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Abstract

DNA methylation plays a crucial role in the establishment of tissue-specific gene
expression and the regulation of key biological processes. However, our present
inability to predict the effect of genome sequence variation on DNA methylation
precludes a comprehensive assessment of the consequences of non-coding varia-
tion. We introduce CpGenie, a sequence-based framework that learns a regulatory
code of DNA methylation using a deep convolutional neural network and uses
this network to predict the impact of sequence variation on proximal CpG site
DNA methylation. CpGenie produces allele-specific DNA methylation prediction
with single-nucleotide sensitivity that enables accurate prediction of methylation
quantitative trait loci (meQTL). We demonstrate that CpGenie prioritizes vali-
dated GWAS SNPs, and contributes to the prediction of functional non-coding
variants, including expression quantitative trait loci (eQTL) and disease-associated
mutations. CpGenie is publicly available to assist in identifying and interpreting
regulatory non-coding variants.

1 Introduction

A significant portion of the disease and trait-associated variants revealed by genome-wide association
studies (GWAS) reside in the non-coding genome where they alter cellular activities and organism
phenotype by changing gene regulation [[1H3]]. While GWAS studies can identify thousands of loci
that are associated with traits, they are typically underpowered to identify the exact causal variants
for a trait of interest, and further analysis of the potential functional consequence of each variant must
be performed. Computational methods that analyze candidate variants for their potential contribution
to a phenotype of interest are known as variant prioritization methods. Variant prioritization methods
that accurately predict which variants influence proximal regulatory elements and thus gene regulation
are valuable tools.

Previous variant prioritization methods have considered a diverse set of functional signals [4H8]],
including DNase hyper-sensitivity sites (DHS), histone modifications, and transcription factor binding.
However, DNA methylation, an important epigenetic state that is involved in the regulation of key
biological processes [9H14] and encodes cellular state information not contained in other epigenetic
marks [[15[16] has been largely overlooked. In the few methods where it is considered [5], DNA
methylation is used as a low-resolution regional feature that is not allele-specific. While sequence-
based methods for DNA methylation exist [[17-20], there is no published method to predict the impact
of sequence variants on methylation, which makes it difficult to incorporate DNA methylation in
functional variant prioritization.

We introduce CpGenie (Figure[I)), a deep-learning model that (i) learns a regulatory code of DNA
methylation, (ii) predicts the methylation status of a CpG site from the flanking sequence at a single-
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nucleotide sensitivity and (iii) produces high-confidence predictions of non-coding variants that
module DNA methylation. We find that CpGenie predicts the impact of sequence variants on DNA
methylation with an accuracy that surpasses existing methods for functional variants prioritization.
CpGenie also identifies the direction of impact of meQTLs that result in an allelic imbalance of DNA
methylation, and prioritizes meQTLs over variants that exhibit no effect on DNA methylation with
accuracy higher than alternative methods. We show that predictions from CpGenie improves the
prediction of expression quantitative trait loci (eQTLs) and disease-associated variants by providing
functional information complementary to other data type. In addition, we find that the sequence
determinants learned by CpGenie correspond to the binding motifs of proteins known for their
involvement in the regulation of DNA methylation state. We provide CpGenie as open source
software available athttp://cpgenie.csail.mit.edu.

2 Materials and Methods

2.1 CpGenie implementation

Me-CpG-prediction . We implemented a three-layer convolutional neural network with Dropout
and max-norm regularization. Our implementation utilizes the Keras library (https://keras.io).
To cope with the differences in sample sizes and protocol, we used slightly different network
parameters for models trained on RRBS data from ENCODE and the pool-based bisulfite sequencing
data from [21]]. Detailed network structure can be found in Supplemental Table 5. Hyper-parameters,
such as learning rate and Dropout ratio, are tuned in a standard cross-validation fashion with test set
completely held out. As input, each DNA sequence of length L is converted into a 2-D matrix of size
4 x L, where each column is a one-hot vector encoding the presence of the four DNA nucleotides A,
C,G,and T.

Variant-prediction . Given a sequence variant, we predict the methylation status of all CpGs
within 500 bp with either of the variant allele. The maximum, mean and sum of the methylation level
of adjacent CpGs are reported for each allele. In case where no CpG resides in the 500bp vicinity
of the given variant, a pseudo-methylation level of 0.001 is reported. We evaluate the impact of the
variant by calculating the change
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in the mean/max methylation level of nearby CpG sites, resulting in five features for each variant.

2.2 High-throughput DNA methylation data

The 50 RRBS datasets of immortal cell lines, including GM 12878, were downloaded from ENCODE
website (bhttps://www.encodeproject.org/). We merged multiple replicates for the same exper-
iments, and where a CpG exists in all replicates we merged the counts of methylated and unmethylated
reads and re-calculated the percentage of methylation. We further applied a minimum-read cutoff
of 10 to filter out unreliable samples. Samples from chromosome 1-9 and chromosome 14-22 were
used for training, samples from chromosome 12-13 were used for hyper-parameter tuning and model
selection, and the rest of the data were held-out for testing.

The raw allele-specific DNA methylation data were obtained from Fraser lab (personal communica-
tion). They surveyed 823,726 SNP-CpG pairs, among which 2,379 are meQTLs. After filtering out
CpGs with read counts less than 10, the whole dataset was split into training, validation and testing
set in the same way as previously described for RRBS data. Test set was completely held out from
training. For simplicity, only methylation levels corresponding to the reference allele were used in
the training and evaluation of Me-CpG-prediction. In the analysis of variant-prediction, only meQTL
and allele-specific methylation data from the held-out chromosome 10 and 11 were used.

2.3 Methylation prediction comparison with random forest

We counted the frequency of each possible 4-mer in the 1001bp sequence centered at a CpG
with JELLYFISH [22] (version 2.2.6, https://github.com/gmarcais/Jellyfish/releases),
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generating 256 features for each sample. We used the random forest implementation in sciki-
learn Python package (http://scikit-learn.org/stable/modules/generated/sklearn,
ensemble.RandomForestClassifier.html).

2.4 meQTL prioritization comparison with existing methods

We downloaded DeepSEA (ver. 0.93) from http://deepsea.princeton.edu/, GWAVA (ver.
1.0) from http://www.sanger.ac.uk/resources/software/gwava/, deltaSVM from http:
//www.beerlab.org/deltasvm/, and Basset from https://github.com/davek44/Basset.
For CADD (ver. 1.3), we used the online webserver (http://cadd.gs.washington.edu/).

For deltaSVM and Basset, the predictions of which are cell-line specific and direction-included, we
used the absolute value of the predictions for the same type of cell line (LCL, lymphoblastoid cell
line) from which the meQTL were discovered from. For deltaSVM, we used the gkmSVM weights
trained on GM 12878 DNase Hyper-sensitive Sites (DHS). For Basset, we used the absolute SAD
(SNP Accessibility Difference) scores predicted for GM12878.

2.5 Functional variant prioritization

The variants in strong linkage disequilibrium with rs1427407, rs12740374, rs10737680, rs7705033 are
determined by finding all variants with 72 = 1 in HaploReg (http://archive.broadinstitute,
org/mammals/haploreg/haploreg.php, v4.1). In the case of rs1427407 where no variants match
the criteria, we find all variants with 7* >= 0.8 with it.

We obtained the eQTL and GWAS SNPs datasets, as well as their corresponding five negative sets
from the supplementary tables in Zhou et al. [[6]. Four of the five negative sets were constructed by
finding, for each positive variant, the closest SNP in the full set, 20%, 4% and 0.8% random subset
of 1000 Genome variants with minor allele frequency distribution matched to the positive set. The
mean distance to the positive set is 360 bp, 1,400 bp, 6,300 bp and 31k bp for these four negative sets
respectively. The fifth negative set was constructed by sampling 1,000,000 non-coding 1000 Genome
SNPs with minor allele frequency distribution matched to the positive set.

For each variant in the positive and negative set, we applied variant-prediction to generate DNA
methylation features that describe the impact on the proximal DNA methylation levels in the 50
ENCODE RRBS dataset, resulting in 250 features for each variant. We further kept only the
absolute value of each feature. As described in Zhou et al., for each negative set we trained
Lo-regularized logistic regression models on CpGenie and DeepSEA features respectively us-
ing scikit-learn library (http://scikit-learn.org/stable/modules/generated/sklearn,
linear_model.LogisticRegressionCV.html). The performance was evaluated with 10-fold
cross-validation. For CADD, GWAVA and Funseq2, the auROC reported in Zhou et al. [6]] was
directly used as we tested on the same dataset.

To interpret the feature importance, we trained a random forest classifier on the same tasks as above
with all the features normalized to have mean O and variance 1 before training. We used random
forest implementation in scikit-learn library (http://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html) in which the feature impor-
tance is calculated as the "mean decrease impurity" defined as total decrease in node impurity averaged
over all trees of the ensemble [23]]. To interpret the features with markedly higher importance, for each
model we plotted the sorted feature importance and identified an importance-cutoff corresponding to
the ‘elbow-point’ in the importance distribution. The top features in each model are defined as the
ones with importance higher than the corresponding cutoff.

2.6 Network interpretation

We adopted a widely-used visualization method [[7, [24]] to convert the first layer kernels to PWMs.
For each convolutional kernel, we searched through all the samples for all that can activate at least
one neuron (output of the neuron > 0.5 of the maximum output among all samples) in the first
convolutional layer. Each such activation was mapped back to the input sequence to locate the region
that led to the activation. For each convolutional kernel, we aligned all of the activating sequences to
generate a PWM. To understand the biological meaning of these PWMs, we used tomtom ([23]], ver
4.11.1) to match the PWMs to known human motifs in CIS-BP database [26]] with a FDR threshold
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of 0.1 as suggested in Kelly et al. [[7] When combined with importance analysis, we used a more
stringent FDR of 0.01. For the analysis of PWMS partially matched with known motifs, we also
compared the PWMs against TransFac [27] database.

We interpret the importance of the first layer kernels with an optimization-based framework. We
fixed all weights in a trained CpGenie model, and optimized the output of the neuron in the last
layer that corresponds to the target label (methylated/unmethylated, or tissue-specific/tissue-invariant)
with respect to the input of the second layer (i.e. the output of the first max-pooling layer) under a
L, regularization. The resulting optimum input is a 2D matrix, representing the spatial activation
pattern of each of the first layer convolutional kernels for the network to reach high confidence in
the prediction. For each kernel, we assigned the importance as the maximum activation from all
locations.

3 Results

3.1 A two-step variant-evaluation framework for DNA methylation

CpGenie employs a two-step framework to evaluate the impact of genetic variants on DNA methy-
lation. The first module (Me-CpG-prediction) predicts the DNA methylation status of a CpG from
its flanking 1001bp sequence context. As a fully sequence-based model, Me-CpG-prediction learns
a regulatory code of DNA methylation from genomic sequence, which is essential for accurate
allele-specific predictions and non-coding variant evaluation. The second module (variant-prediction)
uses the regulatory code learned in Me-CpG-prediction to score the impact of a given genetic variant
on proximal region. Variant-prediction predicts the methylation modulation caused by a variant by
summarizing diverse statistics of the predicted methylation changes in adjacent CpG sites.

Me-CpG-prediction employs a convolutional neural network (CNN) to learn the sequence determi-
nants for DNA methylation. Compared to random forest or support-vector machines (SVM) methods
which are often used in existing frameworks [17} [19, 20l 28}, [29], a CNN is able to learn more
effectively from large-scale DNA methylation datasets, such as WGBS and RRBS, and is capable to
learn features of different spatial and complexity scales using the hierarchical architecture.

Variant-prediction applies Me-CpG-prediction to characterize the impact of a genetic variant across a
region. Variant-prediction first uses Me-CpG-prediction to score the impact of a variant compared
with the corresponding wild-type allele on all CpGs within 500bp of the variant. Variant-prediction
then scores a variant’s impact by the change in the sum, max and mean of methylation level in a
1001bp genomic neighborhood around the variant when compared with the wild-type allele. These
different statistics, which are often not correlated, describe different aspects of the impact and in sum
produce a succinct yet informative picture of how a sequence variant alters the local methylation
landscape.

3.2 CpGenie predicts DNA methylation from sequence context

We first assessed the ability of CpGenie’s Me-CpG-prediction module to predict the methylation status
of a CpG site from its flanking sequence. As none of the published models for fully sequence-based
DNA methylation prediction [17H20] provide an standalone software for re-training and predicting
on a large number of CpG sites , we compared CpGenie with a random forest (RF) classifier trained
on 4-mer frequencies of the input sequence, considering that random forest and k-mer frequencies
have been used in the literature of sequence-based DNA methylation models [19} 20, 28 [29].

We evaluated Me-CpG-prediction and the random forest method on restricted representation bisulfite
sequencing (RRBS) datasets from ENCODE. We trained Me-CpG-prediction and the random forest
method on RRBS data from GM12878, a lymphoblastoid cell line (LCL) extensively studied in
ENCODE. Me-CpG-prediction resulted in an area under receiver operating characteristic (auROC) of
0.854 and an area under precision-recall curve (auPRC) of 0.685 on the held-out test set. Both of
these metrics surpassed the performance of the random forest baseline (auROC of 0.814 and auPRC
of 0.584, Figure[JA).

We then evaluated Me-CpG-prediction on 50 RRBS datasets from ENCODE (Supplementary Table
1) with our random forest baseline to systematically benchmark their capacity in predicting DNA
methylation. Me-CpG-prediction robustly outperformed the alternative methods, with better auROC
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and auPRC for all 50 experiments (Figure [2IC). We also found that a sequence window of 1001bp
optimized performance (Supplementary Figure 1), which could suggest stronger involvement of
sequence features within 500bp away in DNA methylation regulation.

We further characterized Me-CpG-prediction and competing methods using a bisulfite sequencing
dataset from LCLs derived from 60 Yoruban (YRI) HapMap individuals [21]. Me-CpG-prediction
achieved an auROC of 0.75 and an auPRC of 0.79 (Figure 2B), surpassing the competing model
trained and tested on the same datasets (auROC = 0.57, auPRC = 0.63).

3.3 CpGenie predicts the impact of functional variants on DNA methylation

We next assessed the ability of CpGenie’s variant-prediction module to identify genetic variants that
modulate DNA methylation. Kaplow et al. analyzed the DNA methylation level of over 800,000
single nucleotide polymorphism (SNP)-CpG pairs by mapping the bisulfite sequencing reads back to
the reference and alternate allele of a variant [21]. They found over 2,000 genetic variants (meQTLs)
with statistically significant allelic imbalance of DNA methylation. As only reads that overlap with
both the CpG site and the variant locus were counted, the meQTLs discovered from this method act
in cis (with an average distance of 25.4 bp), making these data a relevant standard to evaluate the
ability to predict allelic change of DNA methylation in the presence of a sequence variant.

Variant-prediction accurately predicted the direction of allelic methylation change caused by sequence
variants. When applied to the meQTLs on chromosomes held out from training, variant-prediction
accurately identified the allele with higher DNA methylation level, showing sensitivity and accuracy
to single-nucleotide changes (Figure [3]A). Moreover, the accuracy quickly and stably increased to
100% when we gradually retained only the high-confidence predictions by increasing the threshold of
the absolute allelic difference in the predicted methylation (Figure 3B). For instance, for the variants
of which the predicted absolute difference of DNA methylation between the two alleles is greater
than 0.03, CpGenie identified the allele with more methylation with an accuracy > 90%.

We find that CpGenie variant-prediction accurately classifies variants that are meQTLs from variants
that exhibit no impact on DNA methylation. Since CpGenie is the first computational method to
predict meQTLs we compare it with several state-of-the-art methods for functional variant prioritiza-
tion, including DeepSEA [6], Basset [7], deltaSVM [8]], GWAVA [3], and CADD [4]. We used 201
meQTLs on the chromosomes held out in the training of CpGenie models as positive samples. To
simulate different equilibrium linkage structures we constructed three negative sample sets that are
10 times, 50 times, and 100 times the size of the positive set by randomly sampling from the 76,532
non-meQTLs on the held-out chromosomes. CpGenie models trained on datasets from Kaplow et
al and ENCODE GM 12878 RRBS datasets both surpassed the competing methods, with higher
accuracy at 10% recall and larger area under precision recall curve (auPRC) when evaluated on all
three negative sets (Figure[3IC). Thus, CpGenie excels in predicting genetic variants that module DNA
methylation, an important task that the state-of-the-art frameworks for functional variant prioritization
fail in.

3.4 CpGenie learns the binding motifs of proteins known to regulate DNA methylation

We expected that a predictive model of DNA methylation from sequence would learn motifs that
correspond to regulators associated with the mechanism of DNA methylation. The basic unit of a
convolutional layer is a "kernel" that searches for patterns in the input, analogous to a motif scanner
looking for motif matches. Interpreting the convolutional kernels in the first layer of a network is
crucial for understanding how the network responds to an input sequence [7,[24] . Previous studies
have established that many transcription factors interact with DNA methyltransferases (DNMT) that
methylate DNA [30]. As transcription factors are known for binding DNA with strong sequence
specificity, we transformed the first-layer convolutional kernels in CpGenie to position weight
matrices (PWMs) (Methods) to determine if it learned certain of these sequence motifs.

We found that 97 out of the 128 PWMs recognized by CpGenie’s Me-CpG-prediction significantly
match the motifs of known transcription factors (Figure A, Supplemental Table 2). We found the
motifs of 21 transcription factors known to strongly interact with a DNA methyltransferase (DMNT)
[30], including ELK1,FLI1 and E2F4. As a point of comparison, Das et al. [31]] found that the motifs
of 31 transcription factors, only a small fraction (6/31) of which overlap with the DNMT-interacting
factors, help classify hyper-methylated regions from hypo-methylated regions. We found 48% (15/31)
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of the Das et al. discovered motifs were among the CpGenie-discovered PWMs including YY1
and CEBPA. Moreover, although without a statistically significant overall match, many CpGenie
discovered PWMs capture motif information associated with transcription factors previously reported
to be associated with DNA methylation, such as NFKB1, MEF3, and LUNI1 (Figure [Z_f]B).

Interestingly, a large number of CpGenie’s Me-CpG-prediction discovered PWMs are variants of
PAX4 and SP3 motifs (24 and 23 respectively). Hervouet et al. reported DNMT-interaction with other
transcription factors in the same family (PAX6, SP1 and SP4). Certain of the predictive transcription
factor motifs discovered with CpGenie are not known for involvement in DNA methylation. Two
examples are GFI1 (FDR g-value=0.0025), which is a transcriptional repressor that functions by
histone deacetylase (HDAC) recruitment, and THRA (FDR g-value=0.0023), which is a nuclear
hormone receptor that can act as a repressor or activator of transcription.

We next scored the importance of CpGenie’s Me-CpG-prediction 128 first-layer convolution kernels
with an optimization-based framework (Methods). The framework identifies the first-layer kernel
activation pattern that can maximize the network’s confidence to classify a sample as one class
(methylated / unmethylated). To understand the biological relevance of the top-ranking kernels, we
chose a more stringent false discovery rate of 0.01 when matching with known motifs. The top 10
convolution kernels for high and low methylation prediction are quite distinct, with the exception that
SP3 is important for predicting both high and low methylation (Supplementary Table 3).

3.5 CpGenie assists in downstream analysis of functional variants

We next asked whether CpGenie, which is optimized for meQTL prediction, could shed light on
the functional consequence of genetic variants associated with downstream phenotypes. We applied
CpGenie on four experimentally validated GWAS SNPs, rs1427407 (fetal hemoglobin levels, [32]),
1512740374 (low-density lipoprotein (LDL) cholesterol levels,[33]]), rs10737680 (age-related macular
degeneration, [34])), rs7705033 (Visceral adipose tissue, [35]), of which the first two have been
reported to alter gene expression (BCL11A [36]] and SORT1 [37] respectively) and the last two
have been reported to alter DNA methylation [21]. Compared with linked SNPs in strong linkage
disequilibrium (Methods), both the validated SNPs were scored higher by CpGenie (Figure[S]A).

We further applied CpGenie on two much larger GWAS SNPs and eQTL datasets [6], one with 78,613
eQTLs from GRASP (Genome-Wide Repository of Associations between SNPs and Phenotypes)
[38]] and one with 12,296 disease-associated SNPs from the US National Human Genome Research
Institute’s GWAS Catalog [39]]. For each dataset, five size-matched negative sets were constructed
by sampling from different subsets of 1000 Genome Project SNPs [40]]. We found a simple L2-
regularized logistic regression model trained on CpGenie’s predictions for the 50 ENCODE RRBS
datasets performed competitively in both eQTL and GWAS SNP prioritization (Figure[5B), compared
to several state-of-the-art methods including DeepSEA [6], CADD [4], GWAVA [5]] and Funseq2
[41] which were all trained on more diverse sets of functional data such as histone modification,
transcription factor binding, and gene expression.

To assess the relative importance of DNA methylation features in eQTL and GWAS SNPs prediction,
we combined the functional features predicted from CpGenie and DeepSEA, and trained a random
forest model in which features importance can be evaluated by mean decrease impurity (Methods).
DeepSEA predicts a variant’s effect by producing 919 features derived from experiments of DNase
hyper-sensitivity (DNase-seq), transcription factor binding (ChIP-seq), and histone modification
(ChIP-seq), which is much larger and comprehensive than CpGenie’s prediction of methylation
alone. However, in both eQTL and GWAS SNP prioritization, CpGenie-predicted DNA methylation
features are considered significantly more important than the original DeepSEA features as a whole
(Mann-Whitney U test, Figure[5IC, Supplemental Table 4). To account for the potential inflation of
significance from the high correlation in the features, we further only looked at the top features with
significantly higher importance (Methods). Consistently across different tasks, CpGenie-predicted
methylation-based features account for a significant portion in the top features which the eQTL/GWAS
predictor might actually rely on (Supplemental Table 4).
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4 Discussion

Despite the growing number of genetic variants associated with disease and complex traits by
genome-wide association studies (GWAS), the identification of causal variants and their pathogenic
mechanisms remains a challenge that requires predictive models for accurate interpretation of non-
coding variants. CpGenie is a computational framework that is able to assess non-coding variant’s
effect on DNA methylation, a functional signal largely overlooked by existing models for functional
variant prioritization.

With its convolutional neural network-based Me-CpG-prediction, CpGenie is able to learn sophis-
ticated sequence determinants associated with DNA methylation efficiently from large-scale DNA
methylation data generated from high-throughput bisulfite sequencing technology. CpGenie predicts
the DNA methylation status of a CpG solely from the sequence context with consistently high accu-
racy on datasets across different cell lines, tissues, and experiment protocols (Figure2), demonstrating
crucial robustness and generalizability of the methodology.

CpGenie demonstrated high sensitivity to single-base changes in input sequences (Figure 3AB), a
capability that enables the incorporation of allele-specific, rather than regional, DNA methylation
information in the interpretation of non-coding variants. CpGenie identifies methylation quantitative
trait loci (meQTLs) with a precision that surpasses the state-of-the-art frameworks for functional
variants prioritization (Figure 3C), which emphasizes the unique role of CpGenie in providing a more
comprehensive and accurate interpretation of the functional consequence of non-coding variants.

We have shown that CpGenie’s methylation-based predictions can assist in the downstream analysis
of risk-associated variants. By taking into account the influence on all the CpG sites residing in
the neighborhood of the target variant, CpGenie summarizes a diverse set of statistics that can both
directly instruct the identification of causal variant from candidates in strong linkage disequilibrium
(Figure 5A) and be incorporated in secondary models designed to classify sequence variants associated
with gene expression or complex traits (Figure SB). Moreover, CpGenie’s methylation-based features
are highly favored (Figure 5C), when jointly considered with other functional annotations, such
as DNase hyper-sensitivity, histone marks and transcription factor binding, by a predictive model
for functional variant classification. This demonstrates the wealth of information captured in the
change of DNA methylation and highlights the necessity to include allele-specific DNA methylation
predictions in a comprehensive assessment of non-coding variants.

We envision CpGenie to be a resource to help understand the regulatory mechanism encoded in
the non-coding region of the genome, and contribute to the functional interpretation of non-coding
variants associated with complex traits and diseases.
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Figure 1: Schematics of CpGenie. (A) CpGenie takes the high-throughput DNA methylation
sequencing data, such as restricted representation bisulfite sequencing (RRBS) or whole-genome
bisulfite sequencing (WGBS) as input and produces predictions of CpG methylation as output.
CpGenie can predict DNA methylation at CpG resolution, interpreting the functional consequence of
non-coding sequence variants, and prioritizing causal mutations from GWAS-determined associations.
(B) CpGenie converts the sequence context around a CpG into one-hot encoding, and transforms
it to higher-level features through three pairs of convolutional and max-pooling layers. Two fully-
connected layers follow to make predictions on the methylation status of the queried CpG.

Figure 2: CpGenie predicts DNA methylation at CpG resolution. (A,B) The receiver operating
characteristic (ROC) curve (top) and precision-recall (PRC) curve (bottom) of CpGenie (blue) and
random forest using 4-mer counts (green) for predicting DNA methylation status of held-out CpGs
in GM12878 RRBS data (A) and bisulfite sequencing data from LCLs derived from 60 Yoruban
HapMap individuals (B). (C) Pairwise auROC (top) and auPRC (bottom) comparison of CpGenie
(y-axis) and random forest using 4-mer counts (x-axis) on 50 RRBS datasets from ENCODE.

Figure 3: CpGenie accurately predicts the direction of allele-specific (AS) DNA methylation and
prioritizes variants that module DNA methylation (meQTLs). (A) CpGenie’s DNA methylation
prediction for the reference and alternate alleles of 201 meQTLs on held-out chromosome 11 and 12.
The x and y axis represents the CpGenie predicted DNA methylation level. The blue and red dots
represent reference allele-biased and alternate allele-biased variants respectively as experimentally
determined by Kaplow et al. (B) Prediction accuracy quickly and steadily increased to 100% when
only the high-confidence predictions were retained. The y-axis denotes accuracy and the x-axis
represents margin, or the threshold of predicted absolute allelic difference in methylation to retain
high-confidence predictions. (C) The precision-recall curve (PRC) for classifying the 201 meQTL
from three different random subsets of the 76,532 non-meQTL that are 10 times (left), 50 times
(middle), and 100 times (right) the size of meQTL. CpGenie outperformed all the state-of-the-art
methods in functional variant prioritization with better precision at the 10% recall and higher area
under precision-recall curve.

Figure 4: CpGenie learns motifs of regulatory elements involved in DNA methylation. (A) 97 out of
128 of the convolutional filters match motifs of known transcription factors in the human CIS-BP
database at an FDR threshold of 0.1.(B) Examples of convolutional kernels characterizing partial
information of transcription factors known for involvement in or predictive for DNA methylation.
The logos for LUN1 and MEF3 were generated from motif information in TransFac databse (Jan.
2013) and the logo for NFKB1 was generated from motif information in CIS-BP database.
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Figure 5: CpGenie’s sequence-based DNA methylation predictions assist in downstream analysis
of functional variants. (A) CpGenie score the validated GWAS SNPs (red) higher than the SNPs
in strong linkage disequilibrium. The three statistics generated from CpGenie are colored in blue
(the absolute change of total methylation of proximal CpG sites), green (the absolute change of
mean methylation of proximal CpG sites) and red (the absolute change of maximum methylation of
proximal CpG sites). (B) Compared to previous methods that utilize more annotation information,
CpGenie achieved better or comparable performance in prioritizing noncoding GRASP eQTLs (left)
and noncoding GWAS Catalog SNPs (right) against noncoding 1000 Genome Project SNPs. The
x-axis denotes the mean distance of the SNPs in the negative set to the paired positive SNP. The
‘Random’ group denotes 1,000,000 randomly sampled 1000 Genome Project SNPs. (C) CpGenie’s
DNA methylation features (green) were considered significantly more important in general than
DeepSEA’s functional predictions on histone modification, transcription factor binding and DNase
hypersensitivity (blue) in eQTL (left) and GWAS SNPs (right) prioritization. The asterisks denote
statistical significance calculated from Mann-Whitney U test (p-value < 0.001).
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