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. Abstract

> Marker gene sequencing of microbial communities has generated big datasets
s of microbial relative abundances varying across environmental conditions, sam-
+ ple sites and treatments. These data often come with putative phylogenies,
s providing unique opportunities to investigate how shared evolutionary history
e affects microbial abundance patterns. Here, we present a method to identify the
7 phylogenetic factors driving patterns in microbial community composition. We
s use the method, “phylofactorization”, to re-analyze datasets from human body
o and soil microbial communities, demonstrating how phylofactorization can be
10 a dimensionality-reducing tool, an ordination-visualization tool, and also mass-
11 produce inferences on the edges in the phylogeny in which meaningful differences

12 arose.

. Background

12 Microbial communities play important roles in human [6], livestock [16] and
15 plant [3] health, biogeochemical cycles [2, 12], the maintenance of ecosystem pro-
16 ductivity, bioremediation, and other ecosystem services. Given the importance
1z of microbial communities and the vast number of uncultured and undescribed
12 microbes associated with animal and plant hosts and in natural and engineered
10 systems, understanding the factors determining microbial community structure

20 and function is major challenge for modern biology.

21 Marker gene sequencing (e.g. 16S rRNA gene sequencing to assess bacterial and
22 archaeal diversity and 18S markers for Eukaryotic diversity) is now one of the
23 most commonly used approaches for describing microbial communities, quanti-
2a fying the relative abundances of individual microbial taxa, and characterizing
2s  how microbial communities change across space, time, or in response to known

26 biotic or abiotic gradients.

27 Analyzing these data is challenging due to the peculiar noise structure of sequence-
2s  count data [30], the inherently compositional nature of the data [15], deciding
20 the taxonomic scale of investigation [7, 8, 31], and the high-dimensionality of
30 species-rich microbial communities [13]. There is a great need and opportunity
31 to develop tools to more efficiently analyze these datasets and leverage infor-

32 mation on the phylogenetic relationships among taxa to better identify which
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33 clades are driving differences in microbial community composition across sample
sa categories or measured biotic or abiotic gradients [24]. In this paper, we take on
35 these challenges by developing a means to perform regression of biotic/abiotic
se gradients on branches in the phylogenetic tree, allowing dimensionality reduc-
37 tion to a series of branches in the phylogeny in a manner consistent with the

ss compositional nature of the data.

3 Many of these challenges can be resolved by performing regression on clades
20 identified in the phylogeny. Consider a study on the effect of oxazolidinones,
ar  which affect gram-positive bacteria, on microbial community composition. Rather
.2 than regression of antibiotic treatment on abundance at numerous taxonomic
a3 levels, statistical analysis of bacterial communities treated with an oxazolidinone
2 should instantly identify the split between gram-positive and gram-negative bac-
«s teria as the most important phylogenetic factor determining response to oxazo-
s lidinones. Subsequent factors should then be identified by comparing bacteria
«z within the previously-identified groups: identify clades within gram-positives
«s which may be more resistant or susceptible than the remaining gram-positives.
20 Splitting the phylogeny at each inference and making comparisons within the
so  split groups ensures that subsequent inferences are independent of the gram pos-
51 itive - gram negative split which we have already obtained. All of this analysis

52 must be done consistent with the compositional nature of sequence count data.

sz  Here, we provide a method to analyze phylogenetically-structured compositional
sa data. The algorithm, referred to as “phylofactorization”, iteratively identifies
ss the most important clades driving variation in the data through their associa-
ss tions with independent variables. Clades are chosen based on some metric of
sz the strength or importance of their regressions with meta-data, and subsequent
ss clades are chosen by comparison of sub-clades within the previously-identified
so  bins of phylogenetic groups. Each “factor” identified corresponds to an edge in
eo the phylogeny, and phylofactorization builds on literature from compositional
e1 data analysis to construct a set of orthogonal axes corresponding to those edges;
o2 the output orthonormal basis allows the projection of sequence-count relative
es abundances onto these phylogenetic axes for dimensionality reduction, visual-
ea ization, and standard multivariate statistical analyses. The visualizations and
es inferences drawn from phylofactorization can be tied back to splits in a given
es phylogenetic tree and thereby allow researchers to annotate the microbial phy-
ez logeny from the results of microbiome datasets.

es We show with simulations that phylofactor is able to correctly identify affected
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6o clades. We then phylofactor a dataset of human oral and fecal microbiomes
70 to determine the phylogenetic factors driving variation in human body site [4],
= and a dataset of soil microbes using a multiple regression of pH, carbon concen-
72 tration and nitrogen concentration [28]. In the human microbiome dataset, we
73 find three splits in the phylogeny that together capture 17.6% of the variation
za community composition across two body sites. Phylofactorization reveals splits
75 between unclassified OTUs not identifiable by taxonomic grouping, important
76 clades of monophyletic yet para-taxonomic OTUs, and a spectrum of taxo-
7z nomic scales for binning and analyzing taxonomic units that varies across taxa
7s - all features that would be missed by standard taxonomy-based analysis. In
7o the soil microbiome dataset, we use phylofactor-based dimensionality reduction
so and ordination-visualization - either using the orthogonal axes corresponding to
s1  splits in the phylogeny, or binning OTUs based on their inferred phylogenetic
s2 factors - to find that pH drives most of the variation in the dominant clades in
ss the soil dataset, and confirm this finding by dominance analysis on the under-
s« lying regressions in phylofactorization, indicating that >%90 of the explained
ss variation in the first three factors is explained by pH. The axes in our ordination-
ss visualization plots correspond to identifiable edges on the phylogeny that have
sz clear biological interpretations and can be used and tested across studies. User-
ss friendly code for implementing, summarizing and visualizing phylofactorization

se is provided in an R package - ’phylofactor’.

. Results

o1 We find three main results. First, we find that our algorithm out-performs a
92 standard tool for analyzing compositions of parts related by a tree - what we
o3 refer to as the “rooted ILR” transform - and that we can obtain a conservative
oa estimate of the number of phylogenetic factors in simulated datasets a with a
os known number of affected clades. Second, we phylofactor a dataset of the human
o oral and fecal microbiomes and find three edges in the phylogeny that account
oz for 17.6% of the variation in microbial communities across these sample sites,
os edges that are not assigned a unique taxonomic label and are thus invisible to
9o taxonomic-based analyses. Third, we show that phylofactorization can be com-
100 bined with multiple regression to reveal that pH drives the main phylogenetic

101 patterns of community composition in soil microbiomes, and show that in four
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102 factors we split the Acidobacteria three times - including one split that identi-
103 fies a monophyletic clade of Acidobacteria that consists of alkaliphiles. Finally,
10a using the soil dataset, we demonstrate how phylofactorization yields two compli-
105 mentary methods for dimensionality reduction and ordination-visualization that
16 tell a simplified story of how the major phylogenetic groups of OTUs change
107 with pH.

ws Power Analysis and Conservative Stopping of Phylofactor-

100 1zation

1o Phylofactorization remedies the structured residuals from the rooted ILR re-
11 gression on data with fold-changes in abundances within clades. Phylofac-
12 torization also remedies the problem of high false-positive rates arising from
113 the nested-dependence and correlated coordinates of the rooted ILR transform,
s as sequential inferences in phylofactorization are independent. Phylofactoriza-
us tion out-performs the rooted ILR in identifying the correct clades with a given
ue fold-change in abundance (Figs. 1la and 1b), and can be paired with other
u7 algorithms assessing residual structure to stop factorization when there is no
s residual structure and thus accurately identify the number of affected clades
1o (Fig. 1c). Finally, by focusing the inferences on edges instead of nodes in the
120 phylogeny, this algorithm works on trees with polytomies and doesn’t require a
121 forced resolution of polytomies to construct a sequential binary partition of the
122 OTUs. Since edges are the locations of the phylogeny where functional traits
123 arise, the identification of edges that drive variation yields a clear, biological

124 interpretation.

125 Oral-Fecal Microbiome

126 Phylofactorization of the oral-fecal microbiome dataset, with 290 OTUs and 40
127 samples, yields three factors that explain 17.6% of the variation in the dataset,
128 factors which correspond to clearly visible blocks in phylogenetic heatmaps of
120 the OTU table (Fig. 1). The factors span a range of taxonomic scales and all of
130 them would be invisible to taxonomic-based analyses. Below, we summarize the
131 factors - the P-values from regression, the taxa split at each factor, the body
132 site associations predicted by generalized linear modeling of the ILR coordinate
133 against body site, and finer detail about the taxonomic identities and known
13a  ecology of monophyletic taxa being split. Phylofactorization of these data indi-
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(a) Rooted ILR PhyloFactor (c) Performance of KS-based Stopping Function
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Figure 1: (a) Power Analysis - 1 Clade. The rooted ILR transform that minimizes residual
variance when regressed against sample site is less able to identify the correct clade compared
to phylofactorization for a variety of effect sizes, a, and sample sizes. (b) Three Significant
Clades: When three significant clades are chosen and given a set of effects increasing in intensity
with the parameter b, choosing the top rooted ILR coordinates under performs phylofactorization
in correctly identifying the affected clades. Phylofactorization also explains more variation in the
data: across effect sizes, phylofactorization explains 2 orders of magnitude more of the variance
in the dataset than the sequential rooted ILR. (¢) Stopping Phylofactorization: Plots of the
true number of affected clades in simulated datasets against the number of clades identified by the
R package 'phylofactor’. One can terminate phylofactorization when the true number of affected
clade is unknown by choosing a stopping function aimed at stopping when there is no evidence of
a remaining signal. By stopping the iteration when the distribution of P-values from analyses of
variance of regression on candidate ILR basis elements is uniform (specifically, stopping when a
KS test against a uniform distribution yields P > 0.05), we obtain a conservative estimate of the

number of phylogenetic factors in the data.
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135 cates that a few clades explain a large fraction of the variation in the data, and
13 many more clades can be identified as containing the same intricate detail as the
137 phylogenetic factors presented below. The biology of microbial human-body-site
138 association can focus on these dominant factors - which traits and evolutionary
139 history drive these monophyletic groups’ strong, common association with body

140 Sites?

1r The first factor (P = 4.90 x 1073°) split Actinobacteria and Alpha-, Beta-
12, Gamma-, and Delta-proteobacteria from Epsilonproteobacteria and the rest
13 (Fig. S4). The underlying generalized linear model predicts the Actinobacteria
1a  and non-Epsilon-proteobacteria to be 0.4x as abundant as the rest in the gut and
s 3.7x as abundant as the rest in the tongue. The Actinobacteria identified as more
16 abundant in the tongue include four members of the plaque-associated family
1z Actinomycetaceae, one unclassified species of Cornybacterium, three members
s of the mouth-associated genus Rothia [20], and one unclassified species of the
10 vaginal-associated genus Atopobium [9]. With a standard multivariate analysis
1o of the CLR-transformed data, all nine of these Actinobacteria were identified
151 as significantly more abundant in the tongue from regression of the individual
12 OTUs when using either a 1% false-discovery rate or a Bonferonni correction -
13 these monophyletic taxa all individually show a strong preference for the same
152 body site, and their basal branch was identified as our first phylogenetic fac-
155 tor. The remaining Alpha-, Beta-, Gamma- and Delta-proteobacteria grouped
15 with the Actinobacteria consisted of 31 OTUs, and the Epsilonproteobacteira
157 split from the rest were three unclassified species of the genus Campylobacter.
158 The grouping of Actinobacteria with the non-Epsilon Proteobacteria motivates
15 the need for accurate phylogenies in phylofactorization, but also illustrates the
160 promise of identifying clades of interest where the phylogeny is correct and the

161 taxonomy is not.

12 The second factor (P = 1.15 x 10731) splits 16 Firmicutes of the class Bacilli
163 from the obligately anaerobic Firmicutes class Clostridia and the remaining
16a  paraphyletic group containing Epsilonproteobacteria and the rest. The Bacilli
15 are, on average, 0.3x as abundant in the gut as the paraphyletic remaining OTUs
166 and 3.9x as abundant in the tongue. The 16 Bacilli OTUs factored here contain
167 12 unclassified species of the genus Streptococcus, well known for its association
1es  with the mouth [18], one member of the genus Lactococcus, one unclassified
160 Species of the mucosal-associated genus Gemella, and two members the family

170 Carnobacteriaceae often associated with fish and meat products [22].
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122 The third factor (P = 1.37 x 1072®) separated 15 members of the Bacteroidetes
172 family Prevotellaceae from all other Bacteroidetes and the remaining para-
173 phyletic group of OTUs not split by previous factors. The Prevotellaceae split in
17a  the third factor were all of the genus Prevotella, including the species Prevotella
i7s melaninogenica and Prevotella nanceiensis found to have abundances 0.3x as
176 abundant in the gut and 4.0x as abundant in the tongue relative to the other

177 taxa from which they were split.

1zs  These first three factors capture major blocks visible in the dataset (Fig. 1) can
179 be used as dimensionality reduction tool with a phylogenetic interpretation (Fig.
180 1). While traditional ordination-visualization tools may capture larger fractions
181 of variation of the data, phylogenetic factorization yields a few variables - ratios
182 of clades - which capture large blocks of variation in the data and can be traced
183 to single edges in the phylogeny corresponding to meaningful splits between
18a  taxa, edges where traits likely arose which govern the differential abundances
185 across sample sites and environmental gradients or responses to treatments (Fig.

1ss 1b, supplemental Figs. S4-S8).

187 Using the KS-test stopping criterion, phylofactorization was terminated at 142
188 factors, each corresponding to a branch in the phylogenetic tree separating two
1ss  groups of OTUs based on their differential abundances in the tongue and fe-
100 ces. These 142 factors define 143 groups, or what we call ’bins’, of taxa which
101 remain unsplit by the phylofactorization. The bins vary in size; 112 bins con-
192 tained only single OTUs, whereas 8 were monophyletic clades and the rest are
103 paraphyletic groups of OTUs, the result of taxa within a monophyletic group
10 being factored, yielding one monophyletic group and one paraphyletic group. Of
105 the 112 single-OTU bins extracted from phylofactorization, 78 were also iden-
16 tified as significant at a false-discovery rate of 1%. Some monophyletic bins
197 included groups of unclassified genera that would not be grouped at the genus
108 level under standard taxonomy-based analyses. For instance, two monophyletic
100 clades of the Firmicutes family Lachnospiraceae were identified as having dif-
200 ferent preferred body sites, yet both clades were unclassified at the genus level.
201 Taxonomic-based analyses would either omit these unclassified genera, or group
202 them together and make it difficult to observe a signal due to the two sub-groups

203 having different responses to body site.

20a  Performing regression on centered log-ratio (CLR) transformed OTU tables
205 yielded 236 significant OTUs at a false-discovery rate of 1%, and the phylo-
200 genetic signal of these OTUs may be difficult to parse out. However, three
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207 iterations of phylofactorizaiton yielded the three major splits in the phylogeny,
208 all of which are consistent with known distributions of taxa. Algorithms such as
200 phylosignal [19], which track P-values up the tree, identify clades with common
210 significance, yet not necessarily clades with common signal - it is a common
»11 signal, not a common significance, which better indicates a putative trait driv-
212 ing predictable responses in microbes. In the 142 factors above, phylofactor

213 identified numerous clades with common significance yet different signals.
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Figure 2: Phylofactorization of human feces/tongue dataset identifies clades differenti-
ating sites. (a) Phylogenetic structure is visible as blocks using a phylogenetic heatmap from the
R package 'phytools’ [29]. The first factor separates Actinobacteria and some Proteobacteria from
the rest, the second factor separates the class Bacilli from the remaining non-Proteobacteria and
non-Actinobacteria, the third factor pulls out the genus Prevotella from Bacteroidetes and indi-
cates that it, unlike many other taxa in Bacteroidetes, is unrepresented in the tongue. Each factor
captures a major block of variation in the data, and the orthogonality of the ILR coordinates from
each factor allow multiple factors to be combined easily for estimates of community composition.
(b) These three factors splits the phylogeny into four bins. Three of those bins are monophyletic
and the final bin is a “remainder” bin, containing taxa split off by the previous monophyletic bins.
The three factors are identifiable edges between nodes that can be mapped to an online database

containing those nodes.
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214 Soil Microbiome

215 The soil microbiome dataset was much larger - 3,379 OTUs and 580 samples -
216 and a much smaller fraction of the variation could be explained by phylofactor-
217 ization. Phylofactorization allows meaningful dimensionality reduction by both
21s factors - plots of the ILR coordinates for the dominant factors - and by bins of
210 taxa that remain un-split at a given level of factorization. Phylofactorization
220 confirmed that the pH of the environment plays a dominant role in the micro-
221 bial community composition, consistent with previous analyses based on Mantel
222 tests [28]. Dominance analysis of the generalized linear models associated with
223 each factor determined pH to account for approximately 92.87%, 89.78%, and
22¢ 92.94% of the explained variance in the first, second, and third factor, respec-
225 tively. C and N were relatively unimportant, and the dominance of pH in the
226 first three factors can be visualized by ordination-visualization plots of the ILR,

227 coordinates of the first three factors (Fig. 2a).

228 The first factor splits a group of 206 OTUs in two classes of Acidobacteria from
220 all other bacteria: class Acidobacteriia and class DA052 are shown to decrease in
230 relative abundance with increasing pH. The second factor split 31 OTUs in the
231 order Actinomycetales (some from the family Thermomonosporaceae and the
232 rest unclassified at the family level) from the remainder of all other bacteria,
233 and these monophyletic Actinomycetales also decrease in relative abundance
232 with increasing pH. The third factor identified another clade within the phylum
235 Acidobacteria to decrease with pH: 115 bacteria from the classes Solibacteres
236 and TMI.

237 Interestingly, the fourth factor identifies a large collection of 193 OTUs in the re-
33 mainder of phylum Acidobacteria (i.e. those Acidobacteria not mentioned above
230 in factors 1 and 3) as having relative abundances that increase with pH (dom-
2e0 inance analysis: 94.79% of explained variance attributable to pH). Unlike the
2a1 previous three factors above which were acidophiles, this monophyletic group of
22 Acidobacteria consists of alkaliphiles, which includes the classes Acidobacteria-6,
2a3 Chloracidobacteria, S053 and three OTUs unclassified at the class level.

2aa The first four factors can be used to define 5 bins of OTUs that we refer to as
2es “binned phylogenetic units” or BPUs: a monophyletic group of Acidobacteria
2es  (classes Chloracidobacteria, Acidobacteria-6, and S035), another monophyletic
2e7  group of Acidobacteria (classes Solibacteres and TM1), a monophyletic group of
2as  several families of the order Actinomycetales, a monophyletic group of Acidobac-

2e0  teria (classes Acidobacteriia and DA0522), and a paraphyletic amalagamation

11
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250 Of the remaining taxa. Binning the OTUs based on these BPUs tells a simplified

251 story of how pH drives microbial community composition (Fig. 2b).
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Figure 3: Dimensionality Reduction and Ordination-Visualization of soil microbiome
dataset. Phylofactor presents two complementary methods for projecting and visualizing the high-
dimensional phylogenetically-structured compositional data. (a) The ILR coordinates have asymp-
totic normality properties and provide biologically informative ordination-visualization plots. Here,
we we see that pH is a much better predictor than N of the major phylogenetic factors in Central
Park soils. Dominance analysis indicated that pH accounts for approximately 92.87%, 89.78%, and
92.94% of the explained variance in the first, second, and third factor, resepectively, consistent with
previous results based on Bray-Curtis distances and Mantel tests showing the dominance of pH in
structuring soil microbiomes [28]. (b) Every edge separates one group of taxa into two, and those
split groups of taxa - what we refer to as bins - can be used to amalgamate taxa and construct a
lower-dimensional, compositional dataset of “binned phylogenetic units” (BPUs). Bin 5 is an amal-
gamation of a monophyletic group of Acidobacteria (classes Chloracidobacteria, Acidobacteria-6,
and S035) that increase in relative abundance with pH. Bin 4 is a monophyletic group of Aci-
dobacteria (classes Solibacteres and TM1), Bin 3 is a monophyletic group of several families of the
order Actinomycetales, Bin 2 is a monophyletic group of Acidobacteria (classes Acidobacteriia and

DAO0522), and Bin 1 is a paraphyletic amalagamation of the remaining taxa.
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. 1D1lscussion

23 Overview

25 We have introduced a simple and generalizable exploratory data analysis al-
255 gorithm, phylofactorization, to identify clades driving variation in microbiome
ase  datasets. Phylofactorization integrates both the compositional and phylogenetic
257 structure of microbiome datasets and produces outputs that contain biological
258 information: effects of independent variables on edges in the phylogeny, includ-
250 ing the tips of the tree traditionally analyzed. The output of phylofactorization
260 contains a sequence of “factors”, or splits in the tree identifying sub-groups of
261 taxa which respond differently to treatment relative to one-another. The splits
262 identified in phylofactorization need not be splits in the Linean taxonomy but
263 can identify strong responses in clades of unclassified taxa. The researcher
262 does not need to choose a taxonomic level at which to perform analysis - those
265 taxonomic levels are output based on whichever clades maximize the objective
266 function, and so researchers will be able to identify multiple taxonomic scales

267 Of importance.

268 Phylofactorization outputs an isometric log-ratio transform of the data with
200  known asymptotic normality properties, coordinates that can be analyzed with
a0 standard multivariate methods [25]. The resulting coordinates correspond to
»nn particular edges between clearly identifiable nodes in the tree of life, allow-
272 ing researchers to annotate a given phylogenetic tree with correlations between
273 clades and various environmental meta-data, sample categories, or experimental

274 treatments.

27s  Future Work

276 The generality of phylofactorization opens the door to future work employing
27z phylofactorization with other objective functions. As we showed with the human
a7e  oral/fecal microbiomes, phylofactorization is not restricted to basal clades, but
279 includes the tips as possible clades of interest, but the objective function we used
2s0  minimized residual variance in the whole community and thereby may prioritize
2e1  deeply rooted edges or abundant taxa with weaker effects over individual OTUs
282 with stronger effects. Other objective functions could be constructed to meet
2e3 the needs of the researcher. If researchers are interested in identifying basal

2sa  lineages, their objective function can weight edges based on distance from the
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ses  tips. If researchers are interested in identifying putative traits, they may be
»se  interested in an objective function weighting edges based on edge length under
287 an assumption that the probability of a trait arising increases with the amount

28 Of time elapsed.

289 Fach edge identified in phylofactorization corresponds to two bins of taxa on
200 each side of the edge, and consequently phylofactorization brings in two com-
201 plementary perspectives for analyzing the data: factor-based analysis and bin-
202 based analysis. Factor-based analysis looks at the each factor as an inference
203 on an edge in the phylogeny, conditioned on the previous inferences already
20« made, and indicating that taxa on one side of an edge respond differently to
2es  the independent variable compared to taxa on the other side of the edge. Bin-
26 based analysis, on the other hand, looks at the set of clades resulting from a
207 certain number of factors - what we call a “binned phylogenetic unit” (BPU).
20s  These bins will create a lower-dimensional, compositional dataset and can be
200 freed from the underlying ILR coordinates for different analyses on these amal-
300 gamated clades. While factor-based analysis provides inferences about the splits
so1  in the phylogeny, BPU-based analysis conditions on the factors and bins OTUs
302 based on which factors they contain. BPU-based analysis can inform sequence
33 binning in future research aimed at controlling for previously-identified phyloge-
30 netic causes of variation, and combine the effects of multiple up-stream factors
sos for predictions of OTU abundance. See the supplementary text for a more

306 detailed discussion of factor-based and bin-based analyses.

30z Phylofactorization will benefit from community discussion and further research
s0s  Oovercoming general statistical challenges common to greedy algorithms and anal-
300 ysis of phylogenetically-structured compositional data. For instance, the log-
s10  ratio transform at the heart of phylofactorization requires researchers deal with
su1 zeros in compositional datasets. While there are many methods for dealing with
s12 zeros [1, 23, 25], it’s unclear which method is most robust for downstream phylo-
a1z factorization of sparse OTU tables. Second, phylofactorization as presented here
s12  does not allow for multiple regression of ILR basis elements - the set of factors
;15 identified after n iterations may explain less variation combined than an al-
;16 ternative set of factors that did not maximize the explained variance at each
317 iteration. This limitation may be overcome by running many replicates of a
s1s  stochastic greedy algorithm and choosing that which maximizes the explained
310 variance after n factors. Third, the researcher must choose an objective function

320 which matches her question, and future research can map out which objective
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321 functions are appropriate for which questions in microbial ecology. Fourth, like
322 any method performing inference based on phylogenetic structure, phylofactor-
323 ization assumes an accurate phylogeny. Accurate statistical statements about a
322 researcher’s confidence in phylofactors must incorporate the uncertainty in our
325 constructed phylogeny. Finally, future research can investigate the unique kinds
326 of errors in phylofactorization: in addition to the multiple-hypothesis testing of
327 edges, phylofactorization may propagate errors in the greedy algorithm, and,
328 even when taxa are correctly factored into the appropriate functional bins, the
320 presence of multiple factors in the same region of the tree can lead to uncer-
330 tainty about the exact edge along which a putative trait arose (see supplement

331 for more discussion on the uncertainty of which edge to annotate).

32 Incorporating that phylogenetic structure into the analysis of microbiome datasets
;33 has been a major challenge [24], and now phylofactorization provides a general
33« framework for rigorous exploration of phylogenetically-structured compositional
;35 datasets. The soil dataset analyzed above, for instance, contains 3,379 OTUs
a3 and 580 samples, and phylofactorization of the clades affected by pH in the
337 soil dataset yielded not just the three dominant factors used for ordination-
s3s  visualization, but 2,091 factors in all, each with an intricate phylogenetic story.
33 Many Acidobacteria are acidophiles, but some - Chloracidobacteria, Acidobacteria-
a0 6, S035, and some undescribed classes of bacteria factored here - appear to be al-
sa1 kaliphiles. By incorporating the phylogenetic structure of microbiome datasets,
32 the big data of the modern sequence-count boom just got bigger, and future
sa3 research will need to consider how to organize, analyze and visualize the large
saa amounts of phylogenetic detail that can now be obtained from the analysis of

sas  microbiome datasets.

. Conclusions

saz Phylofactorization is a robust tool for analyzing marker gene sequence-count
sas  datasets for phylogenetic patterns underlying microbial community responses
sa0  to independent variables. Phylofactorization accounts for the compositional na-
ss0  ture of the data and the underlying phylogeny and produces inferences that are
51 independent and more powerful than application of the ILR transform to the
2 rooted phylogeny. The R package 'phylofactor’ has built-in parallelization that

353 can be used to analyze large microbiome datasets, and allows generalized linear
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ssa  modeling to identify clades which respond to treatments or multiple environ-

3ss  mental gradients.

sse  Phylofactorization can connect the pipeline of microbiome studies to focused
37 studies of microbial physiology. As researchers identify lineages with putative
sss  functional ecological responses, taxa within those lineages - even if they are not
350 the same OTUs - can be cultivated and their genomes screened to uncover the

se0 physiological mechanisms underlying the lineages’ shared response.

se1  Phylofactorization improves the pipeline for analyzing microbiome datasets by
32 allowing researchers to objectively determine the appropriate phylogenetic scales
33 for analyzing microbiome datasets - a family here, an unclassified split there -
sea instead of performing multiple comparisons at each taxonomic level. Instead of
ses  principle components analysis or principle coordinates analysis, phylofactoriza-
366 tion can be used as for exploratory data analysis and dimensionality reduction
sez  tool in which the “components” are identifiable clades in the tree of life, a far
ses 1ore intuitive and informative component for biological variation than multi-

se0  species loadings.

s7o  Phylofactorization can allow researchers to annotate online databases of the
s71 microbial tree of life, permitting predictions about the physiology of unclassi-
322 fled and uncharacterized life forms based on previous phylogenetic inferences in
73 sequence-count data. By allowing researchers to make inferences on the same
s7za tree and potentially annotate an online tree of life, phylofactorization may bring
375 on a new era of characterizing high-throughput phylogenetic annotations, filling

376 in the gaps the microbial tree of life.

7z An R package for phylofactorization with user-friendly parallelization is now
s7e  available online at https://github.com /reptalex/phylofactor.

- Methods
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Figure 4: Phylofactorization: (a) Phylofactorization changes variables from tips of the phy-
logeny (OTUs used in analysis of microbiome datasets) to edges of the phylogeny with the largest
predictable differences between taxa on each side of the edge. To illustrate this method, we consider
the treatment of a bacterial community with an oxazolidinone. Oxazolidinones target gram-positive
bacteria and will likely lead to a decrease in the relative abundances of gram-positive bacteria
(antibiotic susceptible clade, A, having the antibiotic target). Among the antibiotic susceptible
bacteria, phylofactor can identify monophyletic clades that are resistant relative to other antibiotic-
susceptible bacteria due to a vertically-transmitted trait (B) such as the loss of the antibiotic target
or enzymes that break down the antibiotic. (b) The two phylogenetic factors produce three mean-
ingful bins of taxa - those susceptible to antibiotics (A), those within the susceptible clade that are
resistant to antibiotics (A+B), and a potentially paraphyletic remainder. (c) Phylofactorization
is a greedy algorithm to extract the edges which capture the most predictable differences in the
response of relative abundances among taxa on the two sides of each edge. (c, top row) For the
first iteration, all edges are considered - an ILR coordinate is created for each edge using equation
(1) and the ILR coordinate is regressed against the independent variable. The edge which max-
imizes the objective function is chosen. Depicted above, the first factor corresponds to the edge
separating antibiotic susceptible bacteria from the rest. Then, the tree is split - all subsequent
comparisons along edges will be contained within the sub-trees. The conceptual justification for
limiting comparisons within sub-trees is to prevent over-lapping comparisons: once we identify the
antibiotic susceptible clade, we want to look at which taxa within that clade behave differently from
other taxa within that clade. (c, bottom row) For the second iteration, the remaining edges are
considered, ILR coordinates within sub-trees are constructed. The edge maximizing the objective
function is selected and the tree is split at that edge. For more details, see the section “PhyloFactor”

in the supplemental info.
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s0  Phylogenetically-Structured compositional data

ss1 Microbiome datasets are “phylogenetically-structured compositional data”, com-
sz positions of parts linked together by a phylogeny for which only inferences on
sz relative abundances can be drawn. The phylogeny is the scaffolding for the
ssa  evolution of vertically-transmitted traits, and vertically-transmitted traits may
sss  underlie an organism’s functional ecology and response to perturbations or envi-
sss ronmental gradients. Performing inference on the edges in a phylogeny driving
sez  variation in the data can be useful for identifying clades with putative traits
;s causing related taxa to respond similarly to treatments, but such inferences

sso  must account for the compositional nature of the sequence-count data.

300 A standard analysis of microbiome datasets uses only the distal edges of the
sor  tree - the OTUs - and a few edges within the tree separating Linean taxonomic
302 groups. However, a phylogeny of D taxa and no polytomies is composed of
303 2D — 3 edges, each connecting two disjoint sets of taxa in the tree with no
302 guarantee that splits in Linean taxonomy corresponds to phylogenetic splits
ses  driving variation in our dataset. Thus, instead of analyzing just the tips and
36 a series of Linean splits in the tree, a more robust analysis of phylogenetically-
37 structured compositional data should analyze all of the edges in the tree. To
ses  do that, we draw on the isometric log-ratio transform from compositional data
390 analysis, which has been used to search for a taxonomic signature of obesity
200 in the human gut flora [14] and incorporated into packages for downstream
201 principal components analysis [21]. However, to the best of our knowledge,
402 the previous literature using the isometric log-ratio transform in microbiome
a3 datasets has used random or standard sequential binary partitions, and not

s0s explicitly incorporated the phylogeny as their sequential binary partition.

ws The Isometric Log-Ratio Transform of a rooted phylogeny

a6 The isometric log-ratio (ILR) transform was developed as a way to transform
a7 compositional data from the simplex into real space where standard statistical
20 to0ls can be applied [11, 10]. A sequential binary partition is used to construct a
a9 1new set of coordinates, and the phylogeny is a natural choice for the sequential
a0 binary partition in microbiome datasets. Instead of analyzing relative abun-
a1 dances, y;, of D different OTUs, the ILR transform produces D —1 coordinates,
a2z} (called “balances”). Each balance corresponds to a single internal node of the

w13 tree and represents the averaged difference in relative abundance between the
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a1a  taxa in the two sister clades descending from that node (the difference being
a5 appropriately measured as a log-ratio due to the compositional nature of the
216 data; see SI for more detailed description of the ILR transform). For an arbi-
a1z trary node indicating the split of a group, R with r elements from the group, S

a1s with s elements, the ILR balance can be written as

* _ /s 9(yr)
TRy = r—i—slog(g(}’S)) @

a0 where g(yg) is the geometric mean of all y; for i € R.

20 We refer to the ILR transform corresponding to a rooted phylogeny as the
a2 “rooted ILR”. The rooted ILR creates a set of ILR coordinates, {z}}, where
a22 each coordinate corresponds to the “balance” between sister clades at each split
«23 in the phylogenetic tree. The balances in a rooted ILR transform in equation (1)
a2a  can be intuited as the average difference between taxa in two groups, and splits
425 in the tree which meaningfully differentiate taxa will be those splits in which
226 the average difference between taxa in two groups changes predictably with an
s27 independent variable. Inferences on ILR coordinates, then, map to inferences

a2 on lineages in the phylogenetic tree.

420 The rooted ILR coordinates provide a natural way to analyze microbiota data as
430 they measure the difference in the relative abundances of sister clades and may
431 be useful in identifying effects contained within clades such as zero-sum com-
232 petition of close relatives or the substitution of one relative for another across
a3z environments. However, if we desire to link the effect of an external covariate
a3 (e.g. antibiotics vs. no antibiotic treatment) to clades within the phylogeny,
w35 the best comparison may not be between sister clades, but instead between all
a3s  other clades, controlling for any other phylogenetic splits or factors we may
437 know of (e.g. we may compare a lineage within gram-positives with all other
438 gram-positives, once we’ve identified the gram-positive vs. gram-negative split
a3 as an important factor for antibiotic susceptibility). We refer to this unrooted

a0 approach as 'phylofactorization’.

a1 For the task of linking an external covariate to individual clades in the phy-
42 logeny, we examine three features of the rooted ILR that can be improved on
a3 by phylofactorization by considering a treatment that decreases the abundance
asa  Of one and only one clade, B, whose closest relative is clade A. Regression on
a5 the rooted ILR coordinates may identify the balance x? A,B} corresponding to

a6 the most recent common ancestor of clades A and B as having that strongest
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a7 Tesponse to the treatment, but regression on this coordinate will suggest that
sz clade B decreases relative to A, leading to structured residuals in the original
a9 dataset due to an inability to account for the increase in clade B relative to the
a0 rest of the OTUs in the data (Fig. 4a). Second, all partitions between affected
a1 clade and the root will be affected. If each balance is tested independently,
a2 the rooted ILR may identify many clades that are affected by antibiotics; the
a3 correlations between coordinates can yield a high false-positive rate if just one
ssa clade is affected (Fig. 4b). Finally, the ILR transformation does not work with
a5 polytomies common in real, unresolved phylogenies. Any polytomy will produce
ss6  a split in the phylogeny between three or more taxa, and there is no general
a5z way to describe the balance of relative abundances of three or more parts using

ass  only one coordinate.

ss0  Nonetheless, the simplicity and theoretical foundations underlying the ILR, and
w0 the instant appeal of applying it to the sequential-binary partition of the phy-
a1 logeny, motivate the rooted ILR as a simple tool for analysis of the phylogenetic
a2 structure in compositional data. For that reason, we use the rooted ILR as a
463 baseline for comparison of our more complicated method of phylogenetic factor-

464 ization.

ss Phylofactorization

s The shortcomings of the rooted ILR can be remedied by modifying the ILR
a7 transform to apply not to the nodes or splits in a phylogeny, but to the edges in
as  an unrooted phylogeny. While ILR coordinates of nodes allow a comparison of
a0 sister clades, ILR coordinates along edges allow comparison of taxa with putative
470 traits that arose along the edge against all taxa without those putative traits.
ann Traits arise along edges of the phylogeny and so, for annotation of online trees

a2 of life, effects in a clade are best mapped to a chain of edges in the phylogeny.

a3z However, the ILR transform requires a sequential binary partition, and the edges
474 don’t immediately provide a clear candidate for a sequential binary partition. In
a7s  what we refer to as “phylofactorization”; one can iteratively construct a sequen-
476 tial binary partition from the unrooted phylogeny by using a greedy algorithm
477 by sequentially choosing edges which maximize a researcher’s objective function.
as  Phylofactorization consists of 3 steps (Box 1): (1) Consider the set of possible
479 primary ILR basis elements corresponding to a partition along any edge in the
a0 tree (including the tips). (2) Choose the edge whose corresponding ILR basis
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Figure 5: Shortcomings of Rooted ILR. (a) The isometric log-ratio transform corresponding to
a phylogeny rooted at the common ancestor is inaccurate for geometric changes within clades. Here,
absolute abundances of 50 taxa in 30 samples per site were simulated across two sites. An affected
clade, B, is up-represented in the second site. Regression on the rooted ILR coordinates, z}, against
the sample site indicated that the partition separating clade A, B, referred to as zzA’B}, had the
highest test-statistic, but the rooted ILR predicts fold-changes in B relative to A, not fold changes
in B relative to the rest of the taxa. (b) Consequently, when one clade increase in abundance
while the rest remain unaffected, partitions between the affected clade and the root will also have a
signal leading to a correlation in the coordinates along the path from B to the root. The correlation
plotted here is the absolute value of the correlation coefficient, and the baseline correlation was
estimated as the average absolute value of the correlation coefficient between ILR coordinates not

along the root-path of the affected clade.
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as1  element maximizes some objective function - such as the test-statistic from re-
as2  gression or the percent of variation explained in the original dataset - and the
ss3  groups of taxa split by that edge form the first partition. (3) Repeat steps 1 and
asa 2, constructing subsequent ILR basis elements corresponding to remaining edges
ass in the phylogeny and made orthogonal to all previous partitions by limiting the

a6 comparisons to taxa within the groups of taxa un-split by previous partitions.

as7  Explicitly, the first iteration of phylofactorization considers a set of candi-
sss date ILR coordinates, {z}} corresponding to the two groups of taxa split by
as9 each edge, e. Then, regression is performed on each of the ILR coordinates,
w00 x5 ~ f(X) for an appropriate function, f and a set of independent variables,
a1 X. The edge, ef, which maximizes the objective function is chosen as the first
40> phylogenetic factor. In this paper, our objective function is the difference be-
403 tween the null deviance of the ILR coordinate and the deviance of the generalized
a2 linear model explaining that ILR coordinate as a function of the independent
a0s  variables. We use this objective function as a measure of the amount of variance
a6 explained by regression on each edge because the total variance in a composi-
a7 tional dataset is constant and equal to the sum of the variances of all ILR
a0 coordinates corresponding to any sequential binary partition. Consequently, at
a0 each iteration there is a fixed amount of the total variance remaining in the
soo dataset, and so at the candidate ILR coordinate which captures the greatest
so1  fraction of the total variance in the dataset is the one with the greatest amount
sz of variance explained by the regression. After identifying e}, we cut the tree in

sos two sub-trees along the edge, e .

sea  For the second iteration, another set of candidate ILR coordinates is constructed
sos such that their underlying balancing elements are orthogonal to the first ILR
soo coordinate. Orthogonality is ensured by constructing ILR coordinates contrast-
sz ing the abundances of taxa along each edge, restricting the contrast to all taxa
sos  within the sub-tree in which the edge is found. A new edge, e3 , which maximizes
soo the objective function is chosen as the second factor, the sub-tree containing this
s10  edge is cut along this edge to produce two sub-trees, and the process is repeated
s until a desired number of factors is reached or until a stopping criterion is met.
s12 More details on the algorithm, along with a discussion on objective functions,

s13 1S contained in the SI.

s1a  While one could use other methods of amalgamating abundances along edges,
s1s the conceptual importance of using the ILR transform is twofold: the ILR trans-

s16 form has proven asymptotic normality properties for compositional data to allow
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s1i7 - the application of standard multivariate methods [11], and the ILR transform
518 serves as a measure of contrast between two groups. The log-ratio used in phylo-
s10 factor is an averaged ratio of abundances of taxa on two sides of an edge (see
s20 supplement for more detail), thus phylofactorization searches the tree for the
521 edge which has the most predictable difference between taxa on each side of the
s> edge, or, put differently, the edge which best differentiates taxa on each side.
s2s  Thus, each edge that differentiates taxa and their responses to independent
52« variables is considered a phylogenetic “factor” driving variation in the data.

s2s ' The output of phylofactorization is a set of orthogonal, sequentially “less im-
s26  portant” ILR basis elements, their predicted balances, and all other information
52z obtained from regression. After the first iteration of phylofactorization, we are
s2s  left with an ILR basis element corresponding to the edge which maximized our
520 Objective function and split the dataset into two disjoint sub-trees, or sets of
s30. OTUs that we henceforth refer to as “bins”, and we have an estimated ILR
531 balancing element, Z7(X), where X is our set of independent variables. Sub-
532 sequent factors will split the bins from previous steps, and after n iterations
s33 one has n factors that can be mapped to the phylogeny, n + 1 bins for bin-
s3a ning taxa based on their phylogenetic factors, n estimates of ILR balancing
s3s  elements, and an orthonormal ILR basis that can be used to project the data
s3s onto a lower dimensional space. The sequential splitting of bins in phylofactor-
537 ization ensures sequentially independent inferences - having already identified
s3s  group B as hyper-abundant relative to group A in the example illustrated in
s30  Fig. 4, downstream factors must analyze sub-compositions entirely within B

sao and within A.

s« Computational Tools

sa2  Phylofactorization was done using the R package “phylofactor” available at
se3  https://github.com /reptalex/phylofactor. The R package contains detailed help
saa  files that demo the use of the package, and the exact code used in analyses and
sas  visualization in this paper are available in the supplementary materials. The
ses  rooted ILR transform was performed as described in [10] where the sequential

sz binary partition was the rooted phylogeny.
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s«« Power Analysis of Rooted ILR and Phylofactorization

sas 10 compare the ability of phylofactorization and the rooted ILR to identify
sso  clades of OTUs with shared associations with independent variables, we simu-
ssi lated random communities of D = 50 OTUs and p = 40 samples by simulating
ss2 random absolute abundances, V; ;, such that log V; ; were i.i.d Gaussian ran-
sss  dom variables with mean p = 8 and standard deviation o = 0.5. The OTUs
ssa were connected by a random tree (the tree remained constant across all simula-
sss tions), and then either 1 or 3 clades were randomly chosen to have associations
sse  with a binary “environment” independent variable with p = 20 samples for each
ss7  Of its two values to represent an equal sampling of microbial communities across

s5s  tWO environments.

sso  For simulations with one significant clade, the abundances of all the OTUs
seo within that clade increased by a factor a in the second environment where a €
ser {1.5,3,6}. For simulations with three significant clades, the three clades were
se2 drawn at random and randomly assigned a fold-change from the set {7%,0.5%, exp(—b)}
ses in a randomly chosen environment where b € {1,2,5}. For each fold-change,
sea D00 replicates were run to compare the power of the rooted ILR and phylofac-

ses torization in correctly identifying the affected clades.

ses  Regression of rooted ILR coordinates was performed and the coordinates were
sez ranked by the difference between their null deviance and the model deviance.
ses Lhe ability of a rooted ILR coordinate to identify the correct 1 clade or 3 clades
seo was measured by the percent of its top 1 or 3 ILR coordinates, respectively,
s7o which corresponded to the node on the tree from which the affected clade(s)
s71 originated. The ability of phylofactor to identify the correct 1 clade or 3 clades
s was measured by the percent of the factors that correctly split an affected clade
s73 from the rest (e.g. the percent of factors corresponding to edges along which a

s7a  trait arose).

s7s  For the 3 clade simulations, we also compared the amount of variance explained
sz6 by 3 factors in phylofactorization with the amount of variance explained by the
s77z top 3 ILR coordinates in the rooted ILR. The amount of variance explained
s7s  was measured as the difference in the null deviance and the model deviance,
s7o  summed across all three factors or the top 3 ILR coordinates.
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ss0 KS-based Stopping Function for PhyloFactor

ss1 While a researcher can iterate through phylofactorization until a full basis of
ss2 D — 1 ILR coordinates is constructed, there is value in stopping the iteration
ses  when all of the clades have been identified or at a conservative underestimate of
ssa  the true number of phylogenetic factors. We implemented a stopping function
sss  based on a Kolmogorov-Smirnov (KS) test of the distribution of P-values from
sso analyses of variance of the regressions on candidate ILR coordinates. If there
sz is no phylogenetic signal, we anticipate the true distribution of P-values to be
sss  uniform (albeit with some dependence among the P-values due to overlap in the
sss  OTUs used in the ILR coordinates). Thus, we tested the ability of phylofactor
soo  t0 correctly identify the number of clades if phylofactorization is stopped when

ser  a KS test of the P-values produces its own P-value Pxg > 0.05.
s We simulated 300 replicate communities with M clades for each M € {1, ...,10}.

so3  For simulations with M clades, D = 50 and p = 40 communities were simulated
sea  as above and fold changes, ¢, were drawn as log-normal random variables where
sos  log(c) were 1.i.d Gaussian random variables with y = 0 and 0 = 3 for k =
sos  1,..., M. The number of clades identified by phylofactor for a given true number
sor  of clades, Ky, was tallied for » = 1, ...,300. We calculate the mean K across
sos all replicates and, for visualization purposes, interpolate the a = 0.025 and
soo = 0.975 quantiles by finding the best fit of a logistic function to the cumulative

soo distribution of {Kj;,}7=3% for each M.

s Analysis of Fecal/Oral microbiome data

sz 16S amplicon sequencing data from Caporaso et al. (2011) [4] were downloaded
so3 from the MG-RAST database (http://metagenomics.anl.gov/) along with as-
sos sociated metadata. QIIME [5] was used to trim primers from these data, and
eos to cluster OTUs with the Greengenes reference database (May 2013 version;
eos http://greengenes.lbl.gov). Longer sequence lengths in the greengenes database
so7 (71400 BP) compared to the original Illumina sequences (7123 BP) allows more
sos informative base pairs for phylogenetic tree construction. We used the phylo-
s0s genetic tree that is included with the greengenes database for all analyses. The
e10 resulting OTU table was rarefied to 6000 sequences per sample.

o1 10 time points were randomly drawn from each of the male tongue, female
s12 tongue, male feces and female feces datasets, giving a total of n=20 samples at

ez each site. Taxa present in fewer than 30 of the 40 samples were discarded, and

25


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074112; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

s1a  phylofactorization was done by adding pseudo-counts of 0.65 to all 0 entries in
e1s  the dataset [1], converting counts in each sample to relative abundances, and
s16 then regressing the ILR coordinates against body site. The complete R script
e1z is available in the file “Data Analysis pipeline of the FT microbiome”.

e1s Complete phylofactorization of this dataset was performed by stopping the al-
o190  gorithm when a KS-test on the uniformity of P-values from analyses of variance
e20 Of regression on candidate ILR-coordinates yielded Pgg > 0.05. These results
e21  were compared with a standard, multiple hypothesis-testing analysis of CLR-
o2z transformed data. The summary of the taxonomic detail at the first three factors
623 is provided in the results section, and a full list of the taxa factored at each step
e2a is available in the supplement and can be further explored using the R pipeline

625 provided.

es Amnalysis of Soil microbiome data

ez The soil microbiome dataset from [28] was included to illustrate the ability
e2s  of phylofactor to work on bigger microbiome datasets with continuous indepen-
e20 dent variables and multiple regression. Details on sample collection, sequencing,
e30 meta-data measurements and OTU clustering are available in [28]. The phy-
631 logeny was constructed by aligning representative sequences using SINA [27],
632 trimming bases that represented gaps in >20% of sequences, and using fasttree
s [26].

e2a  The complete dataset contained 123,851 OTUs and 580 samples. Data were
o35 filtered to include all OTUs with on average 2 or more sequences counted across
e3s all samples, shrinking the dataset to D=3,379 OTUs. The data were further
e3z trimmed to include only those samples with available pH, C and N meta-data,

e3s reducing the sample size to n=551.

e30  Phylofactorization was done by adding pseudo-counts of 0.65 to all 0 entries in
ee0  the dataset [1], converting counts in each sample to relative abundances, and
ear  performing multiple regression of pH, C and N on ILR coordinates. The first
ea2 three factors are used for ordination-visualization. To determine the relative
sa3 importance of each abiotic variable in driving phylogenetic patterns of microbial
saa cOmmunity composition, we used the Img method from the R package 'relaimpo’
ees  [17] which averages the sequential sums of squares over all orderings of regressors
sas  t0 Obtain a measure of relative importance of each regressor in the multivariate

saz model.

26


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074112; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

« Acknowledgments

seos  ADW would like to acknowledge L. Ma for his feedback and help incorporating
eso this method into the statistical literature. JS was supported in part by the
es1  Duke University Medical Scientist Training Program. This paper is published

es2 by support from and in loving memory of D. Nemergut.

- Declarations

esa  Competing Interests: The authors have no competing interests in relation

ess  to this work.

ess Availability of Data and Materials: The data were obtained from previ-
es7 ous studies and are available online through the original studies. The R pack-
ess  age 'phylofactor’ is available at https://github.com /reptalex/phylofactor and all
eso other R files used in the analysis and visualization are available online.

0 References

1 [1] John Aitchison. The statistical analysis of compositional data. 1986.

6!

o

ss2  [2] Richard D Bardgett, Chris Freeman, and Nicholas J Ostle. Microbial con-

063 tributions to climate change through carbon cycle feedbacks. The ISME
664 Journal, 2(8):805-814, 2008.

ess  [3] Roeland L Berendsen, Corne MJ Pieterse, and Peter AHM Bakker. The rhi-
666 zosphere microbiome and plant health. Trends in plant science, 17(8):478—
667 486, 2012.

oes  [4] J Gregory Caporaso, Christian L Lauber, Elizabeth K Costello, Donna

669 Berg-Lyons, Antonio Gonzalez, Jesse Stombaugh, Dan Knights, Pawel
670 Gajer, Jacques Ravel, Noah Fierer, et al. Moving pictures of the human
71 microbiome. Genome Biol, 12(5):R50, 2011.

o2 [5] J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-
673 Lyons, James Huntley, Noah Fierer, Sarah M Owens, Jason Betley, Louise

674 Fraser, Markus Bauer, et al. Ultra-high-throughput microbial community

27


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074112; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

675 analysis on the illumina hiseq and miseq platforms. The ISME journal,
676 6(8):1621-1624, 2012.

o7z [6] Human Microbiome Project Consortium et al. Structure, function and
678 diversity of the healthy human microbiome. Nature, 486(7402):207-214,
679 2012.

eso  [7] Joel Cracraft. Species concepts and speciation analysis. In Current or-
681 nithology, pages 159-187. Springer, 1983.

es2  [8] Joel Cracraft. Species concepts in theoretical and applied biology: a system-
683 atic debate with consequences. Species concepts and phylogenetic theory:
684 A debate, pages 3043, 2000.

ess  [9] Tao Ding and Patrick D Schloss. Dynamics and associations of microbial
686 community types across the human body. Nature, 509(7500):357, 2014.

es7  [10] Juan José Egozcue and Vera Pawlowsky-Glahn. Groups of parts and their
688 balances in compositional data analysis. Mathematical Geology, 37(7):795—
680 828, 2005.

oo [11] Juan José Egozcue, Vera Pawlowsky-Glahn, Gloria Mateu-Figueras, and

601 Carles Barcelo-Vidal. Isometric logratio transformations for compositional
602 data analysis. Mathematical Geology, 35(3):279-300, 2003.

o3 [12] Paul G Falkowski, Tom Fenchel, and Edward F Delong. The microbial
694 engines that drive earth’s biogeochemical cycles. science, 320(5879):1034-
695 1039, 2008.

eos [13] Noah Fierer and Robert B Jackson. The diversity and biogeography of soil
607 bacterial communities. Proceedings of the National Academy of Sciences of
098 the United States of America, 103(3):626-631, 2006.

oo [14] Mariel M Finucane, Thomas J Sharpton, Timothy J Laurent, and Kather-

700 ine S Pollard. A taxonomic signature of obesity in the microbiome? getting
701 to the guts of the matter. PloS one, 9(1):e84689, 2014.

702 [15] Jonathan Friedman and Eric J Alm. Inferring correlation networks from
703 genomic survey data. PLoS Comput Biol, 8(9):¢1002687, 2012.

70a  [16] Keith Gregg. Engineering gut flora of ruminant livestock to reduce forage
705 toxicity: progress and problems. Trends in biotechnology, 13(10):418-421,
706 1995.

28


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074112; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

707 [17] Ulrike Gromping et al. Relative importance for linear regression in r: the

708 package relaimpo. Journal of statistical software, 17(1):1-27, 2006.

700 [18] B Guggenheim. Streptococci of dental plaques. Caries research, 2(2):147-
163, 1968.

7 [19] Frangois Keck, Frédéric Rimet, Agnes Bouchez, and Alain Franc. phylosig-
712 nal: an r package to measure, test, and explore the phylogenetic signal.
713 Ecology and evolution, 6(9):2774-2780, 2016.

ne  [20] Omry Koren, Aymé Spor, Jenny Felin, Frida Fak, Jesse Stombaugh,

715 Valentina Tremaroli, Carl Johan Behre, Rob Knight, Bjorn Fagerberg,
716 Ruth E Ley, et al. Human oral, gut, and plaque microbiota in patients
717 with atherosclerosis. Proceedings of the National Academy of Sciences,
718 108(Supplement 1):4592-4598, 2011.

70 [21] Kim-Anh Le Cao, Mary-Ellen Costello, Vanessa Anne Lakis, Francois Bar-

720 tolo, Xin-Yi Chua, Remi Brazeilles, and Pascale Rondeau. mixmc: a mul-
721 tivariate statistical framework to gain insight into microbial communities.
722 bioRziv, page 044206, 2016.

723 [22] Jorgen J Leisner, Birgit Groth Laursen, Hervé Prévost, Djamel Drider, and
724 Paw Dalgaard. Carnobacterium: positive and negative effects in the envi-
725 ronment and in foods. FEMS microbiology reviews, 31(5):592-613, 2007.

726 [23] Josep A Martin-Fernandez, Carles Barcel6-Vidal, and Vera Pawlowsky-

727 Glahn. Dealing with zeros and missing values in compositional data sets
728 using nonparametric imputation. Mathematical Geology, 35(3):253-278,
720 2003.

730 [24] Jennifer BH Martiny, Stuart E Jones, Jay T Lennon, and Adam C Mar-
731 tiny. Microbiomes in light of traits: A phylogenetic perspective. Science,
732 350(6261):aac9323, 2015.

733 [25] Vera Pawlowsky-Glahn and Antonella Buccianti. Compositional data anal-

730 ysis: Theory and applications. John Wiley & Sons, 2011.

735 [26] Morgan N Price, Paramvir S Dehal, and Adam P Arkin. Fasttree 2-
736 approximately maximum-likelihood trees for large alignments. PloS one,
737 5(3):€9490, 2010.

29


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074112; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

738 [27] Elmar Pruesse, Jorg Peplies, and Frank Oliver Glockner. Sina: accu-
730 rate high-throughput multiple sequence alignment of ribosomal rna genes.
740 Bioinformatics, 28(14):1823-1829, 2012.

za1 [28] Kelly S Ramirez, Jonathan W Leff, Albert Barberan, Scott Thomas Bates,

742 Jason Betley, Thomas W Crowther, Eugene F Kelly, Emily E Oldfield,
743 E Ashley Shaw, Christopher Steenbock, et al. Biogeographic patterns in
744 below-ground diversity in new york city’s central park are similar to those
745 observed globally. In Proc. R. Soc. B, volume 281, page 20141988. The
746 Royal Society, 2014.

7a7  [29] Liam J Revell. phytools: an r package for phylogenetic comparative biology
748 (and other things). Methods in Ecology and Evolution, 3(2):217-223, 2012.

70 [30] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a
750 bioconductor package for differential expression analysis of digital gene ex-
751 pression data. Bioinformatics, 26(1):139-140, 2010.

752 [31] Mikhail Tikhonov, Robert W Leach, and Ned S Wingreen. Interpreting 16s
753 metagenomic data without clustering to achieve sub-otu resolution. The
754 ISME journal, 9(1):68-80, 2015.

30


https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

Rooted IR

Phylofactor

% Correct Clade ID

Sarmplesie

Phylofactor

75

Sia
ERa e T Em E
Samplesize samplesize
H]
g @ PhyloFactor
s ooted L
B -0~
5 -0~ - =0
E
g7 ;

Effect Size, b

‘Number of Factars

Performance of KS-hased Stopping Function

Ve
=2 oo e

== smootne pha-0 5 s

7
Nurber of Affectad Clades



https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

1 Factor 2 Factors 3 Factors



https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

(a) ILR Ordination

Relative Abundance

Relative Abundance

b) BPU Projection

Predicted BPUS



https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

Control +Antibiotic

(b)

Functional Groups

Antibiotic Resistant

B : Antibiotic Susceptible

4,5}

: Remainder
.23}

G

First Iteration

Second Iteration

Regress Edges

Choose ‘Best’

Split Tree

7 e 120456



https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

ILR Regression Phylogeny Cor. along root path

4«5 6 7 8

;s
Sample Sample Distance to {AB}



https://doi.org/10.1101/074112
http://creativecommons.org/licenses/by-nd/4.0/

