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ABSTRACT  
T7 transcriptional promoters can control well the amount of RNA produced during transcription-translation 

with the PURE system and do so consistently across different gene sequences. However, T7 transcriptional 

promoters are poor in regulating the production of protein. Conversely, ribosome binding sites greatly impact 

the synthesis of protein, but the effect is inconsistent between different sequences, likely reflecting 

complications arising from the structure of the mRNA. Further, the variability in expressed protein is 

significantly greater than that of expressed mRNA. Nevertheless, a computational model that takes into 

account the variability of transcription-translation and data on the exploited biological parts can be used to 

select for a subset of sequences with desired activity. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2016. ; https://doi.org/10.1101/073841doi: bioRxiv preprint 

https://doi.org/10.1101/073841
http://creativecommons.org/licenses/by-nd/4.0/


	 2	

 Cell-free expression systems have a wide-range of applications, from experiments designed to gain 

insight into the workings of biology1,2 to the development of new technologies.3–5 Although there are several 

cell-free systems to choose from, none have been well characterized with respect to the influence of different 

biological parts on system performance. This is a problem, because complex genetic circuitry requires 

varying degrees of expression of each component. Perhaps the lack of cell-free standardization data reflects 

an initial bias towards producing maximum amounts of protein from a single gene, just as commercial 

vectors typically contain sequences, such as the T7 gene 10 leader sequence, to enhance the recombinant 

expression of protein.6 Additionally, when cell-free systems are used to screen genetic constructs for later 

insertion into bacteria, protein output is often controlled by adjusting the DNA template concentration rather 

than by controlling gene expression through sequence changes, e.g. by changing the transcriptional 

promoter or ribosome binding site.7 In this case, each gene product is typically encoded on a separate piece 

of DNA. However, the use of separate pieces of DNA is not suitable for encapsulation in vesicles for the 

assembly of artificial cells nor ideal for insertion in a genome of a living cell.  

 

 Currently, there are several methods that can be used to try to build genetic circuits with desired 

performance. One method is to create a computational model that can accurately predict gene expression. 

Such a model may incorporate the kinetic parameters of association, dissociation, and enzymatic activity as 

well as the influence of RNA folding. Although much progress has been made,8–11 several of the parameters 

governing transcription-translation are still too poorly characterized to build a model that can predict the 

behavior of a genetic circuit accurately with a high success rate, although the inclusion of transcriptional 

insulators greatly improves predictability12. Other kinds of computational models do not directly consider the 

biophysical process of gene expression, but instead rely on previously characterized genetic parts to infer 

the behavior of such parts in novel circuits. Instead of relying on a computational model, a library of DNA 

molecules each containing a different mixture of biological parts can be assembled and then screened for 

activity.13,14 One down side of this approach is that only a small subset of all the potential sequences can be 

practically tested in the laboratory, decreasing the likelihood of identifying a construct with the sought after 

behavior. Additionally, the assembly and testing of the library of sequences incurs significant cost and time. 

Both computational and wet lab screening methods frequently depend on the use of biological parts that 

were previously characterized by assessing the expression of a fluorescent protein. The assumption is that 

the substitution of the fluorescent protein by the gene of interest will be largely innocuous to system 

performance. For the time being, a more reasonable approach may be to exploit computational methods to 

identify a small subset of potential sequences with the desired behavior followed by screening in the 

laboratory. 

 

 Previously we explored the influence of genetic organization15 and T7 transcriptional promoter 

strength16 on cell-free expression with the PURE17 system. The data revealed that RNA but not protein 

concentrations were easily tuned with transcriptional promoter strength with a transcription-translation 

system that depended on T7 RNA polymerase. It thus seemed that the use of different ribosome binding 

sites would be more amenable to controlling protein synthesis, since the RBS-mRNA complex is initially 

mediated by known base pairing interactions that directly correlate with the strength of interaction.18,19 

Although a few reports have exploited the RBS to modulate gene expression in vitro,20,21 a systematic 
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investigation with the PURE system17 is lacking. Here, we investigated the influence of different ribosome 

binding sites on gene expression with the PURE system. Unlike the strength of the T7 RNA polymerase, the 

RBS greatly impacted protein synthesis but not in a predictable manner. The activity of the RBS was strongly 

influenced by the sequence and thus the structure of the mRNA. To ensure that data from different sets of 

experiments were comparable, the variability in transcription and translation was assessed. Although the 

noise associated with cell-free expression in compartmentalized, low copy number systems have been well 

characterized2,22,23 the variability from reactions under bulk conditions have not been reported. We found that 

the variability in protein synthesis was greater than for RNA synthesis for single gene constructs. The 

variability increased for cascading reactions, and that a computational model that included parameters for 

variability helped to screen genetic constructs for a subset with desired activity. 

 

 
 
RESULTS AND DISCUSSION 

 

 Ribosome binding sites strongly but unreliably control gene expression. 18 different ribosome 

binding sites were designed and tested (Table S1). The sequence of the ribosome binding site (RBS) was 

varied according to three variables, including the number of base pair interactions between the ribosome and 

the RBS, the position of the base pair interactions within the RBS, and the nucleotide composition of the 

non-base pairing positions within the RBS. 13 of these sequences were generated using a D-criterion 

optimal statistical design of experiments methodology,24 so that few sequences could be used to efficiently 

explore the sequence space of the RBS. The remaining five sequences were taken from previously tested 

constructs.15,16 

 

 The set of different ribosome binding sites was tested within a genetic construct encoding a red 

fluorescent protein (RFP) and with a purified, E. coli-based transcription-translation system containing T7 

RNA polymerase (i.e. the PURE system).17 Contrary to what was previously observed with a series of T7 

transcriptional promoters,16 the set of ribosome binding sites gave a well dispersed distribution of expressed 

protein concentration (Figure S1). However, a statistical model built with data from the expression of the 13 

D-criterion optimal statistically designed sequences explained less than 50% of the variability of the data 

(adjusted R-squared=0.49, p-value=0.03). Most of the explained variability came from the correlation (equal 

to 0.5) between RFP expression and the number of potential base pairing interactions between the RBS and 

the ribosome (Figure S2a). This suggested that something other than ribosome binding was also significantly 

impacting expression. To determine whether the sequence of the encoded gene influenced the activity of the 

ribosome binding site, the same set of ribosome binding sites was tested within a construct encoding green 

fluorescent protein (GFP) (Figure S1). The correlation between the GFP and RFP data was 0.61 for the 

same set of 13 sequences (Figure 1), indicating that while a significant correlation existed, data from the 

expression of one protein could not be used to reliably predict the expression of the other protein. The 

correlation between the expression of GFP to the number of base pairing interactions with the RBS was 0.87 

(with respect to to the 13 D-optimal sequences) (Figure S2b), significantly higher than for the expression of 

RFP. Since the sequences of these two genes greatly differed (48% identity), it seemed likely that the folding 

of the mRNA strongly influenced protein expression, as previously noted.25,26 No correlation was found 
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between gene expression and the position of the base pairing interactions within the RBS nor the 

composition of the non-base pairing positions within the RBS. Taken together, RBS sequences significantly 

impacted protein expression, as expected, but the effects were not consistent between different genetic 

sequences, likely reflecting the influences of competing intramolecular base pairing interactions. 

  

 The 5’-UTR and 3’-UTR influence protein expression.  To more rapidly screen genetic constructs, 

linear, PCR product DNA templates were used. Since the incorporation of a transcriptional terminator at the 

3’-end of mRNA has been found to increase the expression of protein,27,28 we investigated the effect of the 

3’-untranslated region (UTR) on the expression of GFP and RFP. The tested DNA templates either ended 

directly with a stop codon (TAA) or a sequence that encoded a 56 bp sequence of low folding stability, a 91 

bp sequence of low folding stability, the bacteriophage T7 Tϕ terminator (153 bp), a Spinach aptamer 

sequence (171 bp), the Tϕ terminator embedded in a longer sequence (175 bp), and a sequence containing 

both the Spinach aptamer and the Tϕ terminator (367 bp) (Table S2). Protein expression was the lowest 

from constructs that lacked a 3’-UTR (Figure S3), as expected.27,28 Longer 3’-UTR sequences increased 

protein yield up to approximately 90 bp in length at which point expression was 26-fold and 12-fold greater 

for RFP and GFP, respectively, than constructs without a 3’-UTR. There was not a strong dependence on 

whether the 3’-UTR contained a transcriptional terminator, a random sequence, or an aptamer domain (10% 

and 17% variance for RFP and GFP, respectively). To confirm that the 3’-UTR was only important for the 

terminal gene of an operon, two gene operons were constructed encoding both GFP and RFP. The inclusion 

of the Tϕ terminator within the 3’-UTR increased protein synthesis from the second but not the first gene of 

the operon (Figure S4). 

 

 Next, the influence of the 5’-UTR (excluding the ribosome binding site) on gene expression was 

investigated. Five different 5’-UTR sequences, including four randomly generated sequences lacking strong 

structural elements (LS1-LS4) and one sequence (LS5) generated by the RBS calculator29 were tested 

(Table S3). Of these five sequences, the different 5’-UTR sequences resulted in different amounts of RNA 

(based on the fluorescence of the Spinach aptamer) and protein (based on the fluorescence of RFP) 

synthesis, with three 5’-UTR sequences (LS1, LS2, and LS3) giving more similar protein output (Figure S5). 

The influence of each of these three 5’-UTR was also similar across different coding sequences, including 

those of GFP, RFP, and a blue fluorescent protein (BFP). However, the expression of RFP was lower with 

LS2 than the other fluorescent proteins (e.g. the final RFP concentration was 44% lower than that of GFP 

with LS2). 

 

 Variability in protein synthesis outweighs variability in RNA synthesis.  Four T7 transcriptional 

promoters and four ribosome binding sites were then selected to make sixteen different combinations of 

genetic constructs (Table S4, Table S5). Each DNA template contained a LS1 leader sequence and a Tϕ 

terminator sequence. For both RFP and BFP, the relative transcriptional promoter strength gave predictable 

distributions of mRNA concentrations regardless of the strength of the RBS (Figure 2, Figure S6). This is 

consistent with our previous data on a much larger set of T7 transcriptional promoters with a consistent 

RBS.16	Constructs encoding GFP were not assessed because of spectral overlap between GFP and the 

encoded Spinach aptamer used to quantify the mRNA. The influence of the RBS on the expressed protein 
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concentration again showed poor correlation between constructs encoding RFP, BFP, and GFP for all four 

transcriptional promoters (Figure S7). 

 

 To better assess the variability of transcription-translation, the coefficient of variation was measured 

for both triplicates run on the same day with transcription-translation machinery from the same batch (total 

experiments = 3) and on three different days with three different batches of transcriptional-translation 

machinery (total experiments = 9). The weakest transcriptional promoters were not used for these 

experiments. The one batch experiments showed greater variability in expressed protein than expressed 

RNA for both RFP (48% greater variability) and BFP (116% greater variability) encoding constructs. The 

multiple batch experiments did not greatly increase the coefficient of variation of transcription, whereas the 

coefficient of variation of translation increased by 89% for RFP and by 101% for BFP when comparing 

multiple batch to single batch reactions. (Figure 2). The coefficient of variation of experiments run on the 

same day from a single batch of transcription-translation machinery reflected, in part, error arising from the 

assembly of the reaction. The data collected over multiple days were additionally influenced by batch-to-

batch variability of transcription-translation solutions. The low coefficient of variation of transcription for both 

genetic constructs was consistent with the fact that in the PURE system only a single protein is required to 

synthesize mRNA and that DNA templates possess a consistent structure regardless of sequence, i.e. 

double stranded DNA typically assumes a b-form α-helix under physiological conditions. Conversely, the 

increased coefficient of variation observed for translation was consistent with the large number of RNA and 

protein molecules required to synthesize protein. Further, the folding of the RNA template is sequence 

dependent and would be expected to affect the efficiency of translation, as observed when comparing RFP 

and BFP synthesis. In fact, while the coefficient of variation was within 15% for the transcription of RFP and 

BFP, the coefficient of variation was 65% and 75% greater for the translation of BFP than RFP for one batch 

and multiple batch experiments, respectively. This is consistent with the lower correlations observed above 

for the synthesis of different proteins when compared to the synthesis of different mRNA. 

 

 The variability of transcription-translation was confirmed by assembling transcription-translation 

reactions in a 1536-well plate to construct a pixelated image. In this way, the clarity of the image would 

visually reveal the variability of RNA (based on the fluorescence of the Spinach aptamer) and protein (based 

on the fluorescence of RFP) synthesis. A 196 pixel version of the yin-yang symbol was designed by 

exploiting genetic constructs that would give rise to four different color intensities based on RNA and protein 

synthesis levels. Some of the wells that contained the same genetic construct also contained different 

batches of transcription-translation machinery. Since each color intensity was represented by at least 57 

contiguous pixels, variability was easily observed visually. Consistent with the data presented above, the 

RNA-based image was much clearer than the protein-based image (Figure 3), confirming that RNA 

synthesis was less variable than protein synthesis. 

 

 

 A simple computational model that includes parameters for variability can reasonably predict 

cell-free expression.  A generalization of the computational model described by Stogbauer et al.8 was built 

to serve as a predictive tool for the design of more complex genetic circuits in cell-free systems (Figure S8). 
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In this model, the resources needed for transcription and translation were grouped separately. However, 

parameters for the strength of the T7 transcriptional promoter and the RBS were also included.16 

Additionally, two noise parameters were incorporated. The first noise parameter was meant to address the 

error that was observed from the single batch experiments by allowing the DNA template concentration to 

fluctuate by ±5%. The second noise parameter approximated the error observed from the multiple batch 

experiments by allowing the concentrations of components of the PURE system to vary by ±10%. Kinetic 

parameters were inferred from a subset of experiments with different combinations of T7 transcriptional 

promoters and RBS sequences (Figure S7). To address the absolute difference in RFP, GFP, and BFP 

expression, the parameters for the kinetics of transcription and translation (rrna_prod and rprot_prod, respectively), 

as well as the parameter describing protein maturation (rprot_mat) were inferred for each protein. The final 

inferred parameters, along with the starting concentrations of the molecular components and the parameters 

accounting for noise were also included (Table S6, Table S7, Table S8). The resulting model fit well the 

experimental data (Figure S9). 

 

 Since a wide-range of colors can be made by mixing different intensities of red, blue, and green 

colors together, we wondered if genetically encoded colored pictures could be produced by expressing 

different amounts of RFP, BFP, and GFP or if the variability in protein expression would interfere with the 

predictable formation of new colors. The kinetic model was used to identify genetic constructs that could be 

assembled into a 25 pixel RGB color triangle. Each well contained three different DNA templates at the 

same concentration, each encoding a different fluorescent protein. The model was used to indicate which T7 

transcriptional promoter and which E. coli ribosome binding site could be used to produce 25 different colors. 

As seen in Figure 4, the assembled reactions produced a color triangle that closely matched the prediction, 

and the variability associated with the expression of three different proteins was low enough to allow for the 

development of the image. The average absolute difference between the predictions and the experimental 

proportions for the three fluorescent proteins was 32%, 11%, and 17% for RFP, GFP, and BFP, respectively. 

The greatest difference between the prediction and the measured protein expression was associated with 

RFP, which was overestimated by the model. 

 

 We then explored the effect of a simple genetic cascade on the variability of protein expression. This 

cascade consisted of the expression of T3 RNA polymerase from a T7 transcriptional promoter followed by 

the expression of RFP from a T3 transcriptional promoter (Figure 2e). The computational model was 

updated to include the new parameters (e.g. the kinetics of T3 RNA polymerase) (Table S9, Table S10, 

Table S11). Thirteen different constructs containing three different T7 transcriptional promoters and three 

different ribosome binding sites were selected. The model predicted that increased expression of RFP was 

mainly due to two elements, a medium to weak strength T7 transcriptional promoter and a strong RBS for 

RFP (Figure S10). By modifying the noise parameters according to their estimated probability distribution, 

the model did not predict a significant increase in the coefficient of variation for the synthesis of protein in the 

cascade reaction with respect to the expression of the single gene. The thirteen constructs were then tested 

in the laboratory in two different ways. The two genes of the cascade were either placed on separate pieces 

of DNA or together on the same DNA template. Most cell-free genetic circuitry reported in the literature 

exploit separate pieces of DNA to speed up the screening of biological parts; however, the effect of such 
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architecture on expression and variability are unexplored. Contrary to what the model predicted, the 

coefficient of variation increased by 120% and 70% for RNA and protein synthesis, respectively, for 

reactions run with a single batch of transcription-translation machinery and using a single DNA template 

when comparing the cascade reaction to the expression of a single gene (Figure 2). The analogous increase 

in the coefficient of variation for experiments run with multiple batches was 130% and 43% for RNA and 

protein synthesis, respectively. The fact that the coefficient of variation significantly increased when going 

from a single gene construct to a simple, two-step cascade suggests that genetic circuitry of increased 

complexity will concomitantly increase the variability of expression. Also, unlike the single gene data, this 

specific cascade showed variability in the expression of the final RNA of the cascade that was similar to that 

of the final protein. This is likely because the first gene of the cascade expressed the RNA polymerase 

needed to transcribe the second gene. In other words, the variability associated with producing the T3 RNA 

polymerase directly impacted the extent of transcription of the second gene. The coefficient of variation of 

the cascade consisting of two pieces of DNA run with multiple batches of transcription-translation machinery 

was large, so care should be taken in screening genetic circuits with multiple pieces of DNA in vitro. The 

increase in variability of expressed RNA and protein from the cascade was visually confirmed by the 

construction of a yin-yang image (Figure S12). Finally, the genetic cascade also revealed the existence of 

the influence of depleting resources. Transcription and translation share common reactants9, and so some 

degree of competition for resources was expected although not previously observed for non-cascading 

reactions.16 For example, the use of strong transcriptional promoters and ribosome binding sites resulted in 

relatively low amounts of RFP (Figure S13). The configuration that produced the most RFP contained a 

weak T7 Transcriptional promoter, a medium strength RBS for T3 RNA polymerase, and a strong RBS for 

RFP, which was consistent with the kinetic model for the cascade. 

 

 Since the inclusion of a transcriptional repressor can be exploited to confer sensing capability on 

artificial cells5,30 and potentially on cascading cell-free networks, we next sought to investigate the behavior 

of genetic constructs encoding a transcriptional repressor. This construct contained two T7 transcriptional 

promoters and two ribosome binding sites (Figure 2e). Each transcriptional promoter and RBS pair 

controlled the expression of a single gene, either RFP or the transcriptional repressor. The region upstream 

of the RFP encoding sequence also contained an operator sequence to bind the transcriptional repressor. A 

LuxR homologue, D91G EsaR31 (hereafter referred to as EsaR), from the organism Pantoea stewartii was 

used as the transcriptional repressor. In the absence of EsaR’s cognate ligand, EsaR blocks transcription, 

and in the presence of the quorum signal 3-oxohexanoyl-homoserine lactone (3OC6HSL), expression is 

derepressed. 

 

 After screening a small set of different spacer sequences between the transcriptional promoter and 

the operator sequence (Table S13, Figure S14), a kinetic model for protein expression under the control of 

EsaR was built and estimated (Table S14, Table S15, Table S16). Eight different genetic constructs that the 

model predicted to show a gradient of expression between repressed and derepressed states were 

assembled onto a single DNA (Table S17). Of these genetic constructs, four showed at least 5-fold 

derepression of transcription in the presence of 3OC6HSL, and four gave at least 2-fold more cell-free 

expressed protein when 3OC6HSL was added to the reaction (Figure S15). The transcription and translation 
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data correlated well with the predictions from the computational model (0.74 and 0.87 for RNA and RFP 

expression, respectively) even if the model predicted higher absolute concentrations. When rescaled to the 

actual observed concentrations, the expression ratios matched well the experimental data (Figure S16). 

However, since little RNA is needed to make much protein,16 none of the constructs yielded low RFP 

concentration in the absence of 3OC6HSL and high RFP concentration in the presence of 3OC6HSL. 

Altering the DNA template concentration from 1.6 nM to 0.42 nM did not significantly impact the difference 

between repressed and derepressed states (Figure S17). Nevertheless, clear on-off switching activity was 

observed. The coefficient of variation of expressed protein was similar to the transcription-translation of 

single gene constructs (Figure 2). The difference was again with the RNA, which was similar to that of the 

protein. This similarity in variability in expressed RNA and protein was observed with both genetic cascades, 

the cascade in which the first gene encoded a RNA polymerase and the cascade in which the first gene 

encoded a transcriptional repressor. In both cases, the variability in the synthesis of the product of the first 

gene directly impacted the extent of transcription of the second gene. 

 

 A better understanding of the influence of RNA folding on transcription-translation may 

improve predictability. It has often been argued that biological parts need to be thoroughly characterized 

so that a set of rules and equations can be formulated that would allow for the construction of more complex 

systems with predictable behavior.32,33 However, to date this approach has not been successful in vivo or in 

vitro. Even in the simplified case of the cell-free transcription-translation of a single gene, the influence of the 

RBS is not consistent. The inconsistency in the activity of the RBS likely reflects a dependence on the entire 

sequence of the mRNA, that is, different sequences fold differently which affects the accessibility of the RBS 

and the codons of the gene. Conversely, the activity of T7 transcriptional promoters is consistent across 

different gene sequences. The problem is that while T7 transcriptional promoters in PURE system reactions 

are effective in controlling the synthesis of mRNA, protein synthesis remains largely unaffected.16 A likely 

explanation for this discrepancy is the decoupling of RNA and protein synthesis when using T7 RNA 

polymerase and E. coli ribosomes.1,16,25 Perhaps substituting T7 RNA polymerase with E. coli RNA 

polymerase, as in ePURE,34 would allow for proper coupling and thus the ability to predictably control protein 

output through the activity of the transcriptional promoter. 

 

 The RBS is not the only complicating factor in predicting the expression of protein. Variability is 

always present due to the intrinsic stochastic nature of basic molecular events, such as transcription and 

translation. The stochasticity of compartmentalized systems has been evaluated,22,23,35 but the variability of 

bulk transcription-translation reactions have not been thoroughly investigated. Some of the noise observed in 

encapsulated, cell-free gene expression was thought to either arise from differences in DNA template copy 

number across different droplets or from the intrinsic stochasticity of transcription itself.22,23 In bulk, where 

complications arising from encapsulation do not exist, transcription was not found to exhibit much variability. 

However, variability in transcription significantly increased when different genes of a network were encoded 

within different strands of DNA. Having genes on separate DNA strands likely introduced variability in the 

ratio of templates in a somewhat similar way to the influence of DNA template copy number on transcription 

encapsulated within droplets. In bulk reactions, protein synthesis provided the largest source of variability, 

which likely reflected, in part, the the complexity of translation and the consequences of using a template 
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that can assume a variety of structures with different degrees of stability. Further, the variability associated 

with translation is confounded by the batch-to-batch variability of the transcription-translation machinery used 

to mediate gene expression. 

 

 Current computational models do not adequately take into consideration RNA folding. Thus far, 

models are built by incorporating a data set containing the activity of biological parts, and these resulting 

models can usually describe accurately the behavior of those same biological parts under previously tested 

conditions. But much more is needed if these models are to be of real engineering value. It is not sufficient to 

describe and understand a system. Instead, within a certain margin of error, the behavior of a new device, 

potentially under new conditions needs to be reliably predicted. Otherwise, the construction of new genetic 

devices remains a process of trial and error. Unfortunately, the development of a model that fits the 

experimentally available data does not necessarily mean that the model is capable of predicting experiments 

that have yet to be run, i.e. there is a difference between model estimation and prediction. For example, the 

model used herein can predict the expression of each protein individually but the data set for the expression 

of RFP cannot be used to reliably predict the expression of GFP. It seems that what is missing is a deeper 

understanding of the role of RNA. A step forward in this direction was the development of an equilibrium 

statistical thermodynamic model to predict the activity of a RBS sequence within the context of the 

surrounding RNA.36 However, the dynamics governing the folding of mRNA and the relationship between the 

kinetics of mRNA folding and gene expression are still not sufficiently understood.37 Therefore, as noted 

before,38,39 there is approximately a 50% chance that the predictions will fall within two-fold of experimentally 

determined protein levels. For now, it may be wise to simply exploit tools that incorporate the folding of the 

RNA, as in the RBS calculator, and the variability in gene expression to identify a restricted set of candidate 

sequences for screening in the laboratory. 

 

 

METHODS 

Genetic Constructs.  Genes encoding the fluorescent proteins GFPmut3b and mRFP1 and the spinach 

aptamer were from previously described constructs.16 Genetic sequence of the T3 RNA polymerase 

(BBa_K346000) was from the registry of standard biological parts (http://partsregistry.org). Genes encoding 

the proteins Azurite (referred to as BFP) and D91G EsaR were from Addgene (plasmid #14034 and plasmid 

#47646, respectively). All genes were subcloned into pET21b by isothermal Gibson assembly.40 All 

constructs were confirmed by sequencing by GATC Biotech. 

 

Cell-Free Transcription–Translation: Unless otherwise indicated, 9 µL transcription–translation reactions 

with the PURExpress in vitro protein synthesis kit (New England Biolabs) contained 12.6 nM of linear DNA 

template and 4 units of human placenta RNase inhibitor (New England BioLabs). When needed, DFHBI 

(Lucerna) was added to a final concentration of 60 µM. The reaction components were assembled in an ice-

cold metal plate, and the reaction initiated by incubation at 37 °C. Reactions were monitored for 6 h with a 

Rotor-Gene Q 6plex system (Qiagen). The blue channel was used to detect Azurite (excitation, 365 ±20 nm; 

emission, 460 ±20 nm), the green channel was used to detect GFPmut3b and Spinach (excitation, 470 ±10 

nm; emission, 510 ±5 nm), and the orange channel was used to detect mRFP1 (excitation, 585 ±5 nm; 
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emission, 610 ±5 nm). Each reaction was repeated at least three times. The template DNA concentration 

was 0.5 nM for single gene expression experiments. The cascade genetic circuit with the two genes on two 

separate pieces of DNA employed the following template concentrations: 12.6 nM (reporter gene encoding 

mRFP1 and Spinach) and 4.2 nM (gene coding for T3 RNA polymerase). The cascade genetic circuit with 

two genes on the same piece of DNA employed a template DNA concentration of 5 nM. Finally, the 

experiments performed with the repressible genetic circuit employed a template DNA concentration of 5 nM. 

When used, the concentration of 3-oxohexanoyl-homoserine lactone was 5 µM. 

 

Genetically encoded pictures: 14x14 pixel pictures were generated with four different DNA templates. 

Following the target picture, the number of different 9 µL PURE system reactions required to fill the pixels 

was calculated. Reactions were setup with components from different batches of the PURE system. After 6 h 

of incubation at 37 °C, each reaction was pipetted into the wells (of a ViewPlate-1536 F from Perkin Elmer) 

of the plate to produce the pixelated image. After filling all of the required wells, the plate was centrifuged at 

4000 rpm for 1 min at 4 °C with a Thermo Scientific Legend X1R centrifuge with a T20 microplate rotor. A 

Typhoon Trio from GE Healthcare was used to visualize the picture. For the RNA picture, a blue laser was 

used (488 nm) for excitation in combination with a 526 SP filter (short-pass filter transmitting light below 526 

nm) for emission. For the protein picture, a green laser was used (532 nm) for excitation in combination with 

the 610 BP 30 filter (transmitting light between 595 nm and 625 nm) for emission. For both of the pictures, 

the gain was set to 1000 V. 

 

 For the multicolored triangle picture, a 384-well plate (Greiner Bio-one 384 Flat Bottom Black) was 

employed. Each well, representing a single pixel of the picture, was filled with a 9 µL PURE system reaction. 

Each reaction included three different DNA templates encoding the fluorescent proteins mRFP1, GFPmut3b, 

and Azurite, each controlled by the appropriate combination of promoter and ribosome binding site. The 

reaction was incubated in a PCR tube at 37 °C for 6 h, after which each reaction was placed into the 

corresponding well of the 384-well plate. Next, a plate reader Tecan Infinite 200 was used to record the 

fluorescence of Azurite (λex= 377 nm, λem= 472nm), GFPmut3b (λex= 474 nm, λem= 511 nm), and mRFP (λex= 

579 nm, λem= 613 nm). The excitation bandwidth was 9 nm. The emission bandwidth was 20 nm. The gain 

was set to 115. The image generated with the repressor encoding genetic cascade was additionally 

collected with the Spinach aptamer (λex= 469 nm, λem= 501 nm). 

 

Protein and RNA Standard Curves: Standard curves to translate fluorescence intensity into molar 

concentrations were generated by using recombinantly expressed and purified fluorescent proteins. His-

tagged versions of GFPmut3b, Azurite, and mRFP1 were generated by mutating the stop codon within 

pET21b. The resulting constructs contained an additional 24 residues including a carboxy-terminal 

hexahistidine-tag. Each His-tagged construct was purified as described previously.16 Similarly, purified RNA 

harboring the Spinach aptamer and transcribed from the different constructs was used to equate the 

fluorescence intensity of the Spinach aptamer with molar concentrations. Transcription reactions were 

assembled and then purified as previously described.16 

 

Computational kinetic model: COPASI41 was used to implement a computational model that consisted of 
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10 reactions and 12 parameters describing cell-free RNA and protein expression (Figure S8, Table S6, 

Table S7, Table S8). The resources necessary for transcription and translation were modeled as a single 

species (R1 and R2, respectively) and were subject to degradation. Here, resources refer not only to the 

molecular machinery required to sustain transcription and translation, such as the T7 RNA polymerase, the 

ribosomes and all the accessory protein factors, but also to the small molecules required to sustain each 

reaction. Following the PURE system composition,17 only the initial concentration of T7 RNA polymerase and 

ribosomes were defined. For the rest of the species and for the reaction rates, parameter estimations based 

on experimental data were performed. Parameter estimations were also included for two noise parameters, 

including a ±5% range for the template DNA concentration and a ±10% range for the composition of the 

PURE system. 

 

Statistical analysis: The coefficient of variation was calculated as the ratio between the standard deviation 

and the mean value of each experiment (Cv=σ/µ). The coefficient of variation for single batch experiments 

was calculated by averaging the coefficients of variation of three replicates, each collected with the same 

batch of the PURE system. The coefficient of variation for multiple batch experiments was calculated by 

averaging the coefficients of variation of nine replicates, using three different PURE system batches (three 

replicates per batch). 

 

 
Supporting Information 

Supporting Information Available: Tables S1-S17 and Figures S1-S17. Links to the deposited genetic 

sequences in the ACS Synthetic Biology Registry.  This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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Figure 1. The expression of single gene constructs encoding RFP and GFP do not correlate well. Each point 
represents a template DNA containing a different ribosome binding site. Reactions were at 37 °C for 6 h. The 
correlation was 0.61. The different ribosome binding sites employed are listed in Table S1. 
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Figure 2. The consistency of transcription and translation in PURE system reactions. (a) Transcriptional 
promoters predictably control transcription with consistency across different template sequences without 
influence of the ribosome binding site, whereas (b) the same constructs show significant differences in 
protein synthesis. Each data point in panels a and b represent the transcription-translation of a different 
genetic construct with a different combination of transcriptional promoter and RBS. Sequence information 
and RNA and protein yields can be found in Table S5 and Figure S6. Single (c) and multiple (d) batch 
transcription-translation reactions show more variability for translation than transcription. The coefficient of 
variation (CV) was calculated for constructs encoding either one gene or two genes (labeled Cascade and 
Repressor) for reactions containing only one template or two. All of the templates encoded RFP except for 
one which coded for BFP. (e) Single template versions of each genetic construct used in panel c are shown. 
All of the genetic constructs contained the LS1 5’-UTR for the expression of the reporter gene, i.e. a 
fluorescent protein followed by Spinach. In the Cascade and Repressor genetic circuits the LS3 5’-UTR was 
employed for the expression of T3 RNA polymerase and EsaR, respectively. The T7 transcriptional promoter 
(T7P), T3 transcriptional promoter (T3P), fluorescent protein (FP, representing either RFP or BFP), Spinach 
aptamer (Spinach), and the binding site for EsaR (O) are all labeled. 
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Figure 3. Yin-Yang pictures were built with PURE system reactions placed in a 1538-well plate to confirm the 
variability of transcription and translation. The pictures were visualized by the fluorescence of expressed 
RNA (via the Spinach aptamer) and protein (via RFP). The DNA templates of black (strong transcriptional 
promoter, strong RBS), white (very weak transcriptional promoter, mid RBS), light grey (weak transcriptional 
promoter, strong RBS), and dark grey (mid transcriptional promoter, mid RBS) pixels were derivatives of 
pFC013A. Sequences are listed in Table S4. 
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Figure 4. Transcription-translation reactions can be used to construct a RGB color triangle. (a) The target 
picture is composed of 25 pixels, each displaying a different color resulting from the three different gradients 
that stem from the vertexes of the triangle. (b) The computational model was employed to decide which 
combination of promoters and ribosome binding sites should be used to achieve the desired color for each 
pixel (Figure S11, Table S12). Based on the computational prediction for the expression of each gene in 
each pixel, a predicted image was generated. Each sequence was then assembled and run. 
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