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Abstract

Motivation: Microtubules (MTs) are polarized polymers that are critical for cell structure and axonal tran-
sport. They form a bundle in neurons, but beyond that, their organization is relatively unstudied.
Results: We present MTQuant, a method for quantifying MT organization using light microscopy, which
distills three parameters from MT images: the spacing of MT minus-ends, their average length, and the
average number of MTs in a cross-section of the bundle. This method allows for robust and rapid in vivo
analysis of MTs, rendering it more practical and more widely applicable than commonly-used electron
microscopy reconstructions. MTQuant was successfully validated with three ground truth data sets and
applied to over 3000 images of MTs in a C. elegans motor neuron.
Availability: MATLAB code is available at http://roscoope.github.io/MTQuant
Contact: horowitz@stanford.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Microtubules (MTs) are dynamic polymers that are formed by polyme-
rization of alpha-beta tubulin dimers. MTs play critical roles in cell
architectures and as tracks for intracellular transport. The complex cel-
lular morphology of neurons, and the long distance intracellular transport
that occurs in them, rely heavily on proper MT function (Desai and Mitch-
ison, 1997; Kapitein and Hoogenraad, 2015; Conde and Caceres, 2009).
This is evident by the large number of neurodegenerative diseases that
are linked to mutations that disrupt MT structure or MT dependent cargo
transport (Tischfield et al., 2010; Millecamps and Julien, 2013).

In axons, MTs are tiled side by side and head to tail to form a bundle
(Kapitein and Hoogenraad, 2015). Neuronal MTs have mostly been cha-
racterized with respect to their dynamic behavior (Applegate et al., 2011;
Demchouk et al., 2011) and polarity, as these properties can be monito-
red relatively easily by fluorescence-tagging of a plus-end binding protein
(Stepanova et al., 2003). However, snapshots of MT dynamics do not
reveal the steady-state size of the polymer, which is the outcome of gro-
wth and shrinkage, nor the number of polymers or their spacing, i.e.,

the axial distance between the starting locations of consecutive MTs (see
Supp. Table 1). To obtain these parameters, which we collectively refer to
as MT organization, it is necessary to perform serial reconstruction of ele-
ctron microscopy sections, a task which is extremely slow, laborious, and
error-prone. The MT diameter (∼24nm) and the tight bundling of neuro-
nal MTs make the analysis of neuronal MT organization challenging even
with super-resolution methods, although promising results have recently
been reported (Mikhaylova et al., 2015; Balint et al., 2013).

We developed a rapid and robust fluorescence-based method for the
assessment of MT organization in neuronal processes, titled MTQuant,
and applied it in the C. elegans motor neuron DA9 (Yogev et al., 2016b).
The method uses a GFP::alpha-tubulin transgene to label MTs and then
applies image processing and optimization techniques to the total bundle
intensity, thereby enabling the extraction of parameters of MT organiza-
tion. Here, we describe in detail the image processing algorithms that are
used in the analysis of the fluorescent signal. We also propose improve-
ments to our original algorithms, which are meant to increase the accuracy
of the method. Finally, we apply a procedure that refines the distribu-
tion of the organization parameters. MTQuant has been validated against
three data sets, including mathematical simulations and two types of flu-
orescent MT images. This framework allows for higher-level comparison
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of MT organization between genotypes, developmental time-points, and
drug treatments, and can therefore greatly enhance our understanding of
neuronal MTs.

2 Approach
The MTQuant framework is outlined in Algorithm 1 and depicted in the
block diagram in Supp. Fig. 1. Each step of MTQuant is detailed in the
Methods section. MTQuant allows biologists to begin with a confocal
image of the entire MT bundle, and ultimately extract the spacing, cove-
rage, and length of the MTs of a population of animals. The framework
consists of two main steps: the analysis of individual worms, followed by
refinement of the distributions of the organization parameters. The indi-
vidual worm analysis relies on the fact that MTs form a bundle neurons,
as shown in Fig. 1(a). It uses images of MTs labeled with two fluorescent
proteins: GFP labels the alpha tubulin protein that is part of the alpha-beta
dimer which polymerizes to form MTs, while TagRFP specifically binds
to patronin, a protein present at one tip of each microtubule, called the
minus-end. The punctate red channel in Fig. 1(b) shows the red patronin
staining of the minus-ends of the MTs.

The framework traces the green tubulin intensity and the red patronin
intensity along the white line in Fig. 1(c) to yield the green and red intensity
line scans shown in Fig. 1(e)-(f), respectively. Axonal MTs are uniformly
oriented with their minus-ends pointing toward the cell body. Hence, the
red dots in Fig. 1(a)-(b), are all on the same side of the MTs, and, when
traversing the axon away from the cell body, the location of a red puncta,
on average, corresponds to a increase in the green intensity trace, as shown
in Fig. 1(g).

We expect the green tubulin intensity to be a quantized function, as in
Fig. 1(d), where each MT contributes to an additional level of intensity.
We assume that the intensity of each MT in an animal is the same, and,
furthermore, constant along the neurite. Hence, a change in the level of
the quantized signal, i.e., a step up or a step down, marks the beginning
or the end of a MT, respectively. In reality, however, the imaging system
blurs the signal with its point spread function and adds noise to the signal,
resulting in an intensity profile such as the one in Fig. 1(e). We assume
the noise in the system is zero-mean, so quantizing the green tubulin line
scan with the correct intensity contribution from a single MT, b∗ in Fig.
1(d), yields a reasonable approximation of the underlying MTs. We use
the following notation when describing the rounding: bxe rounds x to the
nearest integer.

Correctly identifying the intensity of a single MT, referred to as the sin-
gle MT brightness, is critical to the success of MTQuant, and is described
in detail in Section 3.2. The single MT brightness must be recalculated for
each animal, as the imaging position and the fluorescent protein expres-
sion varies from animal to animal. Another important piece of information
MTQuant uses is the number of microtubules in the neuron. That number
is, of course, closely related to the number of peaks in the intensity of
the red line scan. Since relatively little is known about the MT minus-end
locations, we assume the MT minus-ends are distributed independently,
according to a Poisson process (Bertsekas and Tsitsiklis, 2002). Section
3.1.3 will detail how we use the red scan to estimate the locations of the
MT minus-ends.

Armed with the single MT brightness and the MT minus-ends, we can
calculate organization parameters, as shown in Supp. Table 1. The spacing
of the MTs is simply the average distance between the MT minus-ends.
If we quantize the traced intensity signal with the single MT brightness,
the value of the quantized function is the number of microtubules in the
axon cross-section at any point along the neuron. Then average coverage
is the average value of the quantized signal. The average MT length is
slightly less straightforward since we cannot identify individual MTs. It

Algorithm 1: MTQuant Overview

1. Analyze Individual Worms
For each worm:

a. Trace neurite to extract green & red line intensities
b. Identify “single MT brightness” using grid-search optimization
c. Calculate spacing, coverage, and length of MTs

2. Refine distributions of organization parameters with expectation-
maximization

is the integral of the quantized signal divided by the total number of MTs.
Section 3.3 will describe all of these parameter calculations in more detail.

Finally, after calculating the organization parameters for each indi-
vidual animal, MTQuant aggregates the values of each parameter for
a group of worms, i.e. all worms of the same age, genotype, etc., to
remove some of the measurement noise that affects each calculation. In
this step, expectation-maximization is used to refine the distributions of
the organization parameters.

An initial version of MTQuant was applied to the data in (Yogev et al.,
2016b,a). The framework described here, and outlined in Algorithm 1,
builds on the initial algorithm used in those papers by improving the accu-
racy of the calculation of the single MT brightness and by implementing an
additional distribution refinement following the analysis of the individual
animals to generate more accurate distributions of spacing, coverage, and
length across a population of animals.

3 Methods
The extraction of the microtubule organization parameters from fluore-
scence images is illustrated in the block diagram in Supp. Fig. 1. Each
animal is analyzed independently, and then the organization parameters of
a group of worms are aggregated to attain a more refined distribution of
the parameters. The individual worm analysis involves image processing
to extract the intensity of the microtubule bundle, followed by the identifi-
cation of the brightness of a single microtubule, and finally the calculation
of the organization parameters. Each block in this pipeline, as well as a
description of a microtubule simulation method used to verify the accuracy
of MTQuant, is described below.

3.1 Image Processing

We begin the analysis of each individual animal by segmenting the neu-
rite of interest and then tracing the intensity along it. This initial process
involves aligning the two color channels and asking the biologist to select
which section of the neuron to analyze, i.e., the dendrite or the axon. Then
we identify the spline that traces the neuron most closely and interpolate
the pixel values along the spline to extract the intensity of the entire micro-
tubule bundle from the green image. Finally, we use this same extracted
spline to trace the intensity in the red image and identify the peaks in the
red signal, which correspond to the starting locations of the microtubules.
In the following sections, we use the green intensity and the red peak loca-
tions to continue the process of extracting the organization parameters of
the microtubules.

3.1.1 Preprocessing
MTQuant begins by aligning the green color channel with the red color
channel for each worm. The alignment uses correlation to find the best
matching translation of the green and red channels to account for misa-
lignment due to the imaging system. The algorithm searches for the best
correlation in a small window around the origin. In the case that a small,
simple-to-find translation is an insufficient transformation, the animal was
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Fig. 1. Neuron Tracing. (a) Illustration of DA9 in the tail of C. elegans. The inset shows the bundling of microtubules side-by-side and end-to-end. In (a) and (b), the (*) is the cell body,
(**) is the axon, and (***) the dendrite. (b) Fluorescence image of MT bundle in DA9 neuron. Green channel shows microtubules and red channel shows MT minus-ends. (c) Line scan
extraction. White line forms spline which traces neurite of interest. Magenta lines are subset of line segments perpendicular to spline. Image intensity is summed along magenta segments
beginning closest to cell body (right) to form line scan in (e). (d) Expected MT bundle intensity,Qb∗ (x). (e) Line scan, or trace of green tubulin intensity, IG(x). IG(x) can be quantized
by the intensity contribution from one MT, called the single MT brightness, b∗ , to estimate the underlying MT bundle intensity,Qb∗ (x) in (d). (f) Red patronin signal trace along neurite.
Red triangles represent detected MT minus-ends. (g) Average green tubulin intensity around MT minus-ends for four animals. Segments of green signal around all MT minus-ends in a
single animal were aligned and averaged. MT minus-ends (red triangles), on average, align with an increase in the green signal.

moving during imaging and is too misaligned to use for this algorithm.
This severe misalignment happens infrequently because the animals are
anesthetized.

A graphical user interface (GUI) asks the user to select a few points
along the neurite of interest. This GUI allows the user to select, for exam-
ple, only the dendrite, or a specific section of the axon, as opposed to
automatically tracing the entire neuron. The points clicked by the user are
connected linearly and the lines are dilated to form the “neurite mask.”
The user also identifies the orientation of the worm, i.e., where the minus-
ends are located, and selects a few points inside the worm from which to
identify the background autofluorescence intensity of the animal, which is
subtracted from the observed intensities.

3.1.2 Line Scan Extraction
Then the algorithm iteratively adjusts the mask to identify the exact pixels
containing the neuron. See Algorithm 2. The algorithm iteratively fits
a spline to the current neuron estimate, and searches the line segments
perpendicular to the spline to find the brightest pixel that is also close
to the spline. Then we update the spline to include this brightest point.
We penalize any new points that are too far from the spline, in order to
avoid readjusting the spline to include bright background noise or auto-
fluorescence from other tissues. This regularization is controlled using
the parameter α in Step 2(a)ii of Algorithm 2. We selected α based on
visual experiments. At the end of each iteration, we re-space the points by
interpolating the points along the new spline and selecting points that are
separated by exactly zero or one pixel in each direction. This re-spacing
ensures that every pixel in the neuron is traced but also avoids fitting an
overly-precise spline that provides no more accuracy but increases com-
putation time. The algorithm iterates until the spline is no longer changing
significantly. An example image and spline are shown in Fig. 1(b)-(c).

The next step is to trace the signal intensity along the spline. Due to the
blurring of the point spread function of the microscope and the positioning
of the MT bundle, the intensity of the fluorescence markers extends over
several pixels perpendicular to the neuron. For every pixel along the spline

Algorithm 2: Identify Brightest & Shortest Path

1. Fit spline S0 = 〈x0, y0〉 to points in user-selected neurite mask
2. Repeat until convergence (i.e., ‖〈xt+1, yt+1〉 − 〈xt, yt〉‖ < ε):

a. For each point 〈xti, yti〉 in S,
(1) Identify the line segment Pi, perpendicular to S at 〈xti, yti〉
(2) Update 〈xti, yti〉 to brightest and nearest point:

〈xt+1
i , yt+1

i 〉 = argmax
〈x,y〉∈Sp

I(〈x, y〉)− α‖〈x, y〉 − 〈xti, yti〉‖22

b. Refit spline to new points 〈xt+1, yt+1〉
c. Respace the points 〈xt+1, yt+1〉 to be zero or one pixel apart in

each direction

of the neurite, the intensities of the interpolated points on the line segment
perpendicular to the spline are summed, i.e. the magenta segments in Fig.
1(c). The grid is interpolated using linear interpolation. This summation
results in a signal referred to as a “line scan.” For the green channel, the line
scan represents the total tubulin intensity at any point along the neuron, and
for the red channel, the line scan represents the total minus-end intensity
at any point along the neuron.

To verify that these line scans accurately trace the total intensity along
the neuron, we simulated curves of uniform intensity and traced the inten-
sity along them. To simulate these curves, we first simulated a single-pixel
curve in a large image (5120×5120 pixels). This curve and resolution
simulated the “real” MT bundle. Then the curve was blurred with a Gaus-
sian and binned to simulate the blurring and binning of the pixels in the
camera sensor of the imaging system. The resulting image, cropped and
shown in Supp. Fig. 2(a), was 512×512 pixels and blurred. When we
traced the intensity along the simulated curve, i.e., the red spline in Supp.
Fig. 2(b), we saw a uniform intensity along the entire spline using both
linear interpolation and cubic interpolation. Supp. Fig. 2(c)-(d) shows the
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intensity calculated using both linear and cubic interpolation. Cubic inter-
polation is more computationally intensive than linear interpolation, but,
as expected, it resulted in a slightly smoother signal than its linear coun-
terpart (Thévenaz et al., 2009). However, even at varying curvature angles
in the image, the maximum error in the linearly interpolated signal is only
1.3% of the average value of the signal. That amount is well below the level
of microtubule intensities we would expect to detect, as there are typically
between one and twenty microtubules the neuron (Chalfie and Thomson,
1979). Additionally, since the curvature of the neuron is not expected to
vary greatly, errors from changes in the slope of the line should be small,
even using linear interpolation.

3.1.3 Red Peak Extraction
Before extracting the brightness of a single MT, the locations of the MT
minus-ends must be identified. They are extracted from the red line scan
in Fig. 1(f). First, the line scan is smoothed with a three-pixel-wide sliding
window in order to smooth any extraneous noisy peaks. Then peaks in the
red line scan are identified as local maxima, and readjusted as necessary:
peaks that are too small compared to neighboring peaks are ignored, and
peaks that are particularly wide or tall are considered to be either one MT
minus-end or two MT minus-ends using the stochastic method described
below. This correction compensates for red minus-ends blurred together by
the imaging system’s point spread function. To determine whether to con-
sider a red punctum as one or two minus-ends, a Bernoulli random variable
is used. The mean of the random variable is the sum of two probabilities: a
height probability and a width probability. The height probability is simply
the red intensity value of the peak in question divided by the maximum
intensity of the red signal. Hence, taller peaks are more likely to be con-
sidered two minus-ends. The width probability is the sigmoid function
applied to a measure of the width of the peak: the peak is scaled to be a
probability distribution of intensities, and the width measure is calculated
as the standard deviation of this probability distribution. Wider peaks have
a larger width measure, and using the sigmoid of the width measure rather
than the measure itself further encourages wide peaks to be considered
two peaks. The mean of the Bernoulli random variable generated by the
sum of the height probability and the width probability is typically grea-
ter than 0.9, so the random variable is generally true, and most peaks are
considered multiples. This dual labeling of the red peaks is consistent with
the expectation that minus-ends probably fall close to one another when
drawn from a Poisson process.

3.2 Single MT Brightness Identification

The calculation of the coverage and the length are predicated on knowing
the intensity contribution of a single microtubule, b∗, referred to as the
single MT brightness. The single MT brightness, b∗, needs to be calculated
for each worm individually, because b∗ varies due to various imaging
factors, e.g. the distance between the worm and the microscope objective,
the amount of tissue between the neuron and the objective, and the extend
of the incorporation of fluorophores into the MTs for that specific worm.

Since we observe only the integrated signal of the entire MT bundle,
calculating the single MT brightness directly would require solving an
impossibly complex optimization with an infinite number of possible solu-
tions. Instead, a range of possible brightnesses is considered, and the “best”
brightness is selected as the single MT brightness that minimizes a speci-
fic cost function, described below. Possible brightness values are linearly
spaced between 5% of the maximum intensity value of the green signal to
the maximum value of the green signal. This range assumes that there will
be between one and twenty MTs in the neuron, a reasonable assumption
based on previously published data (Chalfie and Thomson, 1979). Twenty
is considered the upper bound to accelerate computation, but for more

complex neurons, smaller brightness values can also be considered. The
success of this grid search optimization is validated in the Results section.

The cost function C to be minimized relies on the previously asser-
ted assumption that a change in the level of the line scan quantized by a
single MT brightness marks the beginning or the end of a MT, referred
to respectively as a step up or a step down. In Supp. Fig. 3(a), the black
dots represent the MT starts in the quantized signal. As an initial, naive
cost, we calculate the difference between the number of black dots and
the number of steps up we expect to see, Nexp. Nexp is the total number
of MTs identified from the red line scan, N , less the expected number of
steps up that are hidden by overlapping MT ends, or steps down. These
steps down are expected to occur uniformly along the signal. If there are
N MTs, some of the N steps up may coincide with steps down and not
be visible in the quantized signal, i.e., there may be red triangles without
corresponding black dots. For N MTs and a signal of length d, the expe-
cted fraction of pixels containing a step down isN/d, because there areN
steps down uniformly distributed along d. The expected number of steps
up that overlap with a step down is (N/D) × N , since the steps up are
also assumed to be uniformly distributed along the signal.

To improve the performance of this initial cost, we can calculate additi-
onal costs which incorporate the additional information collected, namely
the locations of the MT minus-ends and the green microtubule intensity.
Ultimately, C comprises the weighted sum of three costs. Supp. Fig. 3
shows example signals and the three costs for one animal, as well as the
total cost.

The second cost is the number of steps up in the quantized signal which
do not colocalize with a red minus-end. To allow a buffer for effects of
blurring or noise, this cost is the number of black dots in Supp. Fig. 3(b)
which are more than three pixels away from the red triangles. The final cost
is the mean error between the quantized signal and the observed intensity,
i.e., the error between green line scan and black quantized signal in Supp.
Fig. 3(c). The best single MT brightness is the brightness that minimizes
this energy function. See Algorithm 3 for mathematical descriptions of
these costs. Together, these three costs encourage a single MT brightness
that matches the original signal well but also avoids introducing signifi-
cantly more MTs than there are minus-ends. The weights of the three costs
were selected to best match the various ground truth data sets available,
which are described in more detail in the Results section.

3.3 Organization Parameter Calculation

Once we have obtained the single MT brightness, we calculate the organi-
zation parameters. This calculation is summarized in Supp. Table 1. The
table defines each parameter using individual microtubules, real example
signals of the entire MT bundle, and specific equations.

Of the three organization parameters calculated by MTQuant, the most
straight-forward is spacing. Spacing for an individual worm is simply defi-
ned as the average number of microns between each microtubule starting
location, as shown in the first row of Supp. Table 1. Let Si be the dista-
nce between the ith minus-end and the (i − 1)th end. Alternatively, let
the set R represent the locations of each peak identified in the red signal.
N denotes the number of microtubules identified and d the length of the
signal. Then, the spacing can be defined as:

S̄ ,
1

N

N∑
i=2

Si =
1

N

N∑
i=2

(Ri −Ri−1) =
RN −R1

N
≈

d

N

To calculate the coverage, first consider the green intensity signal,
IG(x), quantized by the single MT brightness, b∗, to yield the quantized
signal Qb∗ (x), shown in the second row of Supp. Table 1. Given this
quantized signal, the coverage at any location along the neuron is simply
the value ofQb∗ (x). Since we are calculating the average coverage, we can
eliminate quantization errors by integrating the observed green intensity
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Algorithm 3: Extract Single MT Brightness

1. Trace and preprocess the green intensity, IG(x), and the red intensity,
IR(x) (Section 3.1)

2. Identify R from IR(x), the set of MT minus-end locations (Section
3.1.3)
N = ‖R‖0, the size of the set R

3. Calculate all possible single MT brightnesses, B, which are 1000
linearly spaced samples betweenmax(IG(x))/20 andmax(IG(x))

4. For each possible brightness b in B,
a. Quantize IG(x) to generate Qb(x) = round(IG(x)/b)

b. Identify locations of steps up in Qb(x), U
c. Calculate the three costs
(1) Difference in number of steps up in Qb(x) and expected number

of steps up based on red signal:
C1 = |‖U‖0 −Nexp|, where Nexp = (1− N

d
)N

(2) Number of steps up inQb(x) that do not colocalize with any MT
minus-ends:
C2 =

∑
u∈U

1{∃x ∈ R | ‖u− x‖22 < 3}

(3) Mean squared error between observed signal IG(x) and quantized
signal Qb(x)

C3 = ‖IG(x)− b×Qb(x)‖1:
(4) Calculate total cost C(b) = α1C1 + α2C2 + α3C3

d. Select b∗ = argmin
b∈B

C(b)

IG(x) instead of the quantized signal. This integration is more accurate
because the area under the curves is preserved by the blurring, and the
noise is zero-mean, so integrating the intensity directly causes the noise to
average to zero. Therefore:

C̄ ,
1

d× b∗

d∑
x=1

IG(x)

Since we cannot identify individual MTs, we cannot explicitly calcu-
late the length of each microtubule. However, we can calculate the average
length, again by integrating the green intensity. If we again begin with the
quantized signal, the value of Qb∗ (x) at every discrete pixel x is effecti-
vely Qb∗ (x) pixel-wide microtubule segments at location x. Then if we
integrate the area under the curve, as in the third row of Supp. Table 1, we
have accumulated all of the one-pixel-wide microtubule segments, of all
of the “microtubule material,” in the neuron. Then, we can divide by the
total number of microtubules to calculate the average length of “micro-
tubule material” in each microtubule. Again, integrating over the original
intensity signal is more accurate due to the blurring and additive noise
corrupting the signal.

Since the MT minus-ends are distributed along the entire length of the
axon, we can approximate that the last minus-end is close to the end of the
signal, i.e., RN ≈ d. Therefore the length is approximately equal to the
product of the coverage and the spacing.

L̄ ,
1

b∗ ×N

d∑
x=1

IG(x) = C̄ ×
d

N
≈ C̄ ×

RN

N
= C̄ × S̄

This relationship between S̄, C̄, and L̄ highlights that there are in fact
only two independent organization parameters. We consider all three in
our analysis, however, due to the varying intuitive insights each of the
three parameters provides.

3.4 Distribution Refinement

The organization parameters calculated thus far are in reality noisy measu-
rements of the true, hidden organization parameters. This noise is a result

of imaging noise, biological noise, and calculation error. The organization
parameters are expected to have some variation across a particular group of
animals, as defined by age or genotype, and in order to differentiate subtly
different groups, this additional noise must be somehow mitigated. The
observed organization parameters are directly related to the hidden para-
meters. We assume a mixture of Gaussians model; given the value of the
hidden parameters, the observed parameters are distributed normally. This
mixture of Gaussians model can be solved using expectation-maximization
(EM), which aggregates the observed organization parameters from all of
the animals to refine the estimates of the distributions of average spacing,
length, and coverage over a population (Friedman et al., 2001).

The EM algorithm iteratively identifies the probability distributions
of unobserved variables from observed data. Here, we observe the orga-
nization parameters as the result of the individual analysis: the average
spacing, S̄O , length, L̄O , and coverage, C̄O of the MTs for that worm.
The EM algorithm alternately calculates conditional probability distribu-
tions of S̄H , L̄H , and C̄H given the observed data, and then calculates
the mean and variance of the probability distributions of the parameters
that best generate these conditional distributions.

The application of EM is the same for each of the three parameters. As
an example, consider the refinement of the distribution of L̄H . For each
animal i, and each possible average length L̄j , the conditional probability
distribution P (L̄Hi = L̄j |L̄Oi ) is updated using Bayes rule:

P (L̄Hi = L̄j |L̄Oi ) =
P (L̄Oi |L̄Hi = L̄j)P (L̄Hi = L̄j)∑
i P (L̄Oi |L̄Hi = L̄j)P (L̄Hi = L̄j)

P (L̄Oi |L̄Hi = L̄j) is assumed to be Gaussian, based on observed data.
P (L̄H = L̄j) is initialized with the frequency histogram of the initial
observed values L̄O , and then updated during the refinement process. It is
straightforward to calculate P (L̄O|L̄H = L̄) and to update the marginal
distribution P (L̄H = L̄j), because this is a mixture of Gaussians model
(Friedman et al., 2001). These steps are repeated for S̄, L̄, and C̄ until
P (S̄H), P (L̄H), and P (C̄H) converge. In general, EM has been shown
to converge (Wu, 1983). After applying EM, the average value of each
parameter across a population of worms does not change, but the variance
decreases, as shown in Supp. Fig. 4.

3.5 Modeling

In order to verify the accuracy of the MTQuant framework, it was applied
to artificial green tubulin and red patronin signals that simulated the real
data. The point spread function and the periodogram of the noise of the
imaging system were measured with 100nm tetra-speck fluorescent beads
(Life Technologies T-7279) and are plotted in Supp. Fig. 5(a)-(b). We
approximate the PSF as a Gaussian Zhang et al. (2007). To simulate the
signals, inter-arrival distances of the starting locations of MTs were drawn
from an exponential distribution to correspond to a Poisson process. The
mean of the distribution was adjusted to match the observed number of
red dots identified in the red fluorescence images. For each MT, a length
was randomly generated using a previously identified empirical distribu-
tion (Yu and Baas, 1994). These MTs were summed to form the quantized
green signal. The quantized signal was scaled by a randomly generated step
size to simulate the intensities of the fluorophores, which vary from animal
to animal due to biological variation of gene expression and imaging con-
ditions. To generate the red signal, at each generated MT starting location,
a box of random width and height was placed to represent the variable
amount of patronin protein that can collect at the tip of a MT (Supp. Fig.
5(c)-(d)). Then both signals were blurred according to the measured point
spread function of the imaging system and noise was added to the signals
that mimicked the noise measured in the imaging system (see Supp. Fig.
5(e)-(f)). To generate the noise, a white Gaussian noise signal was passed
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Fig. 2. MTQuant verification results. (a) Single MT brightnesses calculated with MTQuant,
b∗ , and from model, bM (p-value = 1.56e-50). Red line is b∗ = bM . (b) b∗ versus single
MT brightnesses from kymographs, bK (p-value = 0.038). Red line is b∗ = bK . (c)
b∗ versus single MT brightnesses around holes, bH (p-value = 5.78e-07). Red line is
b∗ = bH .

through a linear filter with the frequency response of the square root of the
measured noise periodogram.

4 Results
MTQuant has been verified both numerically and biologically. The various
verification methods, described below, showed satisfactory consistency
between the ground truth and the calculated results. Armed with this veri-
fied method, we first studied the relationship of animal age to microtubule
organization, presented here.

4.1 Mathematical Verification

MTQuant was first applied to simulated data in order to verify the algo-
rithm mathematically. Simulated, quantized signals were corrupted with
blurring and noise, as described in Supp. Fig. 5(a)-(f) and Section 3.5.
Then, the simulated intensity signals were processed with the framework,
and the error in single MT brightness was reported. Fig. 2(a) shows the
calculated brightness for 100 trials plotted against the model brightness for
the same simulated signals. Without knowledge of the blurring or the noise
of the imaging system, the algorithm successfully calculated the single MT
brightness for the simulated data (p-value = 1.56e-50).

4.2 Biological Verification

The most basic biological verification compared the spacing, coverage, and
length of MTs obtained via serial reconstructions of electron microscopy
sections to the distributions calculated using MTQuant. Both the previ-
ously published coverage and length of MTs in (Chalfie and Thomson,
1979), and the more recently calculated organization parameters obtai-
ned in (Yogev et al., 2016b), align well with our distributions of MTs in
wild-type worms.

To show that MTQuant can enable biologists to compare groups of
animals, the framework was next applied to two sets of fluorescence ima-
ges. MTQuant was first applied to kymographs of MTs. Kymographs are
images of the tubulin intensity change over time. In Supp. Fig. 5(g)(i),
the x-axis denotes position, and the y-axis denotes time. The solid lines
in Supp. Fig. 5(g)(ii) trace a single MT growing and shrinking. The bri-
ghtness of a single MT can be calculated as the difference in the average
intensities of the dotted lines above and below each solid line. Since DA9
has relatively few neurons, and they are fairly stable, it is reasonable to
assume that almost all intensity changes reflect the dynamic behavior of a
single MT. To validate this assumption, we measured MT dynamics with
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Fig. 3. Microtubule Organization as a function of animal age. (a) Spacing of MTs does not
change significantly from worm larvae to adult worms (p-value = 0.053). (b) Coverage, or
number of MTs in axon cross-section, significantly increases with age (p-value = 4.89e-
60). (c) Average MT length also increases significantly with age (p-value = 1.46e-74). All
p-values calculated using Spearman rank correlation.

an independent method, using the end-binding protein EBP-2::GFP, and
found that it was low (Yogev et al., 2016b).

Before calculating the average single MT brightness for each kymo-
graph, we must correct for photobleaching. Fluorophore intensities
diminish over time due to a phenomenon called photobleaching (Vicente
et al., 2007). The average intensity of each row is assumed to drop as a
bi-exponential, i.e., y(x) = αeβx + γeδx, where x is the row number,
and y(x) is the average intensity of all pixels in that row, scaled to have
a maximum value of 1. We use MATLAB’s fit function to solve for
α, β, γ, and δ. Then we scale the intensities in each row x by 1/y(x).
As a result, pixels toward the bottom of the image become brighter, but
intensities at the top of the image do not change significantly.

Fig. 2(b) shows the single MT brightness calculated using MTQuant
and the average brightness change around 369 growing or shrinking MTs
in 30 kymographs. There was a clear correlation between the two sets of
measurements (p-value = 0.038), so relative changes in brightness across
animals can be detected, and, in turn, so can relative changes in coverage
and length.

A set of “axon hole” images was used as the second collection of
ground truth images. In these images, there was a gap in the continuity of
the MT coverage of the axon, as in Fig. 2(c). Such gaps are relatively rare,
and they occur mostly in younger animals and in portions of the axon that
are far from the cell body. The average intensity change on either side of
the holes typically corresponds to the brightness of a single MT, although
we cannot exclude the possibility that two MTs end simultaneously. Fig.
2(c) compares the single MT brightness calculated by MTQuant and the
intensity measured in the images around 184 holes that were selected
manually in 80 images. There is a strong correlation between the two sets
of brightnesses (p-value = 5.78e-07).

4.3 Biological Results

As an initial experiment, the organization parameters of wild-type worm
MTs were calculated at different ages. Fig. 3 shows the organization para-
meters as worms age from 12 hours to one week. Fig. 3(a) shows that, as
worms age, the average spacing between MTs does not change significan-
tly (p-value = 0.053). However, Fig. 3(b)-(c) do show significant changes.
The length of MTs increases as worms develop (p-value = 1.46e-74), con-
sistent with EM studies (Yu and Baas, 1994; Chalfie and Thomson, 1982).
Consequently, the average coverage of MTs also increases as a function
of worm age (p-value = 4.89e-60). The significance of these relationships
was calculated using Spearman rank correlation (McDonald, 2014).

The increases in MT length and coverage suggest that, as the axon
grows, existing MTs also elongate, and new MTs develop to tile the axon.
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This important result has implications as to how neurons elongate and how
the cytoskeleton scales during development.

This result demonstrates the utility of MTQuant. The relationship
between age and MT organization would have been nigh impossible to ach-
ieve without this rapid, automated method. We have also applied MTQuant
to over 3000 animals to ask a variety of other biological questions about
microtubules, delineated in (Yogev et al., 2016b).

5 Conclusion
The MTQuant framework provides a rapid and robust method of quantif-
ying MT organization, allowing biologists to study the spatial distribution
of MTs on a large scale in vivo using light microscopy instead of more
labor-intensive and error-prone methods such as serial reconstructions
of electron microscopy. Even super-resolution imaging, which requires
highly specialized equipment and biological markers, does not provide
sufficient resolution to visualize individual MTs. Instead, MTQuant allows
biologists to “see” information about MT organization that is significantly
below the resolution limit of light microscopy.

MTQuant has been validated on three ground truth data sets. The
organization parameters of wild-type worms calculated by MTQuant also
match previously published data (Chalfie and Thomson, 1979). MTQuant
was applied to hundreds of MT images of animals at varying ages. MT
spacing in wild-type animals remained constant as the axon grew over
three-fold during during development. However, MTs elongated during
development, suggesting that as animals grow, existing MTs elongate, and
new MTs populate the new portions of the axon.

MTQuant has been used to answer various biological questions (Yogev
et al., 2016b), and can be used more specific, subtle MT organization stu-
dies as well: various sections of the dendrite have been studied separately
using MTQuant, to quantify the MT material that appears to cluster in the
tip of the dendrite in some mutants (Yogev et al., 2016a).

By exploiting the fact that MTs form a bundle, we were able to extract
a significant amount of information from the fluorescent images of MTs.
Since this framework makes few assumptions about MTs beyond their
bundled organization, MTQuant can potentially be applied to the study of
other filaments as well, such as intermediate filaments, which are organized
similarly to MTs (Chang and Goldman, 2004). Other potential applicati-
ons include the quantification of myelin wraps which also form quantized
steps along the axon (Snaidero et al., 2014). In general, MTQuant can
be extended to discrete structures so long as their tagged intensities are
expected to form quantized steps.

For biological data with low signal-to-noise ratios, combining multiple
measurements is essential for achieving high quality outcomes. Aggre-
gating results from multiple animals when extracting the organization
parameters yields more accurate estimates of the distributions of the
underlying biological data. By incorporating simple assumptions about
MT organization with multiple measurements, this framework has enabled
us to gain a deeper understanding of MTs in C. elegans.
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lowed by distribution refinement.
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Supplementary Table 1: Organization Parameter Calculation. Each panel contains
a theoretical schematic (i), an example signal (ii), and equations for calculation
(iii). (a) Spacing, S̄, is average microns between MT starts, or approximately signal
length, d, divided by total number of MT starts, N . (b) Coverage, C̄, refers to
average number of MTs in bundle cross-section, or average value of quantized signal,
Qb∗(x), along neuron. To compensate for blurring and noise, a more accurate C̄ is
the integral of green signal IG(x) divided by d and single MT brightness, b∗. (c)
Length of each MT cannot be calculated since we cannot identify individual MTs as
in (i), but we calculate average MT length, L̄, by integrating IG(x) and dividing by
N and b∗. Organization parameters are not all independent; L̄ ≈ C̄ × S̄.
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Supplementary Figure 2: Cost calculation for single MT brightness. For each pos-
sible single MT brightness, green signal is quantized and compared to the original
signal. In (i)-(iii), top row represents an example signal, and bottom row displays
corresponding cost. (i) Squared error between number of steps up in the quantized
signal (black dots) versus the expected number of steps based on the observed num-
ber of patronin puncta. (ii) The number of steps up in the quantized signal (black
dots) that are more than 3 pixels away from a patronin puncta (red triangles). (iii)
Mean squared error between quantized signal and green tubulin signal. (iv) Total
cost. Red star corresponds to best single MT brightness, b∗.
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Supplementary Figure 3: MT verification. (a) Measured point spread function of
imaging system. (b) Measured periodogram of noise profile of imaging system. (c)
Simulated clean tubulin signal. (d) Tubulin signal with blurring and noise. (e) Clean
simulated patronin signal. (f) Patronin signal with burring and noise. (g) Example
kymograph of MT growing and shrinking (solid line). The single MT brightness is
the different in the average intensities along pairs of dotted lines. (h) Example of
holes in MT bundle (arrowheads in inset).
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