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Abstract

An increasing number of studies are using single-cell RNA-sequencing (scRNA-seq) to
characterize the gene expression profiles of individual cells. One common analysis
applied to scRNA-seq data involves detecting differentially expressed (DE) genes
between cells in different biological groups. However, many experiments are designed
such that the cells to be compared are processed in separate plates or chips, meaning
that the groupings are confounded with systematic plate effects. This confounding
aspect is frequently ignored in DE analyses of scRNA-seq data. In this article, we
demonstrate that failing to consider plate effects in the statistical model results in loss
of type I error control. A solution is proposed whereby counts are summed from all cells
in each plate and the count sums for all plates are used in the DE analysis. This
restores type I error control in the presence of plate effects without compromising
detection power in simulated data. Summation is also robust to varying numbers and
library sizes of cells on each plate. Similar results are observed in DE analyses of real
data where the use of count sums instead of single-cell counts improves specificity and
the ranking of relevant genes. This suggests that summation can assist in maintaining
statistical rigour in DE analyses of scRNA-seq data with plate effects.

Introduction 1

Single-cell RNA sequencing (scRNA-seq) is increasingly being used to study molecular 2

biology at the cellular level. RNA is isolated from individual cells and 3

reverse-transcribed into cDNA fragments that are sequenced using massively parallel 4

technologies [22]. Mapping of the sequence reads to a reference genome allows 5

quantification of gene expression in each cell based on the number of reads assigned to 6

each gene. The count data can then be analyzed to identify cell subtypes by clustering 7

of the gene expression profiles; to identify highly variable genes contributing to 8

cell-to-cell heterogeneity; and to identify differentially expressed (DE) genes between 9

groups of cells. The ability to assay expression profiles for individual cells provides 10

scRNA-seq studies with biological resolution that cannot be matched by bulk RNA-seq 11

experiments on cell populations. However, this comes at the cost of high technical noise 12

due to difficulties in sequencing low input quantities of RNA from single cells. 13
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Most existing scRNA-seq protocols are based either on microwell plates [17] or 14

microfluidics systems like the Fluidigm C1 [18]. In the former, cells are placed into 15

individual wells, typically with automated approaches such as fluorescently activated 16

cell sorting (FACS). The entire plate is processed to generate sequencing libraries for all 17

cells at once. In the latter, individual cells are captured in separate reaction chambers 18

within the C1 chip (for simplicity, each chip will be treated as being equivalent to a 19

plate in the following text). All cells on each chip are then simultaneously processed 20

into libraries. Each plate or chip can only handle a limited number of cells, so data are 21

usually generated for multiple plates across several biological groups. All cells on each 22

plate usually come from the same population (e.g., cell culture or animal) from a single 23

biological group. If replicate populations are present in a group, a separate plate is 24

typically used to process the cells from each population. 25

The experimental design described above is motivated largely by practicality. It is 26

logistically simpler to track and process cells when each plate corresponds to one 27

population of one group, compared to partitioning the plate into different groups. For 28

example, FACS is typically performed such that all cells on a plate are obtained by 29

gating on a single subpopulation. In the C1, cells are captured randomly in reaction 30

chambers such that the identity of the cell in each chamber cannot be pre-specified. 31

Ambiguity in determining the group for each cell is avoided by only using cells from the 32

same group on each chip. However, this design can result in a “plate effect” where 33

uncontrollable experimental variables have a consistent effect on the observed counts for 34

all cells on each plate but a variable effect across different plates. These variables can 35

be technical in origin, such as differences in library preparation or sequencing between 36

plates; or biological, due to inherent variability in gene expression across replicate 37

populations on different plates. 38

One common analysis applied to scRNA-seq data involves identifying DE genes 39

between groups of cells. This does not strictly require single-cell resolution, and is more 40

conventionally performed with bulk RNA-seq data. Nonetheless, there are some benefits 41

to using single-cell data in this context. Rare cells are more easily sequenced with 42

single-cell protocols, and irrelevant cells from contaminating populations can be 43

screened out before analysis. It is also more practical to use existing scRNA-seq data 44

compared to generating bulk data exclusively for a DE analysis. The analysis itself is 45

typically performed using methods like edgeR [19] and DESeq2 [12], which were 46

originally designed for bulk data; or with methods such as Monocle [23] and SCDE [6], 47

which were designed explicitly for single-cell data. Putative DE genes are defined as 48

those that exhibit significant differences in the average counts between two or more 49

groups of interest. 50

The presence of plate effects complicates the parametrization of the experimental 51

design in the DE analysis. Obviously, such effects are undesirable as they arise via 52

uncontrolled experimental variability. This increases the estimated variance and reduces 53

the power to detect DE genes. However, plate effects cannot be easily removed during 54

statistical modelling since they are confounded with the groups of interest [4, 24]. In the 55

most extreme case, consider a data set with multiple groups where each group is 56

comprised of cells from a single plate. Changes in gene expression due to plate effects 57

will be indistinguishable from genuine DE between groups. Any attempt to remove the 58

former will compromise the detection of the latter. This problem is still present in data 59

sets with a few plates (e.g., 2-3) in each group, where stochastic plate-to-plate 60

variability may explain some or all of the apparent DE between groups. Many studies 61

ignore the plate effects and treat cells directly as replicates in the DE analysis, such 62

that the variance is estimated across cells in each group [8–10]. This strategy is not 63

statistically rigorous as the variability due to systematic differences between plates will 64

not be modelled properly. 65
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This article demonstrates that plate effects must be handled appropriately to 66

maintain the statistical validity of a DE analysis. In a simple simulation, all analyses 67

that ignored the plate effects failed to control the type I error rate. This was caused by 68

dependencies between cells on the same plate which compromised inferences from the 69

fitted model. To avoid detection of spurious DE, a summation approach was proposed 70

whereby counts for all cells on each plate were summed prior to the DE analysis. This 71

restored control of type I error across a range of simulation scenarios without 72

compromising DE detection power. Similar effects were observed in real data where 73

summation improved detection specificity and the ranking of relevant genes. 74

Plate effects result in false positives in a DE analysis 75

Description of the experimental design and analysis strategies 76

Consider an experimental design consisting of multiple biological groups of interest. 77

Each group consists of cells sorted onto multiple plates, where all cells on each plate 78

come from an independent population of a single group. As previously mentioned, this 79

is not an uncommon setup due to the logistics of the experimental protocol, e.g., cell 80

sorting onto a plate with FACS, cell capture with the C1. Further assume that a plate 81

effect exists in the data set, whereby the expression of each gene in all cells of a given 82

plate is modified in a gene- and plate-specific manner. The use of gene-specific effects is 83

motivated by the presence of biological variability between replicate populations, where 84

uncontrolled differences in cell culturing or animal treatment can affect expression in a 85

gene-dependent manner. 86

Let Yijkg be a random variable representing the read count for gene i in cell j in 87

plate k of group g. Define δikg as a random variable representing the 88

gene-/plate-specific effect for gene i in plate k of group g. Assume that δikg for each 89

plate is independently sampled from a distribution of positive values with a mean of 90

unity and non-zero variance. This is reasonable as each plate contains cells from an 91

independent population and is processed independently. Further define θjkg as a 92

random variable representing the bias in cell j in plate k of group g, also sampled from 93

a distribution of positive values with a mean of unity and non-zero variance. This is 94

independent of δikg as it represents the cell-specific bias (e.g., library size, composition 95

bias) within each plate, which is separate from the gene-specific plate effects. Yijkg is 96

sampled independently for each gene in each cell, conditional on the observed values of 97

δikg and θjkg. In the following text, we refer to var(Yijkg|δikg, θjkg) as the conditional 98

variance, while the conditional expectation is defined as 99

E(Yijkg|δikg, θjkg) = δikgθjkgµig

where µig as the expected read count for gene i in group g. This represents the impact 100

of plate effects on the data. For each gene, the mean for all cells on a given plate is 101

scaled by the same value, δikg, which introduces systematic differences between plates. 102

Such differences cannot be removed by scaling normalization, e.g., based on library size 103

or with more sophisticated methods [1,20]. This is because these normalization methods 104

compute a single scaling factor for each cell to adjust for the cell-specific θjkg. In 105

contrast, the plate effect varies across genes and cannot be removed by a single factor 106

for each cell. 107

One common aim of the data analysis for this experiment is to identify DE genes 108

between the biological groups of interest. However, this is complicated by the presence 109

of confounding plate effects. Consider an experimental design with one plate from each 110

of two groups. A fold-increase in δikg between the two plates cannot be distinguished 111

from a matching increase in µig between the two groups. Any attempt to remove the 112
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former will affect detection of genuine DE in the latter. Even with multiple plates per 113

group, this problem is still present as stochastic increases in δikg for all plates in a group 114

can explain part or all of the observed DE between groups. 115

A common strategy is to ignore the plate effects and treat cells from different plates 116

in the same group as replicates. This is most obviously applied in a one-way layout with 117

clearly defined groups. It is also relevant to multi-factor designs with more plates than 118

model coefficients, as these designs will contain some level of replication between plates 119

and thus between their constituent cells. DE genes can then be detected using software 120

designed for bulk data (e.g., DESeq) or with dedicated single-cell methods (e.g., 121

Monocle). Alternatively, a more sophisticated but lesser-used approach involves fitting a 122

mixed model to the counts for each gene [24]. The plate of origin is treated as a random 123

effect while the groups are treated as fixed effects. This accounts for plate-to-plate 124

variability while still allowing detection of DE between groups. However, the 125

performance of these strategies has yet to be rigorously assessed on scRNA-seq data sets 126

that contain plate effects. 127

Testing DE analysis methods on simulated scRNA-seq data 128

We designed simulations to mimic the characteristics of a real scRNA-seq data set [8]. 129

We generated counts for 50-100 cells in each plate, for an experiment containing three 130

plates in each of two groups. Counts for each cell were conditionally NB-distributed and 131

the plate effect was log-normally distributed. Parameters of both distributions were 132

estimated from real data – see Supplementary Figure S1, Section 1 of the 133

Supplementary Materials for details. 134

DE analyses of the simulated data were then performed using edgeR, DESeq2 [12], 135

voom [11], Monocle, MAST [3] and generalized linear mixed models (GLMMs) from the 136

lme4 package [2]. edgeR, DESeq2 and voom were originally designed for analyzing bulk 137

RNA-seq data. edgeR and DESeq2 fit NB generalized linear models (GLMs) to the 138

counts for each gene, while voom uses a normal distribution to model log-counts per 139

million (log-CPMs) with precision weights. Monocle and MAST were explicitly designed 140

for analyzing scRNA-seq data, and operate on pre-processed expression values such as 141

(log-)CPMs. (In particular, Monocle was designed to detect DE across a 142

pseudo-temporal ordering of single cells, e.g., during differentiation, but the same 143

statistical framework can be applied to arbitrary covariates.) The GLMM approach is 144

more general, and uses NB distributions to model the counts with random plate effects 145

and fixed group effects. 146

Each method was applied to the simulated data to test for DE between groups. For 147

all methods, the experimental design was parameterized as a one-way layout with two 148

groups. All cells within each group were treated as direct replicates – the plate of origin 149

within each group was ignored. edgeR was run twice, using either the quasi-likelihood 150

(QL) framework [14] with robust empirical Bayes (EB) shrinkage [16] of the QL 151

dispersions, or the likelihood ratio test (LRT) [15] without any EB shrinkage of the NB 152

dispersions. Similarly, the analysis with voom was repeated after estimating the 153

correlation between cells on the same plate [21]. The implementation details for each 154

method are described in Section 2 of the Supplementary Materials. 155

In this simulation, the null hypothesis is true for each gene i as µig is constant for all 156

g. Any rejections of the null represent type I errors, i.e., false positives. For a specified 157

type I error rate α = 0.01, the observed error rate was defined as the proportion of all 158

genes with a p-value below α. This was averaged across 10 simulation iterations to 159

obtain a stable estimate of the observed type I error rate for each method. A method 160

was considered to be liberal if its observed error rate in the simulation was above the 161

specified α. Note that this evaluation is only possible for methods that compute 162
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p-values for each gene – Bayesian methods [6, 25] are not directly comparable and so are 163

not tested here. 164

Type I error control is lost by all methods 165

The observed type I error rate exceeds the specified threshold in all methods (Figure 1). 166

For most methods, the discrepancy between the observed and specified rates is greater 167

than an order of magnitude. This liberalness is attributable to the plate effect rather 168

than any inherent fault with the methods. When the simulations are repeated without 169

any plate effect, the observed rates for all methods are substantially closer to the 170

specified level, if not below it. These results suggest that DE analyses will perform 171

poorly if the plate effect is simply ignored. Loss of type I error control will result in an 172

unacceptable number of false positives in the final set of DE genes. 173

Loss of error control is caused by plate-induced dependencies in the statistical model. 174

In the one-way layout, the count of each gene in each cell is modelled by a distribution 175

with a mean equal to the product of a gene- and group-specific expression term (the 176

estimate of µig) and a cell-specific scaling factor (θjkg). Most DE analysis methods 177

assume that, for any given gene, the counts for all cells are independently sampled from 178

these distributions. However, this is clearly not the case when a plate effect is present. 179

For each gene, the true mean of the sampling distribution for each cell is scaled by a 180

plate-specific factor δikg, such that the residuals of the fitted model for cells on the 181

same plate are more similar than expected under independence. (Conditional 182

independence between cells is irrelevant here, as the plate of origin is not used in the 183

model parametrization.) This reduces the amount of information in the data set as cells 184

on the same plate are effectively redundant. Methods that assume independence will 185

overstate the information available to estimate model parameters such as the 186

group-specific means, the variance or the NB dispersion. This results in overconfident 187

inferences and liberalness during hypothesis testing. 188

The problem can also be described in terms of the residual degrees of freedom (d.f.) 189

that are available in the fitted model. The simulation uses an experimental design with 190

6× 50 = 300 cells and two coefficients in a one-way layout. If all cells were truly 191

independent – as is assumed by most methods – this design would provide 298 residual 192

d.f. At the other extreme, consider the scenario where all cells on a plate have identical 193

counts, i.e., there is no noise or heterogeneity between cells. This means that there are 194

only six independent samples (one cell per plate, as all other cells on that plate are 195

redundant) and only four residual d.f. This is substantially smaller than the expected 196

298 d.f., meaning that the uncertainty of various parameter estimates will be 197

underestimated. For example, the use of edgeR with the LRT assumes that sufficient 198

residual d.f. are present to estimate the dispersion for each gene separately, without 199

requiring EB shrinkage to share information between genes. This is no longer justifiable 200

if only four d.f. are available. 201

The GLMM approach and voom with correlations exhibit the best performance of all 202

tested methods in the presence of a plate effect (Figure 1). This is because they 203

explicitly account for the dependencies between cells on the same plate during variance 204

estimation. Nonetheless, both methods are still liberal, with observed type I error rates 205

that are approximately three-fold higher than the specified threshold. This is 206

attributable to difficulties in estimating the variance of the random effect (for the 207

GLMM approach) or the correlation (for voom) in data sets with small numbers of 208

replicate plates. Underestimation will result in loss of type I error control as the 209

dependencies will not be fully modelled. For voom, the effect of imprecise estimation 210

with few plates is mitigated by sharing information across genes to obtain a consensus 211

value of the correlation – however, this leads to biases when the true correlation varies 212

between genes. GLMMs are also prohibitively slow to fit, taking several hours to run for 213
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a single simulation iteration. 214

We also tested the performance of each method with other simulation settings. To 215

this end, we repeated the above simulation after halving the magnitude of the plate 216

effect; increasing the variability of library sizes across cells; increasing the variability in 217

the number of cells per plate; increasing the number of plates in each group; or 218

sampling counts from a zero-inflated negative binomial distribution, with parameters 219

estimated from real data [26]. In all scenarios, type I error control was not maintained 220

by any method (Supplementary Figure S2). This suggests that our results are generally 221

applicable to different scRNA-seq data sets. 222

Improved performance with summation across cells 223

in each plate 224

Error control can be restored by summing over cells 225

A simple solution presents itself for restoring error control in the presence of plate 226

effects. Firstly, the counts for each gene are summed across all cells within each plate. 227

These count sums are then used directly in the DE analysis, where the plates themselves 228

are treated as replicate samples for each biological group. The use of plate-based 229

observations avoids dependencies between samples in the statistical model. This is 230

because the plate effect is independently sampled for each plate and will not introduce 231

unexpected similarities between count sums for different plates. Similarly, the counts for 232

cells within each plate are conditionally independent and will not provide any 233

information on the counts in other plates. Independence of the count sums fulfills the 234

expectations of the analysis methods and ensures that the number of residual d.f. is not 235

overestimated. Summation has the additional benefit of increasing the size and 236

precision of the counts. This makes the data more amenable for analysis with existing 237

methods designed for bulk data. 238

Summation substantially reduces the liberalness of the DE analysis methods in the 239

simulation (Figure 2). Overconfident estimation of model parameters is avoided due to 240

the presence of independent count sums. Similar results are observed in the alternative 241

simulation scenarios (Supplementary Figure S3). Note that some mild liberalness is still 242

observed for edgeR and DESeq2 – this is because the count sums are not 243

NB-distributed which results in some inaccuracy during modelling. In contrast, type I 244

error control is fully restored for voom as it is more accurate for large counts and 245

log-normally-distributed plate effects. The other methods are not used here, for various 246

reasons – voom with correlations and GLMMs cannot be applied on count sums from 247

independent plates, as the plate-level blocking factor would be confounded with the 248

random error; Monocle and MAST are designed for per-cell rather than summed 249

per-plate counts; and for edgeR without EB shrinkage, there are insufficient residual d.f. 250

to stably estimate the dispersion. 251

Summation will not explicitly protect against pathological situations where, e.g., 252

δikg > 1 for all plates in one group and δikg < 1 for all plates in the other groups. Such 253

genes are more likely than others to be type I errors, regardless of whether single-cell or 254

summed counts are used in the DE analysis. However, the benefit of summation is that 255

it provides more accurate control of these errors. This is achieved through the 256

appropriate consideration of the model uncertainty via low residual d.f., which reduces 257

the significance of spurious DE caused by variable δikg. 258
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Summation does not compromise DE detection power 259

It should be stressed that summation of counts does not change the nature of the 260

underlying changes in expression. In a DE analysis, the average expression of a gene is 261

computed for each group and then compared between two or more groups. This is true 262

regardless of whether those groups contain replicate cells or replicate plates. In general, 263

summation only affects the estimation of the variance rather than that of the effect size, 264

i.e., the log-fold change. 265

To demonstrate, we repeated the simulations after introducing DE genes between 266

groups. We used the various analysis methods with either the single-cell counts (i.e., 267

ignoring the plate effect) or summed counts to detect known DE genes. For each 268

method, the receiver-operating characteristic (ROC) curve for the analysis on summed 269

counts was similar to that for the single-cell counts (Figure 3). This indicates that 270

detection power at any given false positive rate is not compromised by summation. In 271

fact, at low false positive rates, a modest increase was observed in the true positive rate 272

of each analysis with summed counts compared to its single-cell counterpart. Similar 273

results were observed in additional simulation scenarios involving no plate effect, 274

stronger DE fold changes and more DE genes (Supplementary Figure S4). Moreover, 275

the observed FDR was only controlled below the nominal 5% threshold when 276

summation was used (Supplementary Figure S5). This is consistent with the loss of 277

error control when plate effects are ignored. 278

The comparable performance of analyses with and without summation is driven by 279

several factors. Firstly, as previously discussed, the (expected) DE log-fold change is the 280

same regardless of whether the average expression in each group is computed over cells 281

or over plates. Secondly, the count sum per plate is less variable than the count per cell. 282

This is most obvious in voom where expression is quantified as a (log-)CPM value. The 283

CPM of a count sum effectively represents an estimate of the conditional mean across 284

all cells on a plate – by the law of large numbers, this should converge to its expectation 285

for a large number of conditionally independent cells. Similar behaviour is observed in 286

NB models where the variance of the sum of identical and independently NB-distributed 287

random variables approaches that of a Poisson distribution. In both cases, the decrease 288

in the conditional variance relative to the mean offsets the loss of power from the 289

decrease in the number of samples when plates are considered instead of cells. (See also 290

Section 3 of the Supplementary Materials for a discussion on how the relative decrease 291

in the conditional variance also improves model accuracy.) Thirdly, methods like edgeR, 292

DESeq2 and voom/limma share information between genes to estimate the dispersion or 293

variance. This mitigates the effect of reduced residual d.f. for count sums. Finally, the 294

increase in power at low false positive rates may be due to the greater suitability of 295

statistical models for count sums. For example, the log-normal model in voom is more 296

accurate at larger counts where discreteness is less pronounced. 297

Justifying summation in a single-cell study 298

Despite the obvious improvement in performance, the summation strategy may not have 299

unqualified appeal. After all, it seems to contradict the purpose of a scRNA-seq study. 300

Why would one bother to sequence the transcriptome of individual cells, only to add the 301

counts together during the analysis? The use of summed counts is equivalent to 302

performing bulk sequencing on the pooled population, which would be technically easier 303

to undertake and analyze. In fact, this apparent contradiction is relevant to all DE 304

analyses of scRNA-seq data where average expression levels are compared between 305

pre-defined groups of cells. Such averages could be obtained directly with bulk 306

sequencing of the groups, rather than sequencing of the individual cells. 307

The resolution of this contradiction is based on the ability of single-cell approaches 308
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to characterize and define the groups prior to the DE analysis. Purified populations of 309

rare cells can be profiled by scRNA-seq if they cannot be obtained in sufficient numbers 310

for bulk sequencing. Low quality libraries or contaminating cells can be identified and 311

removed from each group to avoid distorting downstream inferences. Groups can also be 312

empirically identified based on gene expression patterns, though this requires some care 313

to avoid circularity in the subsequent DE analysis. Obviously, it is not mandatory to 314

use the summed counts exclusively. The single-cell counts can still be used for other 315

aspects of the analysis, e.g., clustering, identifying highly variable genes. Indeed, one 316

can exploit the cellular resolution of scRNA-seq data to characterise the nature of a DE 317

gene detected with the summation approach – specifically, is the change in expression 318

being driven by a particular subset of cells, or is it occurring consistently across the 319

entire population? All of these advantages are lost when RNA sequencing is performed 320

at the population level. 321

Note that summation across cells in scRNA-seq data is not without precedent. Jaitin 322

et al. [5] pool single-cell expression profiles to obtain a combined vector of 323

subpopulation-level counts for gene clustering. Klein et al. [7] also pool single-cell 324

counts within each group prior to performing a DE analysis between groups, which 325

increases the count size and stabilizes the estimates of the DE fold change. However, 326

the use of summation to restore type I error control in the presence of plate effects has 327

not yet been addressed in the literature. 328

Summation results in reduced DE detection in real 329

data 330

Overview of the real data set and its analysis 331

To determine the relevance of the simulation results, DE analyses with single-cell and 332

summed counts were performed on real scRNA-seq data from a study of mouse 333

embryonic stem cells (mESCs) grown under three different types of culture 334

conditions [8]. This data set contains multiple C1 chips across several batches for each 335

culture type, where all mESCs on each chip correspond to a single culture type (serum, 336

2i, or a2i). Count data for all genes were obtained from 337

http://www.ebi.ac.uk/teichmann-srv/espresso. To simplify the analysis, counts 338

were only used from cells in the two batches where all three culture types were 339

represented. This resulted in 60-90 cells from each of six plates (three culture types in 340

each of two batches). To account for the batch effect, the experimental design was 341

parameterized as an additive model with culture-specific expression terms and 342

batch-specific blocking factors. 343

DE analyses were performed on the data using DESeq2, voom and QL edgeR. These 344

methods were chosen as they could be applied on both the single-cell counts and 345

summed counts for all cells in each plate. Prior to analysis, low-abundance genes 346

(defined as those with an average count below 1 across all cells) were filtered out. 347

Sample-level quality control was not applied as low-quality cells had already been 348

removed. Each analysis method was applied with and without summation, to detect DE 349

genes between 2i and serum or between a2i and serum. In each analysis, normalization 350

was performed using the deconvolution method for the single-cell counts [13] or the 351

DESeq method for the summed counts for each plate [1] – see Section 2.2 of the 352

Supplementary Materials for more details on these normalization strategies. The set of 353

DE genes detected at a FDR of 5% was then reported for each method. 354
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Numbers and ranking of DE genes are altered upon summation 355

In all comparisons, the number of DE genes detected with summed counts was 356

substantially smaller than that detected with single-cell counts (Table 1). In fact, the 357

DE list from the former was generally a subset of that from the latter. However, this 358

does not mean that DE analyses with single-cell counts provide more power. To assess 359

specificity, we repeated each comparison after swapping the culture labels of the 360

samples being compared in one of the batches. Each group now contains one sample 361

from each culture type, such that no DE genes should be present between groups. Only 362

the methods using summation were able to control the type I error rate below the 363

specified threshold (Supplementary Figure S6). (Some conservativeness is expected as 364

genuine DE between culture types inflates the variances upon swapping.) In contrast, 365

the single-cell analyses are liberal to a degree that is consistent with the simulations. 366

This suggests that the increased numbers in Table 1 correspond to detection of false 367

positives rather than genuine DE genes. 368

To determine the effect of summation on the gene ranking, genes were sorted based 369

on the p-values computed from each method. The identities of the top 20, 200 and 2000 370

genes were compared between analyses using single-cell and summed counts. In general, 371

less than half of the top-ranking genes are shared between the two analyses for each 372

method (Table 2). This difference is attributable to changes in variance modelling after 373

summation, to focus on variability between plates rather than between cells. These 374

rankings are important as the genes driving the biological differences between groups 375

are expected to exhibit strong DE. Thus, the top-ranking genes are typically prioritized 376

for further interpretation and investigation. Changes to the ranking indicate that 377

summation will affect the biological conclusions that are taken from the analysis. 378

Indeed, key pluripotency factors characterized by Kolodziejczyk et al. [8] are more 379

highly ranked in analyses using summed counts compared to single-cell counts 380

(p = 1.9× 10−4, see Supplementary Figure S7). This suggests that summation can 381

improve the biological relevance of DE results. 382

One potential criticism of summation is that the variability between cells is hidden 383

in the count sum. One might expect that genes with DE driven by a few outlier cells 384

would be ranked highly, as they would not be penalized by a large cell-to-cell variance 385

estimate. This would be inappropriate as such outlier patterns are uninteresting. 386

However, these genes do not seem to be favoured in real data. The top set of DE genes 387

from summation exhibit robust differences between groups (Supplementary Figure S8), 388

whereas genes driven by outliers tend to be less significant. This is because the 389

conditional variance of the count sum will be larger with fewer contributing cells, i.e., 390

technical noise and heterogeneity will not average out if the sum is dominated by a few 391

outliers. This increases the total variance and decreases the relative significance of DE 392

for outlier-driven genes. For genes with more contributing cells, cell-to-cell variability 393

will be hidden but this is not undesirable – see Section 4 of the Supplementary 394

Materials for details. 395

Discussion 396

Confounding plate effects are often present in scRNA-seq data sets but are typically 397

ignored during the DE analysis. Our simulations indicate that this strategy is not 398

statistically rigorous and will result in loss of type I error control. In this article, a 399

solution is presented involving the summation of counts across all cells on each plate for 400

each gene. The count sums can then be used in a DE analysis, effectively treating plates 401

as individual samples. This restores type I error control and avoids the detection of 402

excessive false positives. Summation prior to DE analyses also affects the biological 403
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conclusions of a real scRNA-seq study, by decreasing the size of the DE lists and 404

improving the ranking of relevant genes relative to a conventional single-cell analysis. 405

We note that there are some situations where summation has fewer advantages. For 406

example, cells can be arranged onto plates such that each plate contains cells from 407

multiple biological groups. DE comparisons can then be performed directly between 408

cells on the same plate, avoiding problems from technical variability in processing 409

between plates. This mitigates the plate effect (though an equivalent “population effect” 410

may be observed whereby dependencies are present between cells from the same 411

replicate animal or cell culture) and reduces the need for summation. In experiments 412

involving one plate in each group, summation will yield only one count sum per group. 413

This cannot be easily analyzed by existing methods as the variance within each group 414

cannot be modelled without replication. A direct analysis of single-cell counts is more 415

straightforward as the variance can be estimated across cells. That said, the latter 416

analysis is only valid under the assumption that no plate effect exists. This is because 417

the variance estimate only accounts for variability within plates, not between plates. To 418

verify this assumption, one would have to generate data from replicate plates such that 419

summation would be applicable. 420

In general, experimental designs involving several plates nested in each group seem 421

to provide the best compromise between statistical rigour and experimental practicality. 422

This generates the necessary replication across populations (assuming that each plate 423

corresponds to a replicate population) while being easier to set up than plates of mixed 424

populations or groups. For such designs, the best way to handle plate effects is to 425

simply increase the number of plates. This provides more residual d.f. to precisely 426

estimate the plate-to-plate variability after summation, albeit at the cost of requiring 427

more experimental resources. The choice of the number of plates is analogous to that of 428

biological replicates in bulk RNA-seq experiments. This suggests that 3-4 plates per 429

group should be sufficient in most cases. The number of cells is less important, though 430

there should be enough cells per plate to obtain stable count sums. Summation also 431

reduces the computational time required for the DE analysis – only a small number of 432

plates need to be processed, instead of hundreds or thousands of cells – which may be 433

useful in large data sets. 434

Summation is a simple but effective approach to overcome the problem of plate 435

effects in a DE analysis. This complements other aspects of the data analysis that use 436

single-cell counts, e.g., in cell clustering or to identify highly variable genes. Summation 437

also reduces technical noise and may be a more general strategy to improve data quality 438

when many cells are available. 439

Software 440

All software packages except MAST are publicly available from the Bioconductor 441

project (http://bioconductor.org). MAST is available on GitHub at 442

https://github.com/RGLab/MAST. Simulation scripts are available at 443

https://github/MarioniLab/PlateEffects2016. 444
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Figure 1. Observed type I error rates for each method on simulated data, in the
presence or absence of a plate effect. Error rates are shown on a log scale and represent
the average across 10 simulation iterations. Each error bar represents the standard error
of the log-average rate. The threshold of 0.01 is represented by the red line. Only one
iteration was used for Monocle and GLMMs due to their long run times.

Table 1. Total number of DE genes detected by each method in each comparison at a
FDR of 5%, using the single-cell or summed counts. The number of DE genes detected
with both counts is also shown.

Comparison Counts DESeq2 voom QL edgeR

2i vs. serum
Single-cell 6243 9458 9107
Summed 3014 1710 946
Both 2488 1698 946

a2i vs. serum
Single-cell 5378 8850 8069
Summed 1688 774 241
Both 1487 763 241

Table 2. Proportion of the top-ranking DE genes shared between analyses using the
single-cell or summed counts. Top genes were defined as those with the smallest 20, 200,
or 2000 p-values in each comparison.

Comparison Top DESeq2 voom QL edgeR

2i vs. serum
20 0.15 0.05 0.10
200 0.27 0.43 0.18
2000 0.49 0.60 0.48

a2i vs. serum
20 0.25 0.20 0.10
200 0.30 0.53 0.17
2000 0.48 0.60 0.51
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Figure 2. Observed type I error rate for each method after summation in simulations
with and without a plate effect. Error rates are shown on a log scale and represent the
average across 10 simulation iterations. Error bars represent standard errors, and the
threshold of 0.01 is represented by the red dashed line. The observed type I error rate
for each method without summation is also shown for comparison.
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Figure 3. ROC curves for each analysis method on simulated data with a plate effect
and genuine DE, for both single-cell (full) and summed counts (dashed). Curves are
shown for DESeq2 (black), voom (grey) and QL edgeR (red). Each curve represents the
average result of 10 simulation iterations. The full curves are shown on the left, and an
enlarged plot focusing on low false positive rates is shown on the right.
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