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Abstract

Hippocampus can store spatial representations, or “maps”, which are recalled
each time a subject is placed in the corresponding environment. We consider the
problem of decoding the recalled maps as a function of time from multi-cellular
recordings. We introduce a graphical model-based decoder, which accounts for
the pairwise correlations between the spiking activities of neurons and does not
require any positional information, i.e. any knowledge about place fields. We first
show, on recordings of hippocampal activity in constant environmental conditions,
that our decoder efficiently decodes maps in CA3 and outperfoms existing meth-
ods in CA1, where maps are much less orthogonal. Our decoder is then applied
to data from teleportation experiments, in which instantaneous switches between
environmental conditions trigger the recall of the corresponding maps. We test
the sensitivity of our approach on the transition dynamics between the respective
memory states (maps). We find that the rate of spontaneous state shifts (flicker-
ing) after a teleportation event is increased not only within the first few seconds as
already reported, but the network also shows a higher instability level for on much
longer (> 1 min) intervals, both in CA3 and in CAl. In addition, we introduce
an efficient Bayesian decoder of the rat full trajectory over time, and find that
the animal location can be accurately predicted at all times, even during flickering
events. Precise information about the animal position is thus always present in the
neural activity, irrespectively of the dynamical shifts in the recalled maps.

1 Introduction

Over the recent decades, multi-cell recording techniques have provided insights into
the nature of brain representations and their internal dynamics. While many works
have focused on the input-output transfer functions in primary sensory systems
(visual, olfactory, etc.), understanding functions corresponding to complex repre-
sentations in higher cortical circuits is very hard as they are often based on mixed
selectivities [1]. In relatively rare cases, such as in the entorhino-hippocampal sys-
tem, a highly processed neural activity can be reliably correlated with behavior.
The so-called ‘place cells’ in the CA1 and CA3 of hippocampus exhibit sharp spa-
tially tuned and environment specific activity [2], see Fig. 1. Collective activity of
the place—cell population coding for the environment defines its neural represen-
tation, or map. Simultaneous recording of multiple place-cell activity thus allows
one to identify a general memory state of the network (specific map), as well as to
decode the accurate position of the rodent in the corresponding environment [3].
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Recently, Jezek et al. [4] have studied the dynamics of transient change between
the spatial maps encoding two different environments in CA3 at high temporal res-
olution (ca 120 ms time windows). The two environments differed by light cues
that could be switched instantaneously (‘teleportation procedure’), while the ani-
mal hippocampal neural activity was recorded to monitor the course of activation
of the proper spatial map. An unstable state generally emerged for some seconds
after the light switch, as both maps started to flicker back and forth. This phe-
nomenon, called flickering, was identified through measure of the similarity between
the place-cell population activity and its averaged patterns across both environ-
ments, recorded earlier in respective reference sessions. Typically, a given 120 ms
time window activity of the test data strongly correlated with the average reference
activity in one map, and had essentially no correlation with the reference activity
in the other map.

Success of such comparison-based decoding methods reflects the strong orthog-
onality of spatial maps in CA3: across two environments, activity of place cells
broadly differ in their mean frequencies and receptive field locations, see Fig. 1(a).
Hence, simple map decoders, essentially assuming that cells fire independently of
each other, are sufficient to reliably identify the representation expressed by the
animal. In contrast, remapping between environments (especially of similar ge-
ometry) is less orthogonal in CAl as it shows higher number of cells firing at
corresponding places across rooms, see Fig. 1(b). The population activity vector
often correlates well with both concurrent reference templates, which hinders the
use of comparison-based methods for map decoding.

Here we address the challenging goal of map decoding in CA1 by introducing a
probabilistic graphical model for the neural activity configurations, accounting for
the pairwise correlation structure between neuronal firing events in the recorded
population [5]. Graphical models have been applied to population activity record-
ings in various areas so far [6], for instance to estimate the information conveyed
by [7] or the activity of [8,9] retinal ganglion cells in the presence of visual stim-
uli, to detect learning-related changes in functional connectivity in the prefrontal
cortex [10].

We apply our graphical-model decoder to new recordings of the hippocampal
activity in CA1, performed within the teleportation setup of Jezek et al. [4]. Our de-
coder shows very good performances in terms of precision and statistical properties
in CA1, and consistently finds back the results for the CA3 recordings already ana-
lyzed with simpler approaches [4]. It allows us, in particular, to identify transitions
between spatial representations in CAl (and in CA3) in a statistically robust way.
Remarkably, we find that the frequency of these flickering events is increased even
minutes after a teleportation switch, both in CA3 and in CA1. In contradistinction
with previously used map decoders, ours does not use any position information. It
can therefore be applied to decode and study the dynamics of general brain states
with unknown input correlates. The only working hypothesis is that we dispose of
reference sessions to build statistical models of the corresponding internal states.

In addition, we introduce an efficient decoder of the rat position which maxi-
mizes the Bayesian posterior over the full trajectory. We find that the position of
the animal is consistently encoded by the neural representation at all times, either
during or outside the flickering events identified with our map decoder.

2 Materials and Methods

2.1 Experimental methods

Electrode preparation and surgery. Single unit neuronal activity was recorded
in adult Long Evans male rats in hippocampal subfields CA3 and CAl. Rats
were implanted with a “hyperdrive” allowing for an independent positioning of 16
tetrodes organized into an ellipsoid bundle. Tetrodes were twisted from 17 um
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insulated platinum-iridium wire (90% and 10%, respectively, California Fine Wire
Company). Impedance of electrode tips was adjusted by platinum plating to 120
— 250 kOhm (at 1 kHz). Anesthesia was introduced by placing the rat into a
plexiglass chambre with seal top filled with isoflurane vapour. Then the animnal
was shaved and placed into the stereotaxic frame and continued the isoflurane
delivery with a face mask. Breathing, heart action and reflexes were monitored
continuously. Hyperdrive was then implanted above the right dorsal hippocampus
at coordinates AP 3.8 mm and ML 3.2 mm relative to bregma. Stainless steel
screws and dental acrylic were used to stabilize the implant on the skull. Two of
the screews served as the hyperdrive ground.

Tetrode position. The tetrodes were slowly approached towards CA1 and CA3
within 2-3 weeks after the surgery while the rat was resting in a comfortable pot on
a pedestal. To maintain stable recordings, electrodes were not moved at all before
and during the experiment on a given day. The recording reference electrode was
positioned in corpus callosum. Additional reference for EEG was placed in stratum
lacunosum moleculare.

Recording procedures. Neural activity was recorded while the rat was behav-
ing in an apparatus described by Jezek et al. [4]. Signal was recorded differen-
tially against the reference tetrode. Hyperdrive was connected to a multichannel,
impedance matching, unity gain headstage and its output conducted through a
82-channel commutator to a Neuralynx digital 64 channel data acquisition system.
Signal was band-pass filtered at 600 Hz-6 kHz. Unit waveforms above individually
set thresholds (45-70 uV) were time-stamped and digitized at 32 kHz. Position
of the light emitting diodes on the headstage was tracked at 50 Hz to assess the
animal’s position. For the purpose of this study only data from intervals when the
rat’s movement speed exceeded 5 cm/sec were used. Broadband EEG from each
tetrode was recorded continuously at 2000 Hz.

Spike sorting and cell classification. Spikes were sorted manually using 3D
graphical cluster-cutting software (SpikeSort, Neuralynx) The feature space con-
sisted of three-dimensional projections of multidimensional waveform amplitudes
and energies. Autocorrelation and crosscorrelation functions were used as addi-
tional separation tools. Putative pyramidal cells were distinguished from putative
interneurons by average rate, spike width and occasional complex spikes.

Histology. After the experiment was finished, the rat was overdosed with Equi-
thesin and was perfused intracardially with saline followed by 4 % formaldehyde.
Brain coronal sections (30 um) were stained with cresyl violet. Traces of all 14
tetrode locations were identified. Each tip location was considered as the place
in the section before the tissue damage became negligible. Only recordings from
tetrodes with their tips in CA3 and CA1 were used in this study.

Behavioral procedure. Animals were first pre-trained according to the proce-
dure described in [4]. Briefly speaking, the apparatus consisted of two identical
black plastic boxes (60 x 60 cm, 50 cm in height). The two environments differed
only by sets of light cues, one placed on the upper rim of the box, the second was
positioned under the semi-transparent floor with an additional cue on one wall,
respectively. There were no other visual cues present as the experiment was other-
wise carried in darkness provided by surrounding light-proof curtains. The training
consisted of four phases. Initially, the two boxes were connected with an alley so
the rat could freely explore both of them within three 20 min. sessions for 3 days.
In the second phase, after the first 20 min. session, the alley was removed and
the animal was placed into box A or B, respectively, in a quasi-random manner
so that it received two 10 min. sessions in each of them, respectively. The next
day the rat received two 10 min. sessions in each environment as the day before.
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Then we removed the double maze and replaced it with a single box equipped with
both sets of lights that was presented at the original locations with just one cue
set switched on at the given session. The rat was given another two 10 min. ses-
sions in each environment that day. Finally, the next day, after two sessions in the
original locations, the box was presented in a central location. Again, the animal
was presented another two 10 min sessions in each environment, respectively, in
a quasi-random order. In all stages, the running sessions were separated by a 20
min. break in the resting pot. On the test day, both environments were presented
in two “reference” recording sessions (10 min each). After a 20 minutes break, the
test session begun. The animal was inserted to the box with one set of lights on,
and the lights were switched between the both sets either one or multiple times in
a Tow.

2.2 Data structure

Cross validation of environment decoding methods. For the validation of
environment decoding methods (Section 3.1) a total amount of four recordings
were used for each brain region (CA1 and CA3). Two of these sessions, one in the
environment A and one in the environment B, were used to infer activity models
and reference statistics. The other two (again one in environment A and one in
environment B) have then been used to test inferred models in the task of inferring
which environment is internally-represented by the rodent.

Teleportation sessions. In the post-teleportation analysis shown in section 3.2
we used recordings from two different experiments. In CA1l the light switch is
performed once, and the activity is recorded for some minutes before and after
the teleportation. CA1l data comes from two recording sessions, each of which
includes a reference session for both environments and two teleportation sessions,
one from A to B and one from B to A. The CA3 data (same as published in [4])
contains multiple switches performed in a time-sequence, and short-term effects
become more evident. It includes in total two reference recordings and one multiple
teleportation session.

2.3 Map decoding methods

We consider two classes of decoders: Rate-map based decoders, which expressely use
the knowledge of place fields and the rat trajectory as an input, and Activity-only
decoders that do not rely on any information about the correspondence between
position and neural firing. Throughout this section neural activities are binned
with time resolution At; we define the number of spikes of neuron 4 in time bin
t, n; ¢, and the binary activity, s;; = min(n;¢, 1). Little information is lost when
considering s instead of n as long as At is smaller than the typical inter-spike
interval of the cells.

2.3.1 Activity-only decoders

Bayesian approach to map decoding. We introduce probabilistic models for
the distribution of activities {s;} in a time bin, P({s;},©). Those models are
parametrized by a set of variables, ©, which are fit to maximize the likelihood of
the data in reference sessions. Two sets of parameters ©(™) are fitted, one for each
reference session m = A, B. We then define the difference in log—likelihood, for
each time bin ¢,

E({si}) = log P({5:,:}|0“) —log P({s:.:}|0'") . (1)

The sign of the quantity may be used to decode the map at time ¢. Significance
levels, based on the percentiles of the distribution of £ can be imposed, see Results,
Section 3.2.
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Independent-cell model. We here assume that the neural activities s; are inde-
pendent from cell to cell. The probability distribution P is parametrized by a set
© = {h;} of N ‘inputs’ h;: P({s;}|©) = [],e"*ut/(1+ eht). h; is fit such that
the average value of s; with P matches ugm), the mean value of s; ; across the time
bins ¢ in reference session relative to map m, yielding hgm) = log (ugm)/(l f,ugm))).

Graphical Ising model. We now take into account pairwise correlations between
neural activities s; in a time bin. We introduce couplings J;; to express the condi-
tional probability that cell 7 is active given the activity of cell 7. The probability
distribution P is now parametrized by the set © = {h;, J;;} of N inputs h; and
2N(N — 1) couplings J;;:

P({SzH@) = Z[{hll,(]”}] exp Zhl Si + Z Jij Si Sj (2)

i<j

where Z is the normalization constant. Parameters hz(m) and Ji(;n) are computed
such that the average values of s; and s;s; with P match the mean values of,
respectively, s; ; and s;+5;+ across the time bins ¢ in reference session relative to
map m. This hard computational problem can be approximately solved with the
Adaptive Cluster Expansion (ACE) algorithm [11,12], which provides estimates of

(R™, &M} and Z0™) in Eq. (2).

2.3.2 Rate-map based decoders

Computation of rate maps. The squared box is partitioned into a 20 x 20
grid of 3 x 3 cm? bins, and the rat position during the two reference sessions is
discretized with respect to this grid. The coordinates (x,y:) associated to time bin
t correspond to the first spatial bin visited by the rat in the time interval [t — At; ¢].
We define the average firing rate rgm)(a?, y) as the total number of spikes emitted
by neuron ¢ in the reference session m when the rat is at position (x,y), divided by
the total time 7™ (x, y) spent by the animal in this spatial bin. These rate maps
are then smoothed to fill missing bins through discrete cosine transform [13].

Pearson decoder. The observed firing pattern {n;.} is compared to the average

firing rates {Tgm)(mt, yt)} in the position occupied by the animal at the time the
neural activity is recorded [4]. This comparison is made through the Pearson
correlation

(n ™ (@, y))e — () (F™ (24, y0))s
VUn2) = 3) (0 (e, 30)2)e — (10 (w,92))7)

e ({nis}) = - @

where the notation (f); := % Zi\;l fi.+ denotes the average of the quantity f;
over the N neurons 7 in time bin ¢. The decoding of the map is done according to

the sign of £({n;+}) = C"=A({ni,t}) — C"=B) ({n;:}).

Dot-product decoder. The second method used in [4] compares directly the
activity to the firing rates at the rat position. The decoding of the map m is done
according to the sign of £({n;+}) = (nr™=Y(zy,y:))s — (nr™=8) (2, y,))s.

Bayesian Poisson rate model. This model assumes that each neuron fires
independently following a Poisson statistics, with a position-dependent firing rate
rgm)(:v, y) in map m. The likelihood of the number of spikes {n;} emitted by the
cells in a time bin when the rat is at position (z,y) reads

PO (i} () = [ TR0 W
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The prior probability over positions is P (z,y) = T (2,y)/ 3", Y T (2 o),
and we assume that both maps m are a prior: equally likely. We obtain the
likelihood of the activity conditioned to the map m by marginalizing over positions,
P({n;}lm) = >, , P({ni}|(z,y)) x P (z,y). We then define the difference in
log-likelihoods, £({n;}) = log P({n;}|m = A) — log P({n;}|m = B).

2.4 Performance measure of a binary decoder

To quantitatively assess decoding performance of map-decoding methods we refer
to binary classifier theory [14-17].

Receiver Operating Characteristic (ROC) diagrams. A standard framework
to assess the performance of binary decoders is the so-called ROC diagram [14].
For each time bin ¢ the decoder outputs either map A or map B. To match the
vocables used in the ROC framework we will arbitrarily say that the output is
positive if the map is decoded to be A, and negative if the map is predicted to
be B. If the output of the decoder matches the environment defined by the light
cues at the same time ¢, the prediction is said to be True, otherwise it is said to
be Fualse. For instance, a time bin such that the decoder predicts A, in agreement
with the cues, corresponds to a True Positive event. The 2 x 2 possible events are
shown in Table 1. Two important quantities are: the True Positive Rate (TPR,
also called Recall), that is, the number of true positive predictions divided by the
total number of positive events, and the False Positive Rate (FPR), that is, the
number of false positive predictions, divided by the total number of negative events.
In other words, the TPR measures the fraction of time bins with A—cues that are
correctly decoded as A, while the FPR is the fraction of time bins with B—cues
that are incorrectly predicted to be A.

decoder output A B A B
cue A A B B
denomination || True Positive | False Negative | False Positive | True Negative

Table 1: Denomination used for the four possible events, depending on the output of the decoder
and on the environment-defining cue.

Our binary decoders are all based on thresholding the estimator variable £.
Within the Bayesian framework, for instance, we compute £ as the difference be-
tween the logarithms of the posterior probabilities of A and B, and output Positive
if the difference is larger than 8 = 0, Negative otherwise. The value of the signif-
icance threshold 6 can be arbitrarily changed, with the consequence of modifying
the TPR and FPR values. A ROC curve shows the parametric plot of TPR vs.
FPR as the threshold varies, and describes a curve in the unit square, see Results,
Section 3.1. The two extreme points of the ROC curves have coordinates (0,0),
and (1,1); (0,0) is obtained for a very large significance threshold 6, the decoder
never outputs Positive and both TPR and FPR vanish; (1,1) is obtained when the
significance threshold is very low, the decoder always outputs Positive and both
TPR and FPR are equal to unity. Very good decoders are such that the TPR is
close to unit, while maintaining a very low value for the FPR. A random-guessing
decoder would give equal values for the TPR and FPR, and the ROC curve would
coincide with the diagonal of the unit square.

A complementary measure of decoding performances is the Precision versus
Recall (or TPR) curve, obtained by scanning the values of the significance threshold
0, see Results, Section 3.1. The Precision is defined as the number of true positive
events, divided by the total number of positive predictions. When lowering the
significance threshold the Precision decreases from 1 to 0, while the Recall increases
from 0 to 1.
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Area Under the Curve (AUC). A quantitative measure of the decoding per-
formances is the Area Under the (ROC) Curve [14]. According to this measure,
the ideal decoder has AUC = 1, while random guessing would give AUC = 0.5.
Note that this measure is invariant with respect to the arbitrary choice of assigning
positive value to environment A: if we assign positive to B and negative to A in-
stead of the previous choice, ROC curves will undergo a symmetry transformation
with respect to the top-left/bottom-right diagonal, resulting in an identical area
under the curve. This is granted by the fact that positive and negative values are
mutually exclusive and complementarily cover the whole data set: for each © value
the fraction of False Positive (B decoded as A) equals one minus the fraction of
True Negative (B decoded as B) events.

2.5 Continuity prior for map decoding

A continuity prior can be included in map inference in order to reduce noise in
the decoding and highlight clusters of contiguous transited time bins. To do so, we
consider the output {&;} of the map decoder (see Section 2.3); for Bayesian decoders
&; is the difference between the log-likelihoods of the two maps m; = +1 and —1 in
time bin ¢. We then introduce a prior, controlled by a strength parameter K, which
favors persistence between decoded maps in nearby time bins. Informally speaking,
K is the cost (in log-likelihood) we are willing to pay for flipping the map index
in time bin ¢ predicted by the sign of & to its opposite value, if it then matches
the map indices of the neighboring time bins, ¢ — 1 or ¢t + 1. The prior may thus
be effective in changing the map prediction m; if the differences between & _1 , &,
Eti1, ... are of the order of K (in absolute value). Two situations are encountered:
(1) for some decoders, e.g. Pearson, & takes value in [—2;2], and the variations of
£ over successive time bins is bounded; (2) for other decoders, e.g. Independent-
Cell, Poisson and Ising, the difference between & and &1 can take arbitrarily
large values and show wide fluctuations as t varies across the recording. In the
latter case, a uniform prior K is unadequate in large portions of the recording.
To circumvent this difficuly we introduce a scale factor < 1, and multiply all
outcomes & by this factor. As a result we get a smoother time course of & over
the time index ¢, on which a uniform prior can now be applied.
The joint probability of the time sequence of map predictions {m;} reads

T T—1
1
P(mhmg,...,mT):Eexp (gzgt mt+szt mt+1> (5)
t=1 t=1

where Z is a normalization coefficient. To decode the map in time bin ¢ we compute
the marginal probability P; over m; from the joint distribution P. Exploiting the
analogy with the one-dimensional model of statistical physics, this computation
can be done with the transfer matrix method, also called dynamic programming
in a time scaling linearly with the total number of time bins. Then the outcome of
our combined decoder+prior is

5;iecoder {-prior _ 1

(1ogPt(mt = +1) — logPt(mt = —1)) (6)

|

The presences of the % and % factors in, respectively, Eq. (5) and Eq. (6) ensure

that, for K = 0, ¢ Prior 4nd &, coincide. In practice we choose 3 = ﬁ,

where & := max; {|&|}.

Induced correlation as a function of K. The transfer matrix technique allows
us to compute also the correlation between the maps decoded 7 bins apart, defined

as
T—71
1

(1) = 77— i ((memiyr) = (ma) (megr) ) (7)
T—71

t=1
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where the angular-bracket notation denotes the average over the probability dis-
tribution in Eq. (5). C(7) decays exponentially with 7, over a characteristic ‘time’
monotically growing with K in Eq. (5), see Results, Section 3.1.

2.6 Position decoding

Decoding of rat trajectory in a given map. The square box in which the
rat is moving is discretized into 60 x 60 squared cells of width 1 cm, with integer
coordinates z,y. For each reference environment m (= A or B) we construct the
binary rate map pE"n (z,y), equal to the average value of the activity (= 0,1) of
neuron ¢ (in time bins of width At) when the rat is at position x,y. Assuming that
the cell activities {s;.} at time ¢ and at fized position x,y are independent their

likelihood reads

PO ({siHz,y) = [[ [pi-m’(x, Y) - sig (1= 9™ (2,y)) - (1 - )} . (8)

i

To account for the continuity of the rat trajectory over time we introduce a Gaus-
sian prior between successive positions,

P(xt,y: | ©4-1,Y¢-1) o< exp <—1((30t —zeo1)? + (ye — ytl)z)) 9)

2 (v At)?
where v has the dimension of velocity, and is optimized over the reference sessions
to minimize the position decoding error. The two-step procedure of [3] consists
of maximizing P(m)({si}|xt, yt) X P(xe,yr | ©r—1,yt—1) over xy, y;, recursively over
the bin index t. This greedy procedure does not provide the most likely trajectory
of the rat over the whole time horizon t = 1,2,...,T. To do so we resort to the
Viterbi algorithm (see Section 2.7 below).

Combining map and position inferences. While the map m is reliably known
in reference sessions, it may change due to light cue switch or competing attractor
dynamics [18] in test sessions. To overcome this ambiguity we first use a map
decoder (Methods, Section 2.3) to infer the temporal sequence of maps {m.}, and
then plug it in Eq. (8) to infer the rat trajectory.

2.7 Inference of temporal sequences of maps or positions
with the Viterbi algorithm

The inference of the temporal sequence of maps {m;} or of positions {x,y:} may
be framed in the context of hidden Markov models [19]. In this framework the
internal state of the system undergo stochastic transitions across time. The binary,
discretized neural activity vector {s;.} is the stochastic observable signal, whose
emission probability depends on the state of the system at time ¢. We now detail the
sets of states, of transition and emission probabilities considered in our analysis:

Map decoding. States are maps m € {A, B}. The transition probability is
T(my — myyq) is proportional to e if m; = my; and to e X if my # myyq,
see Eq. (5). The emission probability is P({s;;}|©(™")), where ©(™) is the set
of parameters defining the activity distribution model for map m (Methods, Sec-
tion 2.3), see Eq. (2).

Position decoding. States are the 60 x 60 positions (z,y) in the box. The
transition probability T'((z¢—1,y¢—1) — (@¢,y¢)) is the Gaussian prior in Eq. (9).
The emission probability is P(m)({si’t}|(acy,yt)) given by Eq. (8). The map m is
known, either constant across time, or inferred before the trajectory is computed.
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The Viterbi algorithm consists of two major steps: (1) a forward procedure, which
recursively computes the most probable temporal sequences of states for each pos-
sible final state, and (2) a backward propagation, which starts from the most likely
final state and traces back the optimal temporal sequence of states [19].

3 Results

3.1 Cross validation of map-decoding methods

Decoding methods and number of parameters used

We start by presenting map-decoding methods and their performances. For each
environment, A and B, we have two recorded sessions with constant light cues:
the first one, called reference session, is used to infer the decoder parameters.
The second one, called test session, is used for cross-validation, i.e. to assess
the performances of the decoder. We compare the performances of five different
decoders, described in Methods, Section 2.3. Our decoders mainly differ by the
fact that they may use or not knowledge of the rat positions and of the spatial
rate maps (place fields). They are also based on simple comparison methods or on
more sophisticated probabilistic frameworks.

e Rate-map based decoders require the computation of the rate maps during
the reference session. Knowledge of the position Z(¢) of the rats and of the
neural firing rates r;(¢) as a function of time ¢ allows one to build the rate
maps, that is, the average firing rate of each cell i as a function of the rat

position T, TZ(E) (Z) for environment E = A, B. The similarities between
those reference population activities and the activity measured during the
test sessions may then be used as a simple estimator of the map retrieved
by the rodent. We consider two such comparison-based approaches, called
Dot Product and Pearson [4]. A more sophisticated decoder, called Poisson,
consists in assuming that each place cell 7 fires with a Poisson process, with
average rate TZ(E) (Z) when the rodent is at position &, and in estimating the
likelihood of the test spiking activity with this multiple Poisson process and
for maps F = A and B. The posterior distribution for the (binary) map
variable F can then be computed, and we decode the map as the one with
larger posterior probability. Poisson is based on a more solid probabilistic
framework than Dot Product and Pearson, while making use of the same
rate maps estimated from the reference sessions.

e Activity-only decoders do not need any information about rat position and
place fields. Those models provide approximate expressions for the proba-
bility distribution of population neural activity over short time bins, i.e. of
binary (silent or active neuron in the time bin) strings of length N (the
number of recorded neurons). The Independent-cell model is the simplest
maximum-entropy model [20] ; it reproduces the N average activities of the
neuron only. The second model, called Ising in statistical physics, is a graph-
ical model that, in addition, reproduces the pairwise correlations between the
neural activities in a time bin [8,11,20]. The Ising model requires the infer-
ence of pairwise effective couplings between every two cells, which we have
performed with the Adaptive Cluster Expansion method [11,12]. Similarly
to Poisson, the Independent-cell and Ising models provide estimates of the
likelihood of the population activity in a time bin, and can be used to com-
pute the posterior distribution for the map variable, E, and to decode the
retrieved map through maximization over E.

As a consequence the numbers of parameters to be learned from the reference
sessions vary a lot with the decoders. For N recorded neurons (38 in one of the
data sets studied here, see Materials) and a discretization of the environment into
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S (=20 x 20 in the present analysis) spatial bins, the numbers of parameters to be
extracted from the reference sessions are, respectively N = 38 for the Independent-
cell decoder, %N(N + 1) = 741 for the Ising decoder, and N x S = 15,200 for the
Poisson, Pearson, and Dot Product decoders.

Inferred Ising couplings are fingerprints of environment represen-
tation in CA1l

As a result of global remapping taking place in CA3 (Fig. 1) the populations of
active cells in the two environments are essentially orthogonal. This property can
be seen from the comparison of the inputs {h;} in the Ising models inferred in the
reference sessions of the two environments, see Fig. 2 (a). Inputs are increasing
functions of the average firing rates (Methods, Section 2.3.1). As expected the few
cells strongly active in one environment, i.e. having large inputs h;, show very
little activity (if any) in the other environment, i.e. have very low inputs. In CAl,
the presence of rate remapping and the higher firing frequencies of cells make the
input h; larger and much more similar across the environments, see Fig. 2 (b).

Distinction between the neural representations of the environments in CA1 can,
however, be drawn from the correlational structure of firing events in the place-cell
population. Place cells with overlapping firing fields in one environment are indeed
more likely to be simultaneously active during the animal’s exploration, and their
activity is thus correlated. Due to remapping the amplitudes of these correlations
are specific to each environment. The inferred Ising couplings {J;;}, which cap-
tures the direct correlation between cells 7, j not mediated by other recorded cells
(Methods, Section 2.3), are vastly different from one environment to the other, as
shown in Fig. 2 (d). The set of effective couplings {J;;} is therefore a fingerprint of
the environment, which we can exploit to distinguish between maps, i.e. to decode
the neural representation. Note that these effective, functional couplings are not
directly related to the physiological synaptic interactions, which are not accessible
from the data.

Focusing on effective couplings rather than the simpler pairwise correlations
allows us to score any configuration of the population activity, that is, to quanti-
tatively assess its similarity with typical activities in each environment, as shown
below. This score is, in practice, given by the Ising likelihood, see Methods, Eq. (2),
and heavily relies on the inferred couplings. Use of simpler scoring functions, based
on inputs {h;} only, see Independent-cell model in Methods, is sufficient to decode
neural representations in CA3 but not in CA1.

Comparison of performances of map-decoding methods

We present a systematic study of the performances of map-decoding methods
within the framework of binary-decoder theory (Methods, Section 2.4). Results
for CA1 and CA3 are reported, respectively, in Figs. 3 and 4.

We plot in Fig. 3 (a) the Receiver Operating Characteristic (ROC) curve for
CA1 for the Ising and Pearson decoders. Briefly speaking, ROC curve shows the
value of the True Positive Rate (fractions of time bins in reference session for
environment A for which the decoder rightly decodes map A) as a function of the
False Positive Rate (fractions of time bins in reference session for environment B for
which the decoder erroneously recognizes map A). A random decoder would have
equal values for TPR and FPR, and lies on the diagonal line of the unit square in
Fig. 3 (a). A perfect decoder would always recognize map A in environment A and
never in environment B, and would thus correspond to TPR=1, FPR=0. Varying
the threshold for significance of the decoder change concomitantly the values of
TPR and FPR, with the resulting ROC shown in Fig. 3 (a). We observe that
the Ising decoder shows much better performances than the Pearson decoder. An
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alternative representation of the decoder performances is given by the Precision-
Recall curve, shown in Fig. 3 (b), see Methods, Section 2.4 for definition.

A measure of the accuracy of the decoder is given by the integral of the ROC
curve, called Area Under the Curve (AUC), which ranges from 0.5 for a random
decoder to 1 for a perfect decoder. To compare the five decoders we plot in Fig. 3
(c) their AUC values as a function of the elementary time bin At, ranging from
10 ms to 1s. The Ising model, which takes into account the correlational structure
of the population activity, has higher decoding precision and retrieval capacity
than other decoders in CA1 recordings (Fig. 3 (a,b)). As a consequence, in terms
of AUC (Fig. 3 (c)), Ising is generally the most performant model, followed by
Poisson and lastly by equally-performant Pearson and independent-cell decoders.
Dot Product method is the best performant on very short time scales (< 20 ms), but
its performance increases very slowly with the time bin width, and as a consequence
it has the worst performance for At > 100 ms.

This behavior has an explanation in terms of sensitivity of the different models
to the average mumber of active neurons per time bin. Bayesian models, whose
predictions do not depend on the specific position of the rat at each time, rely on
information conveyed by activity alone. As a consequence, when the number of
simultaneously active neurons for each time bin is very small, bayesian models may
be less accurate than decoders that take into account spatial information, like Dot
Product.

Maps are remarkably well predicted by all decoders from CA3 recordings, see
Fig. 4. The AUC takes values higher than 0.97 for all decoders. The character of
global remapping taking place in CA3, contrary to CA1l, ensures indeed that the
firing rates of the neurons largely vary from one environment to the other (Fig. 1).
As a consequence, independent-cell models and correlation methods carry enough
information to identify the internally-represented map.

As a general feature we observe that the performances of all decoders improve
on larger discretization time scales. Statistical fluctuations in the activity are in-
deed smaller for large time bins, resulting in smaller errors in the decoding task. A
similar reduction of statistical fluctuations can be obtained through the introduc-
tion of a continuity prior, which prevents switching back and forth between spatial
maps.

Map decoding with continuity prior

Map decoding can be combined with a continuity prior that enhances persistence
in the decoded maps over consecutive time bins, see Methods, Section 2.5. The
motivation for the continuity prior is two-fold. First, in situations where the latency
between a delivery of external stimulus and the network state change is the main
parameter to be measured (e.g. after pharmacology treatment, etc.), one needs
to search for a single time point of the state transition. This can be achieved by
imposing a strong continuity prior, allowing for the presence of a single transition
between maps along the whole recording session.

Secondly, with moderate continuity prior, dynamical events (such as state tran-
sitions) can be detected with more precision, at the price of discarding events that
happen on a time-scale shorter than a given temporal resolution. When the prior
is applied, the resulting correlation between decoded maps in two time-bins that
are t bins apart decays exponentially with ¢, see Fig. 5 (a) and Methods, Eq. (7). A
persistence ‘time’ ¢ty can be computed through an exponential fit of the correlation:
to is the characteristic number of bins over which decoded maps are persistent. Its
value can be chosen at our convenience by tuning the prior strength parameter
K, see Fig. 5 (b) and Methods, Section 2.5. Hence, we can choose a temporal
resolution ty and exploit the noise-cancelling property of the continuity prior over
larger time scales.

Unless otherwise specified we set in the following the characteristic persistence
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time to the small value ¢ty = 2 time bins. As shown in Fig. 3, the use of this weak
continuity prior sensibly improves decoding performances with the Ising method.
The AUC increases by about 10%, see Fig. 3 (c¢). For direct comparison, if one
instead increases the time-bin resolution At by a factor 2, the increase in AUC is
much lower (Fig. 3 (c)): for instance, Ising AUC is equal to 0.90 for At = 120 ms
and to 0.92 for At = 240 ms, while it reaches 0.98 for At = 120 ms with a continuity
prior such that tyg = 2 time bins. This results shows the statistical efficiency of the
continuity prior.

3.2 Transitions between maps in "teleportation" experiment

The Ising decoder presented above can be used to identify transitions between dif-
ferent activity states of dynamic systems. Brain hippocampal memory circuitry is
a dynamic system expressing distinct states of activity - neural representations of
surrounding space - with attractor properties [4,21,22]. We used data recorded
in a ‘teleportation’ experiment [4], in which the appearance of recording box is
abruptly changed by switching between two familiar light cue settings (A and B,
respectively) while the laboratory rat continuously explores it (Methods, Section
2.2). This procedure was shown to induce a rapid exchange of corresponding hip-
pocampal representations, including periods of instability with spontaneous fast
flickering between them. Transitions between the maps were identified based on
activity models of representations A and B, respectively, inferred from reference
recordings in both environments under stable conditions preceding the ‘teleporta-
tion test session’.

Teleportation procedure induces long-term network instability

We use our Ising decoder to assess the effect of teleportation on subsequent network
state expression. Jezek et al. [4] described a period of state-instability in CA3 last-
ing for several seconds after the change of environment appearance. Representative
evolution of the log-likelihood (with the Ising model inferred from the reference
sessions) of the identified network state is shown before and after the teleporta-
tion event for CA1l and CA3 in, respectively, Figs. 6 (a) and (b). The criterion
for accepting given bin as corresponding to representation of environment A or B,
respectively, was set to match 1% error derived from stable reference sessions, see
Fig. 6 (c,d). This ensures that a time bin is identified as A only if there is 99%
confidence that its signal value does not come from state B (and vice-versa).

To characterize the kinetics of network state development, we identify the
amount of time bins expressing a neural representation that was incongruent (non—
corresponding) with the present environment, i.e. coding for the environment
presented before the teleportation. We estimate the short term effect within inter-
val of first 10 seconds, and an eventual long term effect within subsequent 20-40
seconds after teleportation, both in CA3 and in CAl, respectively. The rates of
incongruent bins are shown in Fig. 7 (a,b) for CA1 and CA3. The amount of non—
corresponding events were larger during the short-term period (less than 10 sec)
after the light switch than those identified in the stable conditions before the tele-
portation test, both in CA3 as found in [4] and in CA1 (CA3: 0.011 £+ 0.001 S.E.M.
stable; 0.26 + 0.04 S.E.M. after switch, F = 34.18, p < 3 x 10~6; CA1: 0.017 +
0.003 S.E.M. stable; 0.101 + 0.025 S.E.M. after switch, F' = 11.24, p < 0.015).
Across both areas, the short-term increase was larger in CA3 than in CA1, despite
the initial incongruency rates were generally lower in CA3 than in CAl prior to
the teleportation, see Fig. 7 (a,b).

An interesting finding comes from the analysis of long-term effect shown in
Fig. 7 (a,b). Compared to stable environment conditions, the rate of flickering is
generally increased both in CA3 and CA1, respectively (CA3: 0.036 + 0.007 S.E.M.
long-term post switch, F' = 12.6, p < 0.014; CA1: 0.048 + 0.006 S.E.M. long-term
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post switch, F' = 19.21, p < 0.005). In CA1 the difference between the long-term
and short-term enhancements in network instabilities is less evident, considering
the statistical uncertainty (CA3: F = 26.9, p < 2 x 1075 CAl: F = 4.33,
p =0.08 > 0.05).

Identification of transitions with strong continuity prior

The network state-decoding procedure with implemented continuity prior can be
used to detect internal state-shifts under predefined criteria. For instance, when the
prior strength is brought to extreme values the decoding procedure discards the fast
instability-driven dynamics and, instead, returns a single state transition time point
that reflects the evolution of log-likelihood values across the continuum of temporal
bins. Taking as an illustration the CA1 teleportation session in Fig. 8(a), we see
that the response of network activity state to the teleportation event is identified
with high accuracy. This is avaluable tool to measure the most probable moment of
network remapping even under widely fluctuating dynamics. A further illustration
is provided by decoding of maps from CA3 recordings, in which the strong post-
teleportation instability makes identification of a state transition rather difficult.
Figure 8(b) shows a multi-teleportation session with identified transitions between
the CA3 representations, each corresponding to a single teleportation event.

3.3 Combining map and position decoders allows for reliable
identification of transitions in CA3

An important issue is to distinguish real flickering events, in which the internally-
represented map is incongruent to the external physical environment, from erro-
neous map predictions produced by the decoder, i.e. False Positive events due to
noise and imperfect orthogonality of representations. One option is to use very
strong statistical thresholds, as done in previous sections, to identify statistically-
reliable transitions. However, the thresholding procedure inevitably discards a
large amount of data, leaving many data points unresolved.

Another option is to exploit the recorded path of the rat, which has not been
used in our analysis so far. Place-cell activities ‘follow’ the trajectory of the an-
imal in the environment. Therefore we expect that a strong mismatch between
the physical location of the rodent and the reconstructed position in the decoded
map might signal an erroneously predicted map [4]. Therefore we hypothesize
the correctly decoded map will correspond to a match between the animal’s real
and reconstructed coordinates. In this section we use a combined map & position
approach as a novel way to increase the reliability of decoded results.

Position decoding

We first introduce our position decoding procedure. Several methods of position
decoding, exploiting the spatial firing specificity of place cells, have been proposed
in the literature [3,23,24]. Among the best performing approaches is a two-step
algorithm, which computes the most likely position of the rat given the activity
recorded under the condition that this position does not vary much from the identi-
fied location at previous times [3]. Here we extend this procedure in a full Bayesian
setting, as we compute the full trajectory of the rat given the whole recording of the
activity and a continuity prior requiring that the rat apparent velocity (computed
from the change in the reconstructed positions between two successive time bins)
does not exceed much its average velocity (measured during the experiment). The
full-trajectory posterior maximization is performed through the so-called Viterbi
algorithm [19], see Methods, Section 2.7.

We first apply our spatial decoding procedure to CA1l and CA3 recordings.
Figure 9 (c) shows the comparison between true position and inferred position in the
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constant-environment (no switch) CA1 test session. Use of the Viterbi algorithm
to maximize probability over the full path yields an average error, defined as the
distance between those two positions |Zinfer — Zirue|, Of 5.5 cm on the test session,
with 40 ms time bins and 36 recorded cells. The average error over position for
different discretization time scales is shown in Fig. 9 (a). The error stays roughly
constant over all time scales less than ~ 100 ms, and increases for longer scales.
This is coherent with the value of the average running speed of the rodent, ca
10 cm/s: over long time scales more than one spatial bin (of 1 cm width) may
be explored in each time bin. In addition, in Fig. 9, we show that our Viterbi-
based full-trajectory reconstruction approach outperforms the two-step procedure
of Zhang et al. [3] on our data set.

The same analysis conducted in the CA3 region (34 cells) produces higher
average errors, as expected, see Fig. 9 (b). The lower number of simultaneously
active cells, compared to CAl, results in a less precise position decoding outcome
for an equal number of simultaneously-recorded neurons.

Position decoding in CA3 teleportation session confirms the pres-
ence of flickering events

We now consider inferring the animal position from the neural activity recorded in
a CA3 session during which teleportations (light switches) were carried out. We
first use the map associated to the light cue for position decoding. Results are
shown in Fig. 10 (a), which reports the inferred (Zinfer) and true (Zirue) positions
over a 80 second interval with 2 teleportation events. We see that large errors over
the predicted positions, largely exceeding the expected error reported in Fig. 9(b),
are found, in particular in the periods following teleportation events. More pre-
cisely, large errors often coincide with the green impulses in Fig. 10 (a), locating
the time bins in which the map identified by the Ising decoder is incongruent with
the environmental cues (light conditions). Figure 10 (b) shows that, if the position
is inferred based on the decoded map rather than the cue-associated map, the posi-
tion inference error during incongruent time bins (putative transitions) is strongly
reduced.

We plot the histogram of positional errors restricted to incongruent time bins
using the decoded and cue-associated maps in Fig. 11 (b). The strong error re-
duction obtained using the decoded map (with Ising decoder) rather than cue-
associated map (map-based 9.4 4+ 0.2 S.E.M, cue-based 17.2 £ 0.5 S. E.M, F = 211,
p < 2 x 107%), during incongruent time bins, suggests that our Ising decoder is
able to identify real flickering events, during which the neural activity is similar
to what would be expected for the same physical position of the rat in the other
environment than the one associated to the light cue.

We show in Fig. 11 (d) that the larger the confidence in the decoding prediction
(estimated by the difference of log-likelihoods of the position in the two possible
maps), the larger is the reduction in the positional errors when using the decoded
map. This confirms that incongruent events decoded with large significance thresh-
old are likely to correspond to true internal changes of representation, rather than
artifacts of our map-decoding procedure.

Position is steadily encoded in neural activity after teleportation,
in spite of map instability

Figure 11 (a) reports the position error computed withing the map decoded by the
Ising model, as a function of the time elapsed after the light switch. The error
remains roughly independent of time, with a value close to the error computed in
the constant-environment test session reported in Fig. 9 (b). This is a remarkable
result as, contrary to the constant-environment session, many flickering events arise
in the first 10 seconds following teleportation, as shown in Fig. 7 (b). To better
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characterize the evolution of flickering events we plot the fraction of incongruent
bins as a function of time after teleportation in Fig. 11 (c). We observe the strong
increase in the amount of bins with non-corresponding representation within the
first 10 seconds, followed by a plateau, in agreement with the results of Fig. 7 (b).

The time-dependence of the statistics of flickerings events explains the be-
haviour of the positional error computed with the maps associated to the envi-
ronments after and before the teleportation, respectively called cue and non-cue in
Fig. 11 (a). At short times both errors are comparable, as roughly half of the time
bins are incongruent (Fig. 11 (¢)). After about 10 seconds the cue-based positional
error decays to its constant-environment level shown in Fig. 9 (b), while the non-
cue error increases to a value close to constant-environment error computed with
the wrong map. Again we stress that the position of the rat is accurately recon-
structed at all times when computed from the Ising-decoded map, either during
or outside flickerings.

4 Discussion

We first discuss some technical points about our approach, in light of existing
literature, before emphasizing the main points of the present work.

Graphical models for neural representation identification. Methods for de-
coding considered in this work can be divided in two classes, depending on whether
they make use of positional information or not. Remarkably, the latter methods
do not show worse performances than the former approaches. The Ising decoder,
which uses no information about the rat position and firing fields, yields the highest
performance on all time scales in CA1 (Fig. 3). The higher performance of the pair-
wise Ising model, combined with the lower number of parameters involved in the
inference process, suggests that the correlational structure of neural firing activi-
ties conveys essential information about the internal representation of memorized
environments.

While we have here considered the activity vectors as discretized in regular-
spaced time windows of duration At it would easy to extend our analysis to pro-
cess activity in elementary windows in correspondence to Theta cycles. Such an
analysis would be interesting to assess the plausibility of transition scenarios put
forward by theoretical studies [25] and deepen our understanding of the role of
Theta oscillations for the dynamics of transitions [4]. In this regard repeating
the present study with probabilistic models capable of capturing some aspects of
the activation dynamics in recorded spiking sequences, such as Generalized-Linear
Models [26] could be potentially interesting. Contrary to their Ising model coun-
terparts effective couplings in the GLM approach are not necessarily symmetric,
and may reflect specific ordering in neuron activations. However, some basic as-
sumptions underlying GLM, such as the Poissonian nature of firing events are
questionable for hippocampal place cell activity [27].

Continuity prior for identification of transitions. We introduced a continuity
prior for map decoding for two main purposes:

Weak continuity priors, obtained for low values of the prior strength parameter
K in Eq. (5), help to smooth out spurious transitions. Clusters of contiguous
time bins with the same decoded map reinforce their coherent signal, highlighting
transitions of internal representation that linger on longer time scales. As a result
spatial maps transitions taking place on long time scales (set by the prior strength,
see Fig. 5 (b)) are easier to detect at the expense of faster transitions.

Strong continuity priors, with large strength K allow for the search of map
transitions that meet preset criteria for the network stability. The Ising decoder
with continuity prior allowed us to identify time points with highest probability
of expected state shift following teleportations, see Figs. 8 (a,b) for applications
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to CA1 and CA3 recordings. Such an implementation makes possible to perform
hypothesis-driven measurements. This can be beneficial whenever the latency be-
tween the sensory input and the global network response is of importance, e.g. in
treatments with expected effect on attention, to characterize feedback dynamics of
the neural system with respect to experimental conditions. The same procedure
could also be used to identify attractor dynamics in experiments where the input
signal (environmental light cues, in our data) is changed smoothly or gradually
over time [28].

Decoding of position. Though the inference of position from neural activity was
not our primary goal in the present work, we have introduced a position decoder
based on the Viterbi algorithm, which maximizes the likelihood of the full rodent
trajectory. Our decoding procedure is intrinsically off-line, since the information
contained in the whole temporal sequence of neural activities is taken into account
to decode the animal position in each single time bin.

We use data from hippocampal CA1 to estimate the accuracy of position re-
construction; CA1l activity is most frequently analyzed in the literature for this
purpose, partly due to its higher firing rate with respect to CA3. In our analysis,
with 36 recorded neurons, we obtained an average error of 5.5 cm with a time
definition of 40 ms. Note that our algorithm for position decoding bears strong
similarities with the two-step maximization of Zhang et al. [3], which includes a
continuity prior over position similar to ours. The main difference is that Zhang
et al’s procedure maximizes the posterior distribution over the position at time ¢,
and uses the outcome for inference at later times. Contrary to our Viterbi-based
decoder this greedy procedure does not generally find the trajectory with maxi-
mal posterior probability, and leads to higher errors on position compared to our
Viterbi decoder, see Fig. 9 (a,b).

Though it is not possible to compare directly the performances of position
decoders over different data sets (due to differences in the numbers of recorded
cells, in animals, in the maze shapes and sizes, in the purpose for which cells were
selected, ...) let us mention that the errors reported here are comparable to results
reported in the literature [3,23,24].

Perspectives: Hippocampal CA3 and CA1l network state decoding. We
believe our technique can be successfully used for analyzing various aspects of activ-
ity states in brain neural networks. Originating in early works of David Marr [29],
memories have been conceptually framed as discrete states of collateral neural net-
works with attractor properties. Hippocampal representation of space is considered
as a physiological substrate of spatial memory. Its systematic research over the last
almost 50 years has brought a substantial knowledge about organization of memory
in the brain in general. However, numerous aspects of memory-related processes
are still poorly explored. One of such fields is a physiology of recall of stored mem-
ory patterns in neural networks — probably because of its obvious volatility — under
normal conditions memory recollection takes place usually within a single second
after stimulus delivery while its brain network correlate is indeed even faster. In
this light, methods allowing for the identification of a memory state present in
the network at high temporal resolution are of particular importance. A recent
analysis of memory replay in the prefrontal cortex of rats with Ising models can be
found in [10].

In hippocampus, patterns of place cell activity across different environments
behave as uncorrelated network states with attractor properties [21]. In this paper
we used multiunit recordings from hippocampal areas CA3 and CAl. Both are
parts of the entorhino-hippocampal loop, an essential circuit for spatial memory
and navigation in mammalian brain. Despite being directly connected in series
(CA3 signaling into CA1), they very much differ in their architecture — while CA3
is organized as a recurrent network with attractor properties, CA1l has a feed
forward structure. Our recordings were taken during a free exploration in two en-
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vironments in an experimental paradigm shown to induce rapid switches between
hippocampal activity states. We showed that the Ising model is both sensitive
and robust to decode a memory state expressed in the network, with temporal
resolution high enough to reflect natural time patterning of activity provided by
local theta oscillation (ca. 6-11 Hz). Whereas state identification is, due to high
level of orthogonality in environment coding, rather straightforward with numerous
approaches in CA3, to decode network states in CA1 is more of a challenge. The
degree of orthogonality is smaller in CA1 as a consequence of the fact that firing
fields of certain subpopulation of place cells tend to overlap across environments,
especially those with similar shapes. Firing fields of these cells occupy correspond-
ing coordinates and differ mostly by firing rates. This obviously does not affect
position decoding within each environment, but weakens the sensitivity in state
identification across environments.

In comparison with other tested decoders the Ising algorithm showed strongest
performance in analyzing CA1 data and proved to be a perspective analytical tool
for experiments focusing on identification of activity states in brain neural net-
works. It allowed us to identify network state kinetics following the sensory input
switch in both CA3 and CA1l. In agreement with previous report we detected a
higher degree of flickering in CA3 over CA1, reflecting probably the absence of re-
current connections in CA1l. Importantly, we found so far unseen flickering increase
in long-term scale after the teleportation event (20-40 seconds) in both CA3 and
CA1 compared with the stable environment conditions, see Fig. 7. This effect is
rather surprising as the network usually achieves relative stability within a couple of
seconds after the cue switch. Whereas the short-term instability can be explained
by reverberatory activity in CA3 and by competing visual and self-motion inputs,
the long-term flickering will probably reflect inner, sensory-independent processing
with so far unknown origin.

Interestingly, we find that the position of the animal can be reconstructed with
accuracy from the CA3 hippocampal neural activity, when choosing the map de-
coded by the Ising model, whether it agrees with the environmental cue or not
(flickering), see Fig. 11. The stability of the path integrator is a non trivial phe-
nomenon, as flickerings may occur at high rate especially in the few seconds follow-
ing teleportation. Understanding the underlying mechanims, deeply related to the
kinetics of phase and orientiation shift in the medio-enthorinal cortex associated
to global remappings in CA3 [30] would be extremely interesting.
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Figure 1: Hippocampal representations are more orthogonal in CA3 (a) than in
CA1l (b). Each panel shows three rate maps from CA3 (a) and CA1 (b) corresponding to
three place cells in the recorded neuronal population, computed from 10 min recordings of the
activity during free exploration of environments A and B (same shapes). Whereas CA3 coding is
highly sparse and representations are largely orthogonal, CA1 population shows higher amount
of cells active in corresponding locations across the two rooms, with peak rates (color scale)
changing from one environment to the other. The orthogonality of environment representations
in CA3 makes identification of the represented map from neural activity easy compared to the
situation in CA1.
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Figure 2: Comparison of inferred Ising parameters across the two maps. Top: Inputs
h; of the Ising models inferred from CA3 (a) and CA1l (b) reference sessions. Only values
greater than —5, corresponding to a firing rate of c.a. 0.05 Hz in the independent-cell model,
are shown. Bottom: Couplings J;; of the Ising models inferred from CA3 (c) and CAl (d)
reference sessions. Note the presence of many zero couplings in both environments. Analysis
performed with discretization time bin At = 120 ms.
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Figure 3: Decoding performances in CAl. ROC (a) and Precision-Recall (b) curves
computed at fixed time scale At = 120 ms for a combination of two test sessions in environments
A and B, recorded in CA1. Maps A and B correspond, respectively, to positive and negative
predictions, see Table 1. The True Positive Rate, also called Recall, is the number of true
positive predictions divided by the total number of positive events. The False Positive rate is the
number of false positive predictions, divided by the total number of negative events. Precision
is defined as the fraction of identified positive events that are true positives. (c) performances
of Ising, Independent-cell, Poisson, Pearson, and Dot Product decoders (with and without the
addition of a continuity prior) as a function of the discretization time scale, applied to CA1
neural recordings. Full and dashed curves correspond to predictions, respectively, without and
with continuity prior; in the latter case the correlation C' in Eq. (7) decays over tg = 2 time
bins (Methods, Section 2.5 and Fig. 5 (a)).
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Figure 4: Decoding performances in CA3. ROC (a) and Precision-Recall (b) curves
computed at fixed time scale At = 120 ms for a combination of two test sessions in environments
A and B, recorded in CA3. Maps A and B correspond, respectively, to positive and negative
predictions, see Table 1. The True Positive Rate, also called Recall, is the number of true
positive predictions divided by the total number of positive events. The False Positive rate
is the number of false positive predictions, divided by the total number of negative events.
Precision is defined as the fraction of identified positive events which are true positives. (c)
performances of Ising, Independent-cell, Poisson, Pearson, and Dot Product decoders (with and
without the addition of a continuity prior) as a function of the discretization time scale, applied
to CA3 neural recordings. Full and dashed curves correspond to predictions, respectively,
without and with continuity prior; in the latter case the correlation C' in Eq. (7) decays over
to = 2 time bins (Methods, Section 2.5 and Fig. 5 (a)).
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Figure 5: Continuity prior for map decoding. (a) Correlation (Methods, Eq. (7)) between
maps decoded in two time bins as a function of their separation ¢ (measured in units of time
bins), for three values of the prior strength K. Correlations are well fitted by exponential
decaying functions, over a characteristic number of bins ¢y. (b) Value of ¢y as a function of the
prior strength K. (c) Application of the prior on CA1 teleportation session for different values
of prior strength parameter K. Ising decoder, with a discretization time bin A¢ = 120 ms.
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Figure 6: Log-likelihoods of neural activities in CA1l and CA3 and teleportation
event. Ising decoder applied to neural activity in a teleportation sessions in CA1l (a) and
CA3 (b). The light switch is marked with a red line, predictions higher than 99 percentile
value of reference sessions are colored in dark blue, weaker prediction are colored in light blue.
Panels (c) and (d) show the distributions of log-likelihoods in, respectively, CA1l and CA3
across reference sessions. A percentile value 0 in [0,100] (normally in the interval [90,100]) is
defined. We consider a test time bin as significantly decoded as A only if the log-likelihood
of the activity configuration in the time bin is higher than the 6 percentile value of reference
session B, and as B only if its value is lower than the 100 — 6 percentile value of reference
session A. The underlying reasoning is to decode a test time bin as A only if it is very unlikely
that it comes from reference population B, and vice-versa.
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Figure 7: Teleportation enhances network instability over both short and long term
periods. Percentage of temporal bins expressing the environment-incongruent coding com-
puted in rest conditions (pre), during the first 10 seconds after a light switch (short post), and
in long-term period after the teleportation event (long post, 20-40 seconds after light switch).
Only bins expressing likelihood values higher than 99 percentile of reference sessions have been
taken into account. Values were averaged over 4 sessions in CAl and over 12 teleportations
within the same session in CA3. Analysis performed with Ising environment decoder with
discretization time bin At = 120 ms.
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Figure 8: Network state transitions identified by implementation of continuity prior.
Ising decoder and Viterbi algorithm with strong continuity constraint applied to neural activity
in a CAl (a) and CA3 (b) teleportation session with enlarged examples. Light switches are
marked with red lines. Analysis performed with time bin At = 120 ms.
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Figure 9: Position decoding from activity of place-cell population. Average position
errors (in cm) as a function of the time—bin width At¢, with our position decoder (blue curve)
and the two-step procedure of [3] (red curve) for CA1 (a) and CA3 (b) constant-environment
test sessions. (c) Prediction of position with the Viterbi-based decoder (blue curve), compared
to the true location of the rat (red curve) from CA1 recording. The top two panels refer to the
X and Y coordinates as a function of time, for a representative 450 second long interval. The
bottom panel shows the error over position defined as the distance between predicted and real
positions. Analysis performed on CAl constant-environment test session with time bin At =
40 ms, continuity prior strength o = 1.53 cm. Average positional error = 5.49 cm.

27


https://doi.org/10.1101/073759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/073759; this version posted September 6, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

60 cue-based position decoder

| |

460
time (seconds)
60 T
ol—

error (cm)

460
time (seconds)

map-based (Ising) position decoder

——inferred position
—-=-true position
——teleportations

490 500

z 60 T T T T T T T
5400 I decoding error
2 ——teleportations
S20— incongruent bins
N P .‘ ‘. W ‘_,,m.wl—‘.&.&—a‘

420 430 440 450 460 470 480 490 500

b time (seconds)

Figure 10: Cue-based vs. map-based position decoders in teleportation session. True
(orange) and inferred (blue) coordinates X and Y of the rat, and positional error (dark blue)
for one representative portion of CA3 recording including two teleportations (light switches,
indicated by vertical red bars). Position decoding is done with the maps corresponding to the
light cues in panel (a) and to the Ising decoder output in panel (b). Time bins predicted by the
Ising decoder to carry out neural representations incongruent with the light cues are highlighted
with green impulses. Notice the reduction in the error over position when the Ising map is used

instead of the cue-associated map. Parameters: time bin At = 20 ms, position—continuity prior
strength o = 1.04 cm.
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Figure 11: Positional error in Ising-decoded map is low at all times following tele-
portation, regardless of flickering events in CA3. (a) Error over the position of the rat
as a function of the time elapsed after teleportation (light switch), computed with the Ising
decoder (blue curve), the cue-associated (full red curve) and the non-cue (corresponding to the
environment prior to teleportation, dashed red curve) maps. The horinzontal dashed lines show
the average errors in reference sessions with no teleportation, computed with the environment-
associated (cue) and the other (non-cue) maps. (b) Histograms of positional errors computed
during time bins identified as incongruent by the Ising decoder. The red and blue bars shows
the frequencies of errors computed with, respectively, the cue and non-cue maps. Parameters:
At =120 ms. (c) Average rate of flickering events as a function of the delay after teleportation.
(d) Average positional errors over incongruent time bins identified with the Ising decoder as a
function of the percentile 6 of the difference between the log-likelihoods assocaited to the two
maps, see Results, Section 3.2.
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