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Abstract 
Neurons in high-level visual areas respond to more complex visual features with broader 
receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual 
areas are generally considered to carry less information regarding the position of seen objects 
in the visual field. However, larger RFs may not imply loss of position information at the 
population level. Here, we evaluated how accurately the position of a seen object could be 
predicted (decoded) from activity patterns in each of six representative visual areas with 
different RF sizes (V1–V4, LOC, and FFA). We collected fMRI responses while subjects 
viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes 
of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. 
The voxels in higher visual areas showed larger estimated RFs than those in lower visual 
areas. Then, the ball’s position in a separate session was predicted by maximum likelihood 
estimation using the RF models of individual voxels. We also tested a model-free multivoxel 
regression (support vector regression, SVR) to predict the position. We found that regardless 
of the difference in RF size, all visual areas showed similar prediction accuracies, especially 
on the horizontal dimension. The results suggest that precise position information is available 
in population activity of higher visual cortex, and that it may be used in later neural 
processing for recognition and behavior.   
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Significance statement 

High-level ventral visual areas are thought to achieve position invariance with larger 
receptive fields at the cost of the loss of precise position information. However, larger 
receptive fields may not imply loss of position information at the population level. Here, 
multivoxel fMRI decoding reveals that high-level visual areas are predictive of an object’s 
position with similar accuracies to low-level visual areas, preserving the information 
potentially available for later processing.  
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Introduction 
Along the ventral visual cortical pathway, neurons in higher-level areas respond to more 
complex visual features with broader receptive fields (RFs). This is thought to serve to 
represent objects regardless of the position in the visual field. Because of this receptive field 
property, position information is often assumed to be lost in these areas (Ito et al., 1995; 
Logothetis and Sheinberg, 1996; Tanaka, 1996). However, the loss of position information in 
single neurons does not necessarily imply the loss of position information at the population 
level. Theoretical studies have suggested that if the RFs of model neurons are uniformly 
distributed in the 2D visual field, the Fisher information about the position of a stimulus is 
not degraded by an increase in RF size (Zhang and Sejnowski, 1999; Eurich and Wilke, 2000). 
As the Fisher information provides the theoretical lower bound of the estimation/decoding 
error, position information may not be lost even in visual areas with large RFs, such as the 
lateral occipital complex (LOC) and fusiform face area (FFA). While several recent fMRI 
studies demonstrated successful classification of the position (e.g. left vs. right, upper vs. 
lower) of a presented object from ventral visual areas (Schwarzlose et al., 2008; Carlson et al., 
2011; Golomb and Kanwisher, 2011), the relationship between RF size and decoded position 
information across visual areas has not been quantitatively examined.  
 
 
Here, we estimated RF sizes for fMRI voxels and evaluated how accurately the position of a 
seen object was predicted (decoded) from activity patterns in each of six representative visual 
areas (V1–V4, LOC, and FFA). In our experiments, we collected fMRI responses while 
subjects viewed a ball randomly moving in a two-dimensional field (Figure 1; a ball with a 
diameter of 1.6° presented within a 7.6° × 7.6° square field). The subjects were instructed to 
fix their eyes to the fixation point and keep track of the ball in their mind. fMRI activity was 
collected at a 3 × 3 × 3 mm resolution, and the signals from voxels in areas V1–V4, LOC and 
FFA were analyzed (see Materials and methods). To estimate RF sizes, RF models were fitted 
for individual voxels in each brain area (Dumoulin and Wandell, 2008). In the decoding 
analysis, the ball position was predicted either by maximum likelihood estimation using the 
RF models of individual voxels or by support vector regression (SVR; Drucker et al., 1997; 
Chang and Lin, 2011) with multivoxel patterns as inputs (Figure 1; see Materials and 
methods). While the maximum likelihood method provides straightforward interpretation 
given accurate RF models, SVR is expected to perform model-free information retrieval from 
fMRI data.     
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Materials and methods 
Subjects 
Five healthy subjects (one female and four males, aged between 23 and 31) with normal or 
corrected-to-normal vision participated in our experiments. This sample size was chosen 
based on previous fMRI studies with similar experimental designs (Dumoulin and Wandell, 
2008; Amano et al., 2009). We obtained written informed consent from all subjects prior to 
their participation in the experiments, and the Ethics Committee at the [authours’ institute] 
approved the study protocol. 
  
Position tracking experiment 
The stimulus was created with Psychtoolbox-3 (http://psychtoolbox.org/)(RRID: 
SCR_002881) and the associated openGL for Psychtoolbox extension. The stimulus was 
projected onto a display in the fMRI scanner and viewed through a mirror attached to the 
headcoil. We conducted three scanning sessions (runs) for each subject. In each run, an initial 
rest period of 32 s was followed by four blocks of stimulus presentation, which each lasted 
for 240 s. The stimulus presentation blocks were separated by 12-s rest periods. An extra 12-s 
rest period was added to the end of each run (1,040 s total for each run). During each of the 
rest periods, a circular fixation point (0.25° diameter) was displayed on the center of the 
display and subjects were instructed to attend to this point. During stimulus presentation, in 
addition to the fixation point, a white-and-black checkered sphere with a diameter of 1.6° was 
displayed with a flickering rate of 6 Hz (Figure 1). 
 
The sphere was programmed to move in a random orbit produced by the following process. 
For each frame, the position of the center of the sphere was updated by  
 

𝐬 𝑡 + 1 = 𝐬 𝑡 + 𝑐𝐩 𝑡  
 
where 𝐬(𝑡) is the position at frame 𝑡 (i.e. 𝐬(𝑡) = (𝑠+(𝑡), 𝑠-(𝑡))) and 𝐩(𝑡) is the vector 
indicating the direction of the movement from frame 𝑡 to (𝑡 + 1), which imitates 
momentum. The constant 𝑐, which is a parameter that controls the speed, was set to 0.008 in 
this study. The vector 𝐩(𝑡) was updated by  
 

𝐩 𝑡 + 1 =
𝐩 𝑡 + 𝛆
𝐩 𝑡 + 𝛆  

 
where 𝛆 is a random vector sampled from a two dimensional Gaussian distribution 
𝒩(0, 𝜎2𝐼) for every frame. 𝜎 was set to 0.1 in this study. The movement of the sphere 
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center was limited within a 6.0° × 6.0° square field (the stimulus spanned a 7.6° × 7.6° square 
field. If 𝐬(𝑡 + 1) was not in the allowed region in terms of horizontal or vertical position, 
the first or second element of 𝐩(𝑡) was multiplied by −1 before the position was updated. 
This procedure ensures that the sphere is bound to the edge of the allowed region. The frame 
rate of stimulus presentation was 60 Hz. 
 
 
Retinotopy experiment 
The retinotopy experiments were conducted according to the conventional protocol (Engel et 
al., 1994; Sereno et al., 1995). We used a rotating wedge and an expanding ring covered in a 
flickering checkerboard. The data were used to delineate the borders between visual cortical 
areas, and to identify the retinotopic map (V1–V4) on the flattened cortical surfaces of 
individual subjects. 
 
Localizer experiment 
The functional localizer experiments were conducted to identify the lateral occipital complex 
(LOC)(Kourtzi and Kanwisher, 2000) and fusiform face area (FFA)(Kanwisher et al., 1997) 
for each individual subject. The localizer experiments comprised four to eight runs, and each 
run contained 16 stimulus blocks. In the experiments, intact or scrambled images (12° × 12°) 
belonging to face, object, house, and scene categories were presented around the center of the 
screen. Stimuli from each of the eight stimulus types (four categories × two conditions) were 
presented twice per run. Each stimulus block consisted of a 15-s intact or scrambled stimulus 
presentation. The intact and scrambled stimulus blocks were presented successively (the 
order of the intact and scrambled stimulus blocks was random), followed by a 15-s rest period 
where a uniform gray background was displayed. Extra 33-s and 6-s rest periods were 
presented before and after each run, respectively. In each stimulus block, 20 different images 
of the same stimulus type were presented for 0.3 s, separated by 0.4-second-long blank 
intervals. 
 
MRI acquisition 
We collected fMRI data using a 3.0-Tesla Siemens MAGNETOM Trio a Tim scanner located 
at [the institute where the experiments were conducted]. An interleaved T2*-weighted 
gradient-EPI scan was performed to acquire functional images of the entire occipital lobe 
(position tracking experiment and retinotopy experiment: TR, 2,000 ms; TE, 30 ms; flip angle, 
80 deg; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 
30; localizer experiment: TR, 3,000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; 
voxel size, 3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 50). T2-weighted turbo spin 
echo images were scanned to acquire high-resolution anatomical images of the same slices 
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used for the EPI (position tracking experiment and retinotopy experiment: TR, 6,000 ms; TE, 
57 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm; localizer 
experiment: TR, 7,020 ms; TE, 69 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 
0.75 × 0.75 × 3.0 mm). T1-weighted magnetization-prepared rapid acquisition gradient-echo 
(MP-RAGE) fine-structural images of the entire head were also acquired (TR, 2,250 ms; TE, 
3.06 ms; TI, 900 ms; flip angle, 9 deg, FOV, 256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm). 
 
MRI data preprocessing 
The first 8-s scans (position tracking experiment and retinotopy experiment) or 9-s scans 
(localizer experiment) of each run were discarded to avoid MRI scanner instability. We then 
subjected the acquired fMRI data to three-dimensional motion correction with SPM5 
(http://www.fil.ion.ucl.ac.uk/spm). Those data were then coregistered to the within-session 
high-resolution anatomical images of the same slices used for EPI and subsequently to the 
whole-head high-resolution anatomical images. The coregistered data were then 
re-interpolated as 3 × 3 × 3 mm voxels. 
For the data from the position tracking experiment, the signal amplitudes from individual 
voxels were linearly detrended in each run and shifted by 4 s (two fMRI volumes) to 
compensate for hemodynamic delay. 
 
Region of interest (ROI) selection 
V1, V2, V3, and V4 were identified using the data from the retinotopy experiments (Engel et 
al., 1994; Sereno et al., 1995). The lateral occipital complex (LOC) and fusiform face area 
(FFA) were identified using the data from the functional localizer experiments (Kanwisher et 
al., 1997; Kourtzi and Kanwisher, 2000). The data from the retinotopy experiment were 
transformed into Talairach space and the visual cortical borders were delineated on the 
flattened cortical surfaces using BrainVoyager QX (http://www.brainvoyager.com)(RRID: 
SCR_013057). The coordinates of voxels around the gray-white matter boundary in V1–V4 
were identified and transformed back into the original coordinates of the EPI images. The 
localizer experiment data were analyzed using SPM5. The voxels showing significantly 
higher activation in response to intact object or face images compared with that for scrambled 
images (t-test, uncorrected p < 0.05 or 0.01) were identified, and defined as the LOC and FFA, 
respectively. 
 
Population receptive field model fitting 
To estimate the receptive field, we fitted a population receptive field model to voxel 
amplitudes from each voxel in the visual cortex. We used fMRI data from the position 
tracking experiment in the analysis. Our model was based on a two-dimensional Gaussian 
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receptive field and the noise on voxel amplitudes was assumed to be Gaussian (Dumoulin and 
Wandell, 2008). Mathematically, this assumption was expressed by 
 

  𝑟 𝑡 = 𝐶7 + 𝐶8 exp − +<=> ?@ -<=A
?

2B?
𝐼 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦 

 
and 
 

𝑟 𝑡 	
  ~	
  𝒩 𝑟 𝑡 , 𝜎HIJKL2 . 
 
𝑟(𝑡) and 𝑟(𝑡) are the fitted and observed voxel amplitudes for the 𝑡-th fMRI volume. 𝐶7, 
𝐶8, 𝜇+, 𝜇-, 𝜎, and 𝜎HIJKL are constants to be estimated. 𝐼 𝑥, 𝑦, 𝑡  is the binary image 
function whose output is one if the visual stimulus is present at location (𝑥, 𝑦) at the time of 
the 𝑡-th fMRI volume measurement, and zero otherwise. 
 
The six parameters were fitted by maximum likelihood estimation, which was done by 
maximizing 
 

log 𝑝(𝑟(𝑡)|𝐶7, 𝐶8, 𝜇+, 𝜇-, 𝜎, 𝜎HIJKL)
T

UV8

= −
𝑇
2 log	
  ( 2𝜋𝜎HIJKL

2) −
𝑟 𝑡 − 𝑟 𝑡 2

2𝜎HIJKL2

T

UV8

. 

 
𝑇	
  is the number of the fMRI volumes used for model fitting, and we used 960 volumes from 
two experimental runs. 𝑝(𝑟(𝑡)|𝐶7, 𝐶8, 𝜇+, 𝜇-, 𝜎, 𝜎HIJKL) is the probability density function of 
𝑟(𝑡) given the six parameters. The maximization was conducted using a tool implemented in 
MATLAB (fminsearch.m from the optimization toolbox). To avoid local solutions, initial 
values in the optimization were searched on a regular grid. As per previous studies 
(Dumoulin and Wandell, 2008; Kay et al., 2008; Nishimoto et al., 2011), only well-fitted 
voxels were used in the analysis. First, we eliminated the voxels whose estimated RF centers 
were outside the field the stimulus sphere could span (7.6° × 7.6°). Then we calculated the 
correlation coefficients between the real and fitted amplitudes to evaluate the fitness. The 
voxels with r > 0.2 were used. 
 
The estimated models were also used in the decoding analysis. To separate data for decoding 
analysis and for RF model fitting, we performed a cross-validation procedure. In our 
experiments, each subject participated in the position tracking experiment that consisted of 
three experimental runs. Two runs were used for fitting receptive field models and the rest 
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run was used as test data in the decoding analysis. The test run was shifted such that all runs 
were treated as test data once (leave-one-run-out cross-validation).  
 
 
Decoding analysis 
We used the RF model or support vector regression (SVR)(Drucker et al., 1997; Chang and 
Lin, 2011) to predict the position of the stimulus from fMRI responses. In the prediction with 
the RF models, we calculated the stimulus position with the highest likelihood as the 
predicted position for each fMRI volume. Thus, the predicted position with the RF models 
was 
 

𝑠+, 𝑠- = argmax
K>,	
  KA	
  

log 𝑝 𝑟H|𝑠+, 𝑠-

]

HV8

	
   

where 
 

𝑟H|𝑠+, 𝑠-	
  ~	
  𝒩 𝑟H 𝑠+, 𝑠- , 𝜎HIJKL	
  (H)2 	
   
and 
 

𝑟H 𝑠+, 𝑠- = 𝐶7	
  (H) + 𝐶8	
  (H) exp −
(𝑥 − 𝜇+	
  (H))2 + (𝑦 − 𝜇-	
  (H))2

2 𝜎(H)
2 𝐼 𝑥, 𝑦; 𝑠+, 𝑠- 𝑑𝑥𝑑𝑦. 

 
Here, 𝑠+ and 𝑠- are the parameters that indicate the position of the stimulus center in the 
model, and 𝑟H is the voxel amplitude of the 𝑛-th voxel in a given fMRI response. 
𝑝(𝑟H|𝑠+, 𝑠-) is the probability density function of 𝑟H given that the stimulus center is at 
(𝑠+, 𝑠-). We assumed the Gaussian noise on different voxels to be independent, and the voxels 
in each visual area were combined by taking the product of their probability density functions. 
𝐶7	
  (H), 𝐶8	
  (H), 𝜇+	
  (H), 𝜇-	
  (H), 𝜎(H), and 𝜎HIJKL	
  (H) are the RF model parameters for the 𝑛-th 
voxel. 𝐼 𝑥, 𝑦; 𝑠+, 𝑠-  is the binary image function when the stimulus is centered on (𝑠+, 𝑠-), 
thus the value of 𝐼 𝑥, 𝑦; 𝑠+, 𝑠-  is one if the distance between (𝑥, 𝑦) and (𝑠+, 𝑠-) is less than 
the stimulus radius (0.8°), and zero otherwise. 
 
For practical reasons, for each fMRI volume, we calculated the likelihood for each of 60 × 60 
positions in the visual field and the position with the highest likelihood was treated as the 
predicted position.  
 
In the prediction with SVR, the predicted position is given by   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2016. ; https://doi.org/10.1101/073940doi: bioRxiv preprint 

https://doi.org/10.1101/073940
http://creativecommons.org/licenses/by/4.0/


 
 

 12 

 
𝑠+ = 𝐰+ ∙ 𝚽 𝐫 + 𝑏+, 𝑠- = 𝐰- ∙ 𝚽 𝐫 + 𝑏- 

 
where 
 

𝐫 = 𝑟8, 𝑟2,⋯ , 𝑟] . 
 
𝐰+ and 𝐰- are weight vectors, 𝑏+ and 𝑏- are biases, and 𝚽(𝐫) is a vector function that 
satisfies   

𝚽 𝐫8 ∙ 𝚽 𝐫2 = exp −
𝐫8 − 𝐫2 2

𝑁
. 

 
The models were trained by minimizing the cost function of the SVR algorithm with training 
data, and the model training and prediction were performed without explicitly calculating the 
weight vectors by using the kernel trick (Drucker et al., 1997; Chang and Lin, 2011) (RRID: 
SCR_010243). 
 
We generated predicted positions for 1,440 fMRI volumes in three runs, and calculated the 
correlation coefficient between the true and predicted positions in the horizontal or vertical 
axes as the prediction accuracy.  
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Results 
First, we fitted an RF model to the response of each voxel (Dumoulin and Wandell, 2008). 
Our model consists of a two-dimensional Gaussian receptive field with the parameters of the 
mean (x, y positions) and the standard deviation (RF size). Gaussian noise is assumed in the 
response amplitude. To evaluate the fitness, we calculated the correlation coefficients 
between the real and fitted amplitudes. As per in previous studies, only well-fitted voxels 
with r > 0.2 were used in the analysis (Dumoulin and Wandell, 2008; Kay et al., 2008; 
Nishimoto et al., 2011) (n = 192±52, 237±47, 254±78, 135±84, 155±91, and 164±108 for 
V1–V4, LOC, and FFA, mean ± S.D. across subjects and sessions). Estimated RF sizes 
tended to be larger for voxels in the higher visual cortex (Figure 2A), consistent with 
previous studies (Dumoulin and Wandell, 2008; Amano et al., 2009). 
  
Using the models described above, we conducted a decoding analysis to evaluate the amount 
of position information in each visual area. We estimated the 2D-coordinates of the ball 
position by taking the position with the highest likelihood for a given fMRI activity pattern. 
To quantify the prediction accuracy, we calculated the correlation coefficient between the true 
and predicted coordinates for each of the horizontal and vertical axes. Model fitting and 
position prediction were performed on fMRI data from separate runs via a cross-validation 
procedure (leave-one-run-out cross-validation). 
 
The ball position was well predicted from the brain activity in all brain areas tested (Figure 
2B,C left; Movie 1): the correlation coefficients between the true and predicted positions 
(mean across subjects; horizontal/vertical coordinates) were 0.75/0.73 for V1, 0.74/0.74 for 
V2, 0.77/0.75 for V3, 0.63/0.62 for V4, 0.66/0.35 for LOC, and 0.66/0.40 for FFA (95% CIs: 
[0.54, 0.87]/[0.48, 0.87], [0.59, 0.84]/[0.53, 0.86], [0.50, 0.90]/[0.43, 0.90], [0.17, 0.86]/[0.21, 
0.85], [0.47, 0.79]/[0.04, 0.60], and [0.50, 0.77]/[0.05, 0.66], respectively). Notably, the two 
higher visual areas with large RFs showed effective position decoding. All areas showed 
similar predictive performance for the horizontal position (Figure 2C left, black line). 
However, the decoding accuracy showed a decline in the LOC and FFA (Figure 2C left, 
gray line). This anisotropy can also be seen by plotting the decoding accuracies for pairs of 
opposing directions (Figure 3). The anisotropy in the LOC and FFA is consistent with the 
classification results in a previous fMRI study (Carlson et al., 2011), although the previous 
study did not test it for the lower visual cortex. 
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Figure 2. Sizes of estimated receptive fields and decoding accuracy. (A) Mean receptive field 
size for each visual area. We evaluated the receptive field size of each voxel using the 
parameter sigma of the fitted Gaussian receptive field. Colored lines show the mean across 
voxels for individual subjects. Black line shows the mean across subjects. (B) Examples of 
true and predicted trajectories of the ball position. The predicted trajectories were produced 
by maximum likelihood estimation using the receptive field models. (C) Decoding accuracy. 
The ball position was predicted from brain activity by maximum likelihood estimation with the 
RF models (left) and SVR (right). The accuracy was evaluated using the correlation coeffi-
cient between the true and predicted trajectories. The calculations were performed separately 
for the horizontal (black line) and vertical (gray line) positions. Error bars show the 95% confi-
dence intervals across subjects.
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Figure 3. Decoding accuracy along eight directions. The true positions of the stimuli and 
positions predicted with RF models were projected in each of eight directions. Then, we 
calculated the correlation coefficient between the true and predicted coordinates in each 
direction and plotted these values on a polar plot. The same values were plotted for symmet-
rical directions. The center and the outer edge of the polar plots correspond to the correlation 
values of zero and one, respectively.
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The brain areas compared here contained different numbers of voxels. So, to confirm that this 
result was not due to the difference in the number of voxels used for prediction, we 
conducted the same decoding analysis with 20 randomly selected voxels within each brain 
area. We obtained similar comparison results (Figure 4). We also obtained a similar pattern of 
decoding performance with SVR (Figure 2C, right), indicating that this tendency is 
independent of the decoding method. 
 
To find out factors that could affect the anisotropy, we examined the distribution of the RF 
centers of individual voxels in each area (Figure 5A,B). In LOC and FFA, the vertical 
positions of the RFs were narrowly distributed compared with V1–V4, while the horizontal 
positions of the RFs were distributed with similar degrees for all visual areas. This suggests 
that the lower decoding accuracies of LOC and FFA for the vertical direction could be 
attributable to the narrow distribution of the RFs along this direction, which is a factor not 
related to RF size.  
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Figure 4. Decoding accuracy after matching the numbers of voxels. The format is the same 
as in Figure 2C. We performed decoding analysis with RF models on brain activity from 20 
randomly selected voxels in each visual area. Decoding accuracies were first averaged 
across 100 instances of random voxel selection in individual subjects, and then averaged 
across subjects. Error bars show the 95% confidence interval across subjects. After matching 
the numbers of voxels, we observed a similar tendency as in Figure 2C. This indicates that 
the tendency across visual areas was not caused by the difference in the number of voxels.
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Figure 5. Spatial distribution of estimated receptive fields. (A) Examples of the distribution of 
estimated receptive field centers. Each circle shows the position of the receptive field center 
of a single voxel. We plotted the positions for the voxels in V1 and FFA from subject S3. (B) 
Standard deviation of the positions of receptive field centers. Error bars show the 95% confi-
dence intervals across subjects.
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 Data structure Type of test Confidence interval 
Figure 2C, left Normally distributed 

after Fisher’s z- 
transform 

Description: The 
decoding accuracy 
was first evaluated 
for each subject 
using Pearson’s 
correlation 
coefficient. Then the 
resultant correlation 
values for five 
subjects were 
transformed by 
Fisher’s z-transform, 
and a two-sided t-test 
was applied to the 
z-values to test 
whether the mean 
correlation 
coefficient across 
subjects is different 
from zero. The 
means are then 
transformed back to r 
values in the 
description of the 
results. 
 
Type of test: 
Two-sided t-test 

p-value: 
Horizontal 
p = 0.0019, 0.0007, 
0.0038, 0.0223, 
0.0016, 0.0007 
(V1–V4, LOC, and 
FFA, respectively) 
 
Vertical 
p = 0.0030, 0.0019, 
0.0062, 0.0169, 
0.0361, 0.0345 
(V1–V4, LOC, and 
FFA, respectively) 
 
 
95% CI (calculated 
with z-transformed 
values and then 
transformed back to r 
values): 
Horizontal  
[0.54, 0.87], [0.59, 
0.84], [0.50, 0.90], 
[0.17, 0.86], [0.47, 
0.79], [0.50, 0.77] 
(V1–V4, LOC, and 
FFA, respectively) 
 
Vertical 
[0.48, 0.87], [0.53, 
0.86], [0.43, 0.90], 
[0.21, 0.85], [0.04, 
0.60], [0.05, 0.66] 
(V1–V4, LOC, and 
FFA, respectively) 
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Discussion 
In the present study, to investigate the relationship between the size of RFs and retrievable 
position information, we estimated RF sizes for fMRI voxels and evaluated how accurately 
the position of a seen object was predicted from activity patterns in each of six representative 
visual areas. We found that even with larger RF sizes, the position of the stimulus was 
predicted from activity patterns in high-level visual areas with similar accuracies to low-level 
visual areas especially for the horizontal position (Figure 2). 
 
In the comparison of the decoding accuracy between the horizontal and vertical positions, the 
decoding accuracies for activity in the LOC and FFA regarding the vertical position were 
lower than those for the horizontal position, and this anisotropy was not observed for the 
lower visual areas (Figure 2B,C and Figure 3). Although a previous fMRI study came to a 
similar conclusion on the anisotropy in the LOC and FFA (Carlson et al., 2011), our study 
have compared lower to higher visual areas along the ventral cortical hierarchy using 
quantitative models. Furthermore, we demonstrated that these lower decoding accuracies are 
accompanied by a narrow spatial distribution of RFs for the corresponding direction (Figure 
5), which may be a cause of the horizontal-vertical asymmetry in decoding accuracy. Further 
investigation of such collective properties of RFs would be useful for characterizing the 
mechanism and function of each brain region in representing position information. 
 
Taken together, our findings provide experimental evidence that large RFs do not imply the 
loss of position information at the population revel. Regions in the higher visual cortex, such 
as LOC and FFA, appear to encode as much position information as the lower visual cortex, 
especially in the horizontal dimension, regardless of RF size. While our results demonstrate 
the availability of rich position information in higher visual cortex, it remains to be seen 
whether and how such information is used in later neural processing for recognition and 
behavior.  
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Movie legend 
Movie 1. Examples of true and predicted ball positions. The predicted positions were 
produced by maximum likelihood estimation using the RF models. 
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