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Abstract 
Motivation: Structural variation (SV) is an important and diverse source of human genome variation. 
Over the past several years, much progress has been made in the area of SV detection, but predict-
ing the functional impact of SVs discovered in whole genome sequencing (WGS) studies remains 
extremely challenging. Accurate SV impact prediction is especially important for WGS-based rare 
variant association studies and studies of rare disease. 
Results: Here we present SVScore, a computational tool for in silico SV impact prediction. SVScore 
aggregates existing per-base single nucleotide polymorphism pathogenicity scores across relevant 
genomic intervals for each SV in a manner that considers variant type, gene features, and uncertainty 
in breakpoint location. We show that in a Finnish cohort, the allele frequency spectrum of SVs with 
high impact scores is strongly skewed toward lower frequencies, suggesting that these variants are 
under purifying selection. We further show that SVScore identifies deleterious variants more effective-
ly than naïve alternative methods. Finally, our results indicate that high-scoring tandem duplications 
may be under surprisingly strong selection relative to high-scoring deletions, suggesting that duplica-
tions may be more deleterious than previously thought. In conclusion, SVScore provides pathogenici-
ty prediction for SVs that is both informative and meaningful for understanding their functional role in 
disease. 
Availability:	 SVScore is implemented in Perl and available freely at 
{{http://www.github.com/lganel/SVScore}} for use under the MIT license.	
Contact:	ihall@wustl.edu  
Supplementary information:	Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Structural variation is an important source of human genome variation 

that includes deletions, duplications, inversions, mobile element inser-
tions, translocations, and complex rearrangements. Over the past several 
years, much progress has been made in the area of structural variant (SV) 
detection, and we are now able to routinely detect 5,000-10,000 SVs in a 
typical deeply sequenced human genome (Sudmant et al., 2015a). How-
ever, predicting the functional impact of SVs discovered in whole ge-
nome sequencing (WGS) studies remains extremely challenging. Accu-

rate SV impact prediction is especially important for WGS-based rare 
variant association studies and WGS-based studies of rare disease. 

In recent years, there have been many efforts to predict the effects of 
single nucleotide polymorphisms (SNPs) in silico, including SIFT (Ng 
and Henikoff, 2001), PROVEAN (Choi et al., 2012), PolyPhen (Adzhu-
bei et al., 2012), and VEP (McLaren et al., 2010). More recent methods 
such as fitCons (Gulko et al., 2015), CADD (Kircher et al., 2014), and 
Eigen (Ionita-Laza et al., 2016) precompute scores across the genome 
that predict the pathogenicity of a hypothetical variant at each locus. 

However, constructing similar methods to predict SV pathogenicity is 
more difficult due to the diversity of variant size and type. Variant type 
is important because, for example, a deletion spanning an entire gene is 
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likely to have much different functional consequences than an inversion 
with the same breakpoint coordinates. Furthermore, current short-read 
sequencing technologies make precise SV breakpoint detection difficult, 
resulting in uncertainty regarding their exact location. SV impact predic-
tion methods must take these all of these factors into consideration in 
order to robustly prioritize candidate pathogenic variants. 

There have been a few attempts at SV impact prediction in the past. 
ANNOVAR (Yang and Wang, 2015) annotates large deletions and du-
plications that have been previously reported as well as naming genes 
affected by dosage-altering variants, but it does not make pathogenicity 
predictions, nor does it handle balanced rearrangements. VEP performs 
superficial consequence prediction for SVs, but only for a limited range 
of variant types (insertions, deletions, and duplications). Neither method 
provides a quantitative pathogenicity score.  

2 Methods 
We present SVScore, a novel computational tool for in silico SV impact 
prediction. SVScore depends on an existing set of per-base pathogenicity 
scores; here we use the precomputed SNP scores from CADD v1.3, 
although any other scoring scheme could potentially be used. For each 
SV in an SV callset in Variant Call Format (VCF), SVScore aggregates 
these scores across a set of genomic intervals determined by the variant 
type, affected gene features, and uncertainty in the location of the break-
points (Figure 1). To aggregate these scores into interval scores, 
SVScore first uses tabix (Li, 2011) to extract the scores in the interval 
from a text file. If multiple scores are given for a single locus (e.g. 
CADD provides scores for all 3 possible nucleotide substitutions at each 
position), SVScore uses the maximum score per position. It then applies 
an operation (e.g. max or sum; See Operations) to each interval to sum-
marize the per-base scores into interval scores. One score is computed 
for each interval-operation pair. 

2.1 Intervals 

As shown in Figure 1a, a score is calculated for dosage-altering variants 
over the interval between the most likely breakpoints (the boundaries of 

the SV-affected region), designated SPAN. The chosen operation is 
applied to the base scores in this region to calculate the SPAN score. 

For every supported variant type, scores are calculated across the con-
fidence intervals (CIs) around the left and right breakpoints. As inser-
tions have only one breakpoint, the left and right CIs are the same. In 
these intervals (designated LEFT and RIGHT), the scores aggregated are 
the possible breakpoint scores, which are defined as the average of the 
scores of the 2 bases immediately flanking each possible breakpoint. If a 
breakpoint location is known precisely, the possible breakpoint score for 
this location is directly reported as the interval score regardless of the 
operation. 

The final interval over which scores are calculated is the truncation in-
terval, designated LTRUNC or RTRUNC depending on which break-
point is involved. Truncation scores reflect the ability of certain SV types 
to truncate transcripts regardless of variant length (e.g. by disrupting an 
exon). The intervals across which these scores are calculated extend 
from the truncating breakpoint to the furthest downstream base of the 
affected transcript (Figure 1b). These scores are calculated for deletions, 
insertions, inversions, and mobile element insertions that intersect one or 
more genes. Figure 1b shows how SVScore decides which SVs are ex-
pected to truncate the transcripts that they overlap. Any breakpoint of a 
truncating type whose CI overlaps an exon is deemed to truncate the 
transcript. Furthermore, a variant whose breakpoint CIs are contained 
within two different introns is truncating, as is a variant with one CI in 
an intron and the other outside the transcript. Any variant whose break-
point CIs are both completely contained within the same intron is not 
deemed truncating, so no truncation score is calculated for that transcript. 
SVScore uses vcfanno v0.0.11 (Pedersen et al., 2016) to find exons or 
introns that overlap SVs. As with SPAN scores, truncation scores are 
calculated from individual base scores rather than possible breakpoint 
scores. 

2.2  Operations 

The operations currently supported are: maximum, sum, mean, and mean 
of the top N scores. If multiple operations are selected in a single run, 
SVScore will apply all of the operations to each interval in parallel, 
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Fig. 1. Intervals used by SVScore to aggregate per-base scores. (a) LEFT, RIGHT, and SPAN intervals chosen by SVScore based on SV type. LEFT and RIGHT scores comprise the 
entire confidence interval (CI) around the left and right breakpoint, respectively, and are calculated for every variant type. For deletions, tandem duplications, and other copy number 
variants (CNV), a SPAN score is calculated using the interval between the most likely breakpoints. LEFT and RIGHT scores are both calculated for novel sequence insertions (INS), but 
since these variants only have one breakpoint, the intervals and scores are the same for both sides. (b) Truncation scores (LTRUNC and RTRUNC) are calculated for those deletions, 
inversions, mobile element insertions, and novel sequence insertions that are predicted to truncate a transcript. The three cases in which these scores are calculated are: at least one break-
point CI overlaps an exon, both breakpoint CIs are contained within different introns of the same transcript, and one breakpoint CI is contained within an intron while the other falls 
outside the transcript. In the case where both breakpoint CIs are contained within the same intron, no truncation score is calculated. 
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reporting a score for each operation-interval pair. The maximum of all of 
a variant’s interval scores is reported as the score for the given operation 
and added to the INFO column of the VCF line(s). The individual inter-
val scores can be reported as well using a command-line option. 

SVScore supports weighting possible breakpoint scores using proba-
bility distributions calculated by tools such as LUMPY (Layer et al., 
2014), as recorded in the INFO column. These give the probability of the 
true breakpoint being located at each possible breakpoint in a CI. 
Weighting the possible breakpoint scores using these distributions is 
important for two reasons. First, the expected score scales with size for 
the maximum and sum operations, causing a bias toward variants with 
large CIs. However, these variants are simply detected imprecisely, 
which is unrelated to their true pathogenicity. The second reason is that 
bases at a tail of the breakpoint probability distribution should not be 
given the same weight as those in the center of the distribution, as the 
former bases are less likely to be truly affected. When probability distri-
butions are available, SVScore can incorporate them into the calculations 
of mean scores. If they are not present, SVScore simply assumes a uni-
form distribution over the CI. For weighted means of the top N bases in 
each interval, possible breakpoint scores are first weighted by the proba-
bility distribution, then the top N are chosen and the probability distribu-
tion over the chosen bases is rescaled to sum to 1. 

Probability distribution weighting is only available when using the 
overall mean or the mean of the top N bases. Otherwise, weighting LEFT 
and RIGHT scores unfairly biases the scores toward dosage altering 
variants. These variants have a SPAN score that is unweighted by any 
probability distribution (as there is no probability distribution across a 
SPAN) and thus likely to be greater than LEFT and RIGHT scores of 
balanced rearrangements. However, the weighted mean of a breakpoint 
CI is similar in scale to the unweighted mean of a SPAN, making these 
comparisons fair. 

 
 

3 Results and Discussion 
To evaluate SVScore’s computational performance, we computed scores 
for a set of high confidence SVs called from WGS of ~1,000 Finnish 
samples from an unrelated study (see Supplementary Methods). Scores 
were calculated using SVScore v0.5.1 with 5 operations – maximum, 
sum, weighted mean, and weighted mean of the top 10 and 100 bases in 
each interval. On a machine with two Intel Xeon E5-2670 processors 
(each with 16 threads) and 128 GB RAM, the total CPU time was 341 
minutes. With 21,426 variants passing all of our filters, the average time 
per variant was 1.01 seconds. The average memory used was 1.7 GB, 
and the maximum memory used was 3.5 GB. Truncation scores, which 
are the most computationally expensive to calculate (due to intervals 
which may span large portions of transcripts) were calculated for 67.2% 
of variants in the SV callset (see Supplementary Figure 1 and Supple-
mentary Table 1 for variant type composition and more detailed SVScore 
performance statistics). 

In order to evaluate SVScore’s effectiveness in predicting deleterious 
variants, we used population allele frequency as a proxy for pathogenici-
ty. Due to the effects of purifying selection, strongly pathogenic variants 
are likely to be observed at very low frequency in the human population. 
Thus, if SVScore is an accurate predictor of pathogenicity, the variants it 
predicts to be deleterious should be significantly more rare than those it 
predicts to be benign. For this experiment, impact scores were calculated 
using the weighted mean of the top 10 bases in each interval and ex-
on/intron annotations from refGene. Figure 2 shows the allele frequency 
spectra of “pathogenic” variants (impact scores at or above the 90th per-
centile), benign variants (impact scores below the 50th percentile), and 
intermediate variants (all others). The pathogenic bin comprised 2 mo-
bile element insertions, 561 tandem duplications, 1297 deletions, and 77 
other novel adjacencies. (For this analysis, we excluded inversions, 
which comprised only 0.56% of the total variants detected.) These pre-
dicted pathogenic variants were heavily skewed toward the rare (AF < 
0.01) end of the spectrum, while predicted benign variants were heavily 
skewed toward the common (AF >= 0.05) end, and variants with inter-
mediate scores were between the other two categories. This suggests that 
high-scoring SVs are under strong purifying selection relative to low-
scoring SVs, which strongly supports the utility of our impact scoring 
strategy. 

To quantify the strength of this effect, we computed odds ratios repre-
senting how much more likely a predicted pathogenic variant is to be 
rare in a population than a predicted benign variant. Under the above 
definitions of benign, pathogenic, rare, and common, we found that 
pathogenic variants were significantly more likely than benign variants  

Table 1.  Contingency table for SVs at varying impact score thresholds 

SV Percentile Rare Common 

Bottom 50% 2846 5420 
Top 1% 180 12 
Top 5% 772 119 
Top 10% 1528 222 
Top 15% 2212 351 
Top 20% 2845 547 
Top 25% 3449 754 
Top 30% 3983 1032 
Top 35% 4536 1294 
Top 40% 5032 1623 
Top 45% 5561 1934 
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Fig. 2. Allele frequency skew of high-scoring structural variants. Variants are 
separated first into classes based on impact score percentile, then into allele frequency 
bins. Each impact score class is normalized to 1 so that the height of each bar represents 
the fraction of the given impact score class that is in the given allele frequency bin. 
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to be rare as opposed to common in the population (OR= 13.06, 
p= 5.43×10!!"!, Fisher’s Exact Test). 

We calculated this odds ratio for several other definitions of “patho-
genic” and “benign”, (Table 1, Figure 3). First, we tested several other 
SVScore percentile thresholds, keeping the definition of benign as the 
bottom 50% of variants (SVScore Threshold section of Figure 3). As 
the threshold is relaxed, the odds ratio generally decreases because in-
creasing numbers of low-scoring variants are included in the pathogenic 
bin. The odds ratio of the top 1% of impact scores is very high – this is 
because at this threshold, there are 180 rare pathogenic SVs and only 12 
rare benign ones. Next, we compared this to several odds ratios calculat-
ed for high confidence SNPs called on the same set of samples (see 
Supplementary Methods), using CADD v1.3 directly as the scoring 
scheme (SNP CADD Threshold section of Figure 3). To achieve similar 
odds ratios, we tested SNP thresholds that were much more stringent 
than the SV thresholds because the number of SNPs detected was several 
orders of magnitude greater than the number of SVs detected (with most 
SNPs expected to be benign). As with SVs, SNP odds ratios trend 
downward as the pathogenicity threshold is relaxed. 

We subsequently studied the variants in the top 10% of impact scores 
according to SVScore (Top 10% SVScores section of Figure 3, Sup-
plementary Figure 2). To compare SVScore’s effectiveness in coding 
and noncoding regions, we calculated odds ratios for coding and noncod-
ing SVs in this subset, again defining benign by the bottom 50% of all 
SV impact scores. All variants with at least one breakpoint CI or SPAN 
interval overlapping a refGene exon annotation were considered coding, 
and all others were designated noncoding. Coding SVs in the top 10% of 
impact scores had a greater odds ratio than noncoding variants in the 
same subset (13.68 for coding, 12.35 for noncoding), but the magnitude 
of this difference is surprisingly mild and suggests that many non-coding 
SVs are under similarly strong selection as coding SVs. 

To compare the impact of high-scoring deletions and tandem duplica-
tions, we computed the same odds ratios for variants of these types with-
in the top 10% of scores. Because duplications tend to be larger than 
deletions, we sampled SVs from both sets to make the size distributions 
approximately equal (see Supplementary Methods). Even when control-
ling for size in this way, the odds ratio for tandem duplications with 
impact scores in the top 10% was nearly equal to that for duplications 
(17.68 for deletions, 17.45 for duplications). This result may suggest that 
duplications are under much stronger selection than previously thought 
(Conrad et al., 2006; Cooper et al., 2011; Sudmant et al., 2015b). Alter-
natively, it is possible that this result reflects ascertainment bias against 
pathogenic deletions that cause embryonic lethality or severe develop-
mental defects, and thus were not present in our adult Finnish cohort. 
Further work will be required to disentangle these factors. 

To compare SVScore’s ability to distinguish high-impact variants to 
that of existing methods, we calculated odds ratios for two naïve alterna-
tives (Alternatives section of Figure 3). First, we used SV length alone 
as a predictor of pathogenicity, categorizing large SVs (top 10% of 
lengths) as pathogenic and small SVs (bottom 50% of lengths) as benign. 
This yielded an odds ratio of 14.46, which is slightly greater than the 
odds ratio of 13.06 when using the top 10% of impact scores as “patho-
genic”; however, substantially fewer rare, pathogenic variants were 
identified using the SV length method (1231 vs. 1538). While an SV’s 
length does influence its pathogenicity, calculated impact scores from 
SVScore are more effective predictors of pathogenicity than length 
alone. Figure 4 shows the size distributions for structural variants in our 
callset. As impact scores increase, the size distribution shifts toward 
larger variants. However, there is considerable overlap between the 

distributions, suggesting that while length is associated with pathogenici-
ty, SVScore captures more information in its scores. Also, this method 
cannot be applied to translocations or other complex variants for which 
‘length’ is not defined. 

As a second naïve approach, we defined pathogenicity based on 
whether or not a structural variant (in any of its LEFT, RIGHT, or SPAN 
intervals) overlapped an annotated exon. This method identified fewer 
rare, pathogenic SVs (1070 vs. 1538) and resulted in a lower odds ratio 
than using the top 10% of impact scores. 

We next sought to calibrate our SV impact scoring method with exist-
ing SNP-centric scoring methods. We first used IMPACT annotations 
from VEP to define pathogenicity of SNPs in our callset. SNPs with at 
least one IMPACT value of HIGH for a canonical transcript were cate-
gorized as pathogenic, while those with only LOW or MODIFIER values 
on canonical transcripts were designated benign. This approach was far 
less effective than SVScore in discriminating between pathogenic and 
benign variants, as evidenced by the lower odds ratio. Comparison of 
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Fig. 3. Allele Frequency Odds Ratio Comparison. Odds ratio is calculated as shown in 
equation (1). Above each point is the number of rare, pathogenic variants using the 
definition of pathogenicity given on the x-axis. The SVScore Threshold section shows 
the allele frequency odds ratios for SVs under varying definitions of pathogenicity based 
on impact score (top 1%, top 5%, etc.). For these odds ratios calculations, the variants in 
the bottom 50% of impact scores were considered benign. The SNP CADD Threshold 
section shows odds ratios calculated for SNPs using CADD at the thresholds shown (top 
0.001%, top 0.01%, etc.). For these odds ratios, SNPs with CADD scores in the bottom 
50% were used as benign variants. Pathogenic variants used for calculations in the Top 
10% SVScores section were all subsets of those SVs with impact scores in the top 10%. 
In this section, the variants in the bottom 50% of all impact scores were again called 
benign. For the “Coding” and “Noncoding” experiments, the pathogenic variants were 
those SVs in the top 10% of impact scores that did and did not overlap a refGene exon, 
respectively. In the “DEL” and “DUP” experiments, the pathogenic variants were dele-
tions and tandem duplications, respectively, in the top 10% of scores. The size distribu-
tions of these variants were matched as described in Supplementary Methods, and the 
95% confidence intervals across the 100,000 samplings are shown. The Alternatives 
section shows three odds ratios from SVScore alternatives. In the “Top 10% SV Lgth” 
experiment, pathogenic variants were those with lengths at or above the 90th percentile, 
and benign variants were those below the 50th percentile of length. For “Coding SV”, 
pathogenic variants were those with at least one overlap between refGene exon and either 
breakpoint CI or SPAN interval, and benign variants were all others. Finally, the “SNP 
VEP CSQ” experiment used VEP’s IMPACT predictions for SNPs – variants with at 
least one HIGH prediction on a canonical transcript were called pathogenic, while those 
with only LOW or MODIFIER predictions on canonical transcripts were categorized as 
benign. 
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SVScore with CADD-based SNP impact scores revealed that the top 
10% of highest scoring SVs (N=1,528) have a similarly strong allele 
frequency skew as the top 0.01% of SNPs (N=1,187). Interestingly, this 
result suggests that there may be a similar number of strongly pathogenic 
SVs and SNPs in the human population, despite the fact that SNPs are 
nearly 3 orders of magnitude more abundant overall. 

4 Conclusion 
SVScore is a novel in silico tool for predicting structural variant patho-
genicity. In a large WGS dataset, predicted pathogenic variants were 
more depleted in a Finnish population than those of alternative methods. 
SVScore also identified pathogenic SVs in both coding and noncoding 
regions. While high-scoring variants tended to be longer, the length 
distributions of SVs in different score classes were not sufficiently dif-
ferent to justify using length alone to predict deleteriousness. Further-
more, we used SVScore to present evidence suggesting that tandem 
duplications are under similar levels of negative selection as deletions 
even when controlling for size, although further work is needed to con-
firm this. 

We believe that SVScore will be a useful tool for future WGS-based 
studies by enabling facile prioritization of structural variants based on 
their likelihood of being deleterious. Its support for various operations 
and arbitrary per-base scoring schemes make it a powerful and flexible 
asset to investigators interested in the genomic alterations underlying 
both Mendelian and complex phenotypes. 
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Fig. 4. SV distributions separated by SVScore impact scores. SVs in each plot were 
placed into logarithmically sized length bins and plotted as histograms. (a) All SVs. (b) 
Benign SVs –impact scores below the 50th percentile. (c) Intermediate SVs –impact 
scores below the 90th percentile and at or above the 50th percentile. (d) Pathogenic SVs –
impact scores at or above the 90th percentile. 
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