset [1], converting counts in each sample to relative abundances, and615

then regressing the ILR coordinates against body site. The complete R script616

is available in the �le �Data Analysis pipeline of the FT microbiome�.617

Complete phylofactorization of this dataset was performed by stopping the al-618

gorithm when a KS-test on the uniformity of P-values from analyses of variance619

of regression on candidate ILR-coordinates yielded PKS > 0.05. These results620

were compared with a standard, multiple hypothesis-testing analysis of CLR-621

transformed data. The summary of the taxonomic detail at the �rst three factors622

is provided in the results section, and a full list of the taxa factored at each step623

is available in the supplement and can be further explored using the R pipeline624

provided.625

Analysis of Soil microbiome data626

The soil microbiome dataset from [28] was included to illustrate the ability627

of phylofactor to work on bigger microbiome datasets with continuous indepen-628

dent variables and multiple regression. Details on sample collection, sequencing,629

meta-data measurements and OTU clustering are available in [28]. The phy-630

logeny was constructed by aligning representative sequences using SINA [27],631

trimming bases that represented gaps in ≥20% of sequences, and using fasttree632

[26].633

The complete dataset contained 123,851 OTUs and 580 samples. Data were634

�ltered to include all OTUs with on average 2 or more sequences counted across635

all samples, shrinking the dataset to D=3,379 OTUs. The data were further636

trimmed to include only those samples with available pH, C and N meta-data,637

reducing the sample size to n=551.638

Phylofactorization was done by adding pseudo-counts of 0.65 to all 0 entries in639

the dataset [1], converting counts in each sample to relative abundances, and640

performing multiple regression of pH, C and N on ILR coordinates. The �rst641

three factors are used for ordination-visualization. To determine the relative642

importance of each abiotic variable in driving phylogenetic patterns of microbial643

community composition, we used the lmg method from the R package 'relaimpo'644

[17] which averages the sequential sums of squares over all orderings of regressors645

to obtain a measure of relative importance of each regressor in the multivariate646

model.647

26

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgments648

ADW would like to acknowledge L. Ma for his feedback and help incorporating649

this method into the statistical literature. JS was supported in part by the650

Duke University Medical Scientist Training Program. This paper is published651

by support from and in loving memory of D. Nemergut.652

Declarations653

Competing Interests: The authors have no competing interests in relation654

to this work.655

Availability of Data and Materials: The data were obtained from previ-656

ous studies and are available online through the original studies. The R pack-657

age 'phylofactor' is available at https://github.com/reptalex/phylofactor and all658

other R �les used in the analysis and visualization are available online.659

References660

[1] John Aitchison. The statistical analysis of compositional data. 1986.661

[2] Richard D Bardgett, Chris Freeman, and Nicholas J Ostle. Microbial con-662

tributions to climate change through carbon cycle feedbacks. The ISME663

Journal, 2(8):805�814, 2008.664

[3] Roeland L Berendsen, Corne MJ Pieterse, and Peter AHM Bakker. The rhi-665

zosphere microbiome and plant health. Trends in plant science, 17(8):478�666

486, 2012.667

[4] J Gregory Caporaso, Christian L Lauber, Elizabeth K Costello, Donna668

Berg-Lyons, Antonio Gonzalez, Jesse Stombaugh, Dan Knights, Pawel669

Gajer, Jacques Ravel, Noah Fierer, et al. Moving pictures of the human670

microbiome. Genome Biol, 12(5):R50, 2011.671

[5] J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-672

Lyons, James Huntley, Noah Fierer, Sarah M Owens, Jason Betley, Louise673

Fraser, Markus Bauer, et al. Ultra-high-throughput microbial community674

27

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


analysis on the illumina hiseq and miseq platforms. The ISME journal,675

6(8):1621�1624, 2012.676

[6] Human Microbiome Project Consortium et al. Structure, function and677

diversity of the healthy human microbiome. Nature, 486(7402):207�214,678

2012.679

[7] Joel Cracraft. Species concepts and speciation analysis. In Current or-680

nithology, pages 159�187. Springer, 1983.681

[8] Joel Cracraft. Species concepts in theoretical and applied biology: a system-682

atic debate with consequences. Species concepts and phylogenetic theory:683

A debate, pages 30�43, 2000.684

[9] Tao Ding and Patrick D Schloss. Dynamics and associations of microbial685

community types across the human body. Nature, 509(7500):357, 2014.686

[10] Juan José Egozcue and Vera Pawlowsky-Glahn. Groups of parts and their687

balances in compositional data analysis. Mathematical Geology, 37(7):795�688

828, 2005.689

[11] Juan José Egozcue, Vera Pawlowsky-Glahn, Glòria Mateu-Figueras, and690

Carles Barcelo-Vidal. Isometric logratio transformations for compositional691

data analysis. Mathematical Geology, 35(3):279�300, 2003.692

[12] Paul G Falkowski, Tom Fenchel, and Edward F Delong. The microbial693

engines that drive earth's biogeochemical cycles. science, 320(5879):1034�694

1039, 2008.695

[13] Noah Fierer and Robert B Jackson. The diversity and biogeography of soil696

bacterial communities. Proceedings of the National Academy of Sciences of697

the United States of America, 103(3):626�631, 2006.698

[14] Mariel M Finucane, Thomas J Sharpton, Timothy J Laurent, and Kather-699

ine S Pollard. A taxonomic signature of obesity in the microbiome? getting700

to the guts of the matter. PloS one, 9(1):e84689, 2014.701

[15] Jonathan Friedman and Eric J Alm. Inferring correlation networks from702

genomic survey data. PLoS Comput Biol, 8(9):e1002687, 2012.703

[16] Keith Gregg. Engineering gut �ora of ruminant livestock to reduce forage704

toxicity: progress and problems. Trends in biotechnology, 13(10):418�421,705

1995.706

28

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


[17] Ulrike Grömping et al. Relative importance for linear regression in r: the707

package relaimpo. Journal of statistical software, 17(1):1�27, 2006.708

[18] B Guggenheim. Streptococci of dental plaques. Caries research, 2(2):147�709

163, 1968.710

[19] François Keck, Frédéric Rimet, Agnes Bouchez, and Alain Franc. phylosig-711

nal: an r package to measure, test, and explore the phylogenetic signal.712

Ecology and evolution, 6(9):2774�2780, 2016.713

[20] Omry Koren, Aymé Spor, Jenny Felin, Frida Fåk, Jesse Stombaugh,714

Valentina Tremaroli, Carl Johan Behre, Rob Knight, Björn Fagerberg,715

Ruth E Ley, et al. Human oral, gut, and plaque microbiota in patients716

with atherosclerosis. Proceedings of the National Academy of Sciences,717

108(Supplement 1):4592�4598, 2011.718

[21] Kim-Anh Le Cao, Mary-Ellen Costello, Vanessa Anne Lakis, Francois Bar-719

tolo, Xin-Yi Chua, Remi Brazeilles, and Pascale Rondeau. mixmc: a mul-720

tivariate statistical framework to gain insight into microbial communities.721

bioRxiv, page 044206, 2016.722

[22] Jørgen J Leisner, Birgit Groth Laursen, Hervé Prévost, Djamel Drider, and723

Paw Dalgaard. Carnobacterium: positive and negative e�ects in the envi-724

ronment and in foods. FEMS microbiology reviews, 31(5):592�613, 2007.725

[23] Josep A Martín-Fernández, Carles Barceló-Vidal, and Vera Pawlowsky-726

Glahn. Dealing with zeros and missing values in compositional data sets727

using nonparametric imputation. Mathematical Geology, 35(3):253�278,728

2003.729

[24] Jennifer BH Martiny, Stuart E Jones, Jay T Lennon, and Adam C Mar-730

tiny. Microbiomes in light of traits: A phylogenetic perspective. Science,731

350(6261):aac9323, 2015.732

[25] Vera Pawlowsky-Glahn and Antonella Buccianti. Compositional data anal-733

ysis: Theory and applications. John Wiley & Sons, 2011.734

[26] Morgan N Price, Paramvir S Dehal, and Adam P Arkin. Fasttree 2�735

approximately maximum-likelihood trees for large alignments. PloS one,736

5(3):e9490, 2010.737

29

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


[27] Elmar Pruesse, Jörg Peplies, and Frank Oliver Glöckner. Sina: accu-738

rate high-throughput multiple sequence alignment of ribosomal rna genes.739

Bioinformatics, 28(14):1823�1829, 2012.740

[28] Kelly S Ramirez, Jonathan W Le�, Albert Barberán, Scott Thomas Bates,741

Jason Betley, Thomas W Crowther, Eugene F Kelly, Emily E Old�eld,742

E Ashley Shaw, Christopher Steenbock, et al. Biogeographic patterns in743

below-ground diversity in new york city's central park are similar to those744

observed globally. In Proc. R. Soc. B, volume 281, page 20141988. The745

Royal Society, 2014.746

[29] Liam J Revell. phytools: an r package for phylogenetic comparative biology747

(and other things). Methods in Ecology and Evolution, 3(2):217�223, 2012.748

[30] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a749

bioconductor package for di�erential expression analysis of digital gene ex-750

pression data. Bioinformatics, 26(1):139�140, 2010.751

[31] Mikhail Tikhonov, Robert W Leach, and Ned S Wingreen. Interpreting 16s752

metagenomic data without clustering to achieve sub-otu resolution. The753

ISME journal, 9(1):68�80, 2015.754

30

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074112doi: bioRxiv preprint 

https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

