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Abstract

Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely
used imaging method for large scale recording of neural activity in vivo. Here we introduce volu-
metric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging
method that employs an elongated, V-shaped point spread function to image a 3D brain volume.
Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the sep-
aration distance between images is proportional to depth in the volume. To demix the fluorescence
time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that
also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural pop-
ulation activity in mouse primary visual cortex and hippocampus. Our results demonstrate that
vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the
number of neurons recorded while maintaining a high frame-rate.

Introduction

Two-photon excitation laser scanning microscopy (TPM) [1] enables high spatial resolution optical
imaging in highly scattering tissue such as the mammalian brain. When combined with genetically-
encoded calcium indicators [2, 3], or synthetic indicators that label neural populations [4], intracel-
lular calcium dynamics can be measured across a population of cells, providing a method for large
scale recording of neural activity at cellular resolution [4, 5]. In general, increasing the number of
simultaneously recorded neurons is important because it increases the power of population analysis
methods in studies of neural coding and dynamics. To increase the number of neurons recorded with
two-photon calcium imaging, volumetric imaging methods, such as multi-plane imaging [6], random
access fluorescence microscopy [7–9] and ultrasound lens scanning [10], are under development.

In traditional TPM [1], a Gaussian excitation beam, focused to a diffraction-limited spot, is scanned
in a raster pattern across the sample and an image is created from measurement of the emitted
fluorescence at each location. The non-linear process of fluorophore excitation, together with the
sharp axial falloff in intensity in the point spread function (PSF), leads to optical sectioning: the
image from one raster scan represents fluorescence intensity in one plane within a sample volume. To
increase the number of recorded neurons beyond those resolved in a single plane, volume imaging
can be performed by sequentially moving the focal plane (or sample) up or down between each
raster scan, repeating this pattern for each volume measurement. This method can be implemented
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with movable objectives, remote focusing [11], or a liquid lens [6]. However, if the frame rate for
single plane imaging is N frames/sec, and the number of planes imaged per volume in m, then the
aggregate volume frame rate is reduced to N{m. Many calcium indicators have on-response kinetics
below 0.1 s [12]. To capture this dynamics, volume frame rates must remain close to 10 Hz. With
current resonant scanner-based TPM (N « 30 Hz), this implies that only a relatively low number
of planes (m=3,4) can be used for multi-plane volumetric imaging.

Elongating the PSF of the focused excitation beam along the optical axis, using either a low-NA
Gaussian beam focus or Bessel beam methods [13], can be used with raster scanning to form a
projection image of a volume [14]. This is useful in applications like functional imaging of dendritic
spines in sample volumes with sparse neural expression of the indicator [15]. However, in samples
with dense expression, such as those encountered in large-scale recording of a neural population
in vivo, extending a single PSF axially causes neurons at different depths to be superimposed.
Information about depth in the sample of individual neurons is lost, and demixing of fluorescence
signals from individual neurons is compromised if their images significantly overlap.

Our method addresses these limitations by using an elongated PSF that is split into two excitation
beams. These beams are spatially separated and angled inwards to create a stereoscopic “V”-
shaped PSF configuration (Fig. 1a). Raster scanning with this PSF produces a 2D projection
image that preserves information about neural activity at different depths. We refer to this method
as volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS). The intuition behind
vTwINS is straightforward: the soma of any neuron in the 3D volume makes two contributions to
the 2D projection image, one soma-shaped image for each arm of the V-shaped PSF. The spatial
offset between these two images is equal to the distance between the two arms of the V at the
neuron’s depth in the volume. This results in short distances between deep neurons, and longer
distances for shallower neurons (Fig. 1a).

Although vTwINS ensures that all neurons will have distinct “paired” spatial profiles in the projec-
tion image, the analysis problem of identifying which image regions correspond to pairs reflecting the
activity of single neurons is ill-posed from single images. This difficulty can be solved by a demixing
algorithm that relies on the temporal statistics of neural activity across frames. There are many
approaches to spatial profile identification and demixing from time series, including ICA/PCA [16]
and constrained non-negative matrix factorization (CNMF) [17, 18]. Our approach was to extend
prior work to the case where the expected shape of the neuron’s spatial profile is a pair of rings
or disks displaced along the axis of the V-shaped PSF. We describe a novel inference algorithm
based on orthogonal matching pursuit that exploits both the spatial separation of image pairs and
the sparseness of neural activity. The algorithm’s identification of a neuron’s spatial profile in the
projection image also means that a neuron’s relative depth d in the volume scanned can be recov-
ered from the image pair separation ∆ via the relationship d “ 0.5p∆ ´ ∆minq{ tanpθq, where ∆min

is the minimum inter-beam distance of the PSF and θ is the beam angle from the axial direction
(Fig 1a,b). Thus, the demixing algorithm both provides the time course of fluorescence change and
information from which the neuron’s location in the volume can be reconstructed.

In the following, we describe the optics developed to produce the vTwINS PSF and demonstrate
images and image time series produced using this method. We then present the algorithm that was
developed for identifying active neurons in these time series and demixing fluorescence transients.
Finally, using the combined imaging system and algorithm, we demonstrate large-scale recording of
GCaMP-expressing neurons in visual cortex and hippocampus of the awake mouse.
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Figure 1: vTwINS concept and design. (a) vTwINS uses a “V”-shaped PSF to image neural volumes.
During scanning, the two PSF arms intersect neurons at different depths (e.g. the blue and green
stylized neurons) with different time intervals. Deep neurons intersect the second arm shortly after
the first. Shallow neurons take longer for the second arm to intersect. Each neuron thus appears
twice, where the distance between images indicates depth. (b) Example PSFs for diffraction-limited
(high-NA) TPM, and vTwINS microscopes using Bessel and low-NA Gaussian beams. (c) The
vTwINS microscope consists of a beam-shaping module and a conventional two-photon microscope.
The three optical paths generate the PSFs shown in (b). In the Bessel and Gaussian (low-NA
vTwINS paths, lenses adjust the PSF’s axial extent, and a birefringent block (calcite) splits the
beam in two and sets the PSF angle. (d) The back aperture illumination profiles for the three paths
in (c). In the high-NA (conventional TPM) path, the overfilled back aperture is focused to a point.
In the Bessel and low-NA Gaussian paths, two beams are focused to form each arm of the PSF.
The beam divergence is adjusted with the 1x telescope before the calcite block to separate the two
arms of the X-PSF and form the V-PSF.

Results

vTwINS Optics

In a vTwINS microscope the diffraction limited PSF (Fig. 1b left) of a traditional raster scanning
TPM is replaced with an elongated V-shaped PSF produced from two intersecting Gaussian beams
(Fig. 1b center), or Bessel beams (Fig. 1b right). The strategy we used to create the V-shaped
PSF was dual beam excitation through a single objective lens (Fig. 1c), using the design principles
illustrated in Figure 1d. In the traditional TPM, a large diameter collimated Gaussian beam is

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/073742doi: bioRxiv preprint 

https://doi.org/10.1101/073742


centered on the objective back aperture, and a standard (typically diffraction-limited) PSF for two-
photon excitation is produced (Fig. 1d left). In contrast, a pair of smaller diameter collimated
Gaussian beams with their centers offset from the center of the back aperture produce a pair of
elongated arms in the PSF that cross at the focal plane, producing an X-shape (Fig. 1d center).
The smaller the diameter of each beam, which reduces the effective NA, the more each arm becomes
elongated. Increasing the separation between the two beams at the objective back aperture increases
the angle of intersection of the two arms. If the incident beams are slightly divergent (or convergent),
the position of the crossing point of the two beams shifts along the optical axis relative to the focal
point of the objective (Fig. 1d right), eventually producing a V-shape for vTwINS, with the wider
opening either pointing up (divergent beams) or down (convergent beams). To produce a Bessel
beam vTwINS PSF, rings of illumination are used at the objective back aperture [19] instead of
Gaussian beams, but, otherwise, the same principles apply. Bessel beams allow for more uniform
axial excitation, at the cost of excitation efficiency (see Discussion).

To explore vTwINS imaging with either Bessel or Gaussian profiles, and to compare the images to
those generated by a standard PSF (diffraction-limited single-beam), we designed a beam-shaping
module (Fig. 1c) with three parallel beam paths, one for each modality, with a set of flip mirrors
that could select between them. A calcite block was used to split a single incident beam into the
two spatially separated beams necessary for vTwINS. Input polarization, controlled by a half-wave
plate, was used to equalize power in each of the two beams in the vTwINS configuration, and to
eliminate beam splitting when a standard single-beam PSF was used. The angle between the two
arms of the PSF in vTwINS mode was determined by the beam separation produced by the calcite
block together with a subsequent telescope. Beam divergence, used to control where the two beams
cross (and forming either a V or inverted V), was controlled by an adjustable telescope placed before
the beam splitter. The arm used for Bessel beam vTwINS differed from that of the Gaussian beams
by replacing the first telescope with an axicon-lens combination that formed the ring-shaped spatial
profile required for Bessel beam production.

As an initial proof of principle that a set of fluorescence sources could be spatially localized in a
3D volume from a single vTwINS image, we imaged a volume sample of 1µm diameter fluorescent
latex beads embedded in agar. The beads were embedded at random locations, creating an off-grid
set of positions. The exact bead positions were determined via a diffraction-limited two-photon
multi-plane volumetric scan (z-stack) using the traditional PSF. vTwINS was then used to image
the same volume with a single scan (one image) using a 58 µm-long PSF (FWHM, 75 µm 1/e
full-width). Each bead produces a pair of dots in the vTwINS projection image (Supplementary
Fig. 1); lines drawn between all pairs are parallel and aligned with the direction of the vTwINS PSF
in the sample. The distance between dot pairs varies with the bead’s depth in the volume. Using
only the vTwINS image and the known shape of the PSF to infer each bead’s 3D coordinates in
the sample produces average errors of 1.4˘1.3 µm in depth, 1.5˘1.3 µm in the fast-scan direction,
1.2˘1.0 µm in the slow-scan direction and an average total localization error of 2.7˘1.6 µm. The
accuracy of recovered positions is well within the «10 µm average size of a neuronal cell body in the
mammalian brain, demonstrating that vTwINS, in practice, preserves the necessary information to
disambiguate cell bodies at different depths.

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/073742doi: bioRxiv preprint 

https://doi.org/10.1101/073742


Single plane high-NA image

vTwINS image

Median-subtracted vTwINS image

Depth dependent distances 

Interdigitated profiles

Overlapping profiles

a

b

c

d

e

50   m 15   m

Figure 2: Example vTwINS images. All images are averages of 5 consecutive frames. (a) Diffraction-
limited TPM single plane image of GCaMP in mouse visual cortex. (b) vTwINS scan of the same
V1 area as (a) demonstrates paired somas of active neurons and reduced SNR as the background
levels are much higher. Subtracting the temporal median at each pixel highlights neural activity.
(c) Two fluorescing neurons imaged by vTwINS at different depths have different distances between
the image pairs. Red circles indicate the different images and red lines connect corresponding
image pairs. (d) vTwINS images typically have overlapping spatial profiles. (e) Neurons aligned in
the direction parallel to the plane of the V PSF (which is the same as the fast scan direction in
our implementation) can create ambiguity in the spatial profile image pair assignment. Both the
solid red lines (the true pairing) and the dashed green lines indicate realizable distance pairings
corresponding to different neuron positions, and temporal activity must be used to resolve this
ambiguity.

vTwINS Calcium Imaging

The basic features of vTwINS-based calcium imaging data, obtained from visual cortex (V1) in an
awake transgenic mouse expressing GCaMP6f (see Methods), are illustrated in Figure 2. A single
image plane taken with TPM using a diffraction-limited PSF is also shown for comparison. In
diffraction-limited TMP (Fig. 2a), a single soma-shaped spatial profile of high fluorescence intensity
is observed when calcium transients are produced in an active neuron. The cell soma of some, but
typically not all [20], GCaMP-expressing quiescent cells can also be resolved. A vTwINS image is
qualitatively different. Active neurons in a vTwINS image become represented as two bright soma
shaped regions (disk or ring; Fig. 2b). Additionally, the images of quiescent neurons are typically
not resolved because the projection produces an increased, and more uniform, background intensity,
which is due to the axially extended PSFs exciting a larger volume of tissue that includes neuropil
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and other cell bodies. When multiple cells are simultaneously active, many soma pairs become
visible, and lines drawn between corresponding image pairs are parallel and oriented along the fast
scan direction (the plane of the V-shaped PSF). However, pairs from different cells can have different
spatial separations (Fig. 2c), representing different depths of the cell somas in the volume. A time
series vTwINS movie from mouse V1 is provided in Supplementary Video 1.

The properties of vTwINS based calcium imaging data (Fig. 2) introduce a number of unique chal-
lenges in demixing spatial profiles of neural activity in order to extract the time traces of fluorescence
for individual cells. First, there is a lower SNR per cell due to the axially extended PSFs (Fig. 2b).
Second, the spatial profiles of cells under vTwINS can partially overlap (Fig. 2d), and typically con-
sist of disjoint regions, violating the spatial locality assumption in current demixing methods [16,
18]. Third, neurons co-aligned in the fast-scan direction can create ambiguous, interdigitated spatial
profile pairs (Fig. 2e). Finally, intensity differences between the two images in a pair may result
from the non-uniform scattering between the two beam paths (e.g. due to varying tissue properties).

vTwINS Profile Identification and Demixing

We addressed the challenges of analyzing vTwINS data with Sparse Convolutional Iterative Shape
Matching (SCISM), a novel demixing method that explicitly seeks horizontally separated image
pairs. A graphical summary of the method is provided in Figure 3, while the specifics and the
full statistical model are provided in the Methods. As a pre-processing step we motion-corrected,
temporally averaged and spatially binned the raw image time series (see Methods). At each iteration,
candidate spatial profiles, consisting of stereotyped profiles (designed as pairs of annuli separated in
the fast-scan direction with different inter-image distances; Fig. 3a), are compared to the measured
fluorescence frames across the field-of-view (FOV) (Fig. 3b). The stereotyped profile most correlated
with the data is then selected (Fig. 3c), and the most highly correlated frames are used (Fig. 3d)
to refine the profile shape to better match the data. This step allows SCISM to handle spatial
profile pairs where one beam path has lower intensity. The new profile is added to the set of spatial
profiles, and the corresponding time-traces are estimated via a non-negative LASSO [21] procedure
(Fig. 3e). Finally, the data residual is calculated by subtracting the component of the data captured
by the current set of spatial profiles (Fig. 3f), and this residual is reused in the correlation step to
determine the next spatial profile.

This procedure iteratively selects spatial profiles greedily in order of correlation strength with the
data, using both spatial and temporal statistics to determine the most likely spatial profile at each
iteration. Specifically, SCISM leverages sparsity in neural activity as well as the spatial constraint
that each spatial profile consists of two areas separated in the fast-scanning direction. Sparse
neural activity is particularly important as it permits minimal cross-contamination due to spatially
overlapping neurons. Once spatial profiles are determined with SCISM, full resolution time trace
estimates are obtained using non-temporally averaged data via non-negative LASSO.

In the following, we demonstrate the application of SCISM to vTwINS calcium imaging data from
both visual cortex (V1) and hippocampus (CA1) in awake transgenic mice expressing GCaMP6f.
For V1 recordings we performed full FOV vTwINS imaging and we validated our results against
diffraction-limited TPM by performing simultaneous imaging with the two modalities for half-size
FOV. For CA1 we demonstrated the utility of vTwINS in neural volumes with a very high density
of neurons.
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Figure 3: Sparse convolutional iterative shape matching (SCISM) for demixing vTwINS data. (a)
Example stereotyped neuron image pairs. (b) SCISM seeks image pairs at different distances by
constructing heat-maps representing the likelihood of a given pair at a given location. Heat maps
are calculated by summing the thresholded squared-inner-product between shifts of stereotyped
profiles and video frames (shown here with a section of CA1 data). Tλp¨q here denotes the threshold
operation. (c) The new spatial profile is chosen at the maximum across all heat maps. (d) The
new profile is refined by locally masking and averaging frames closely aligned with the stereotyped
spatial profile. (e) The new profile is added to the set of spatial profiles, and the time-traces for
all spatial profiles are calculated via non-negative LASSO with sparsity trade-off parameter λ (see
Methods). (f) The residual movie is re-computed by subtracting the contribution of the current
set of spatial profiles (the sum of outer products of the spatial profiles and their time traces). The
algorithm then finds the next spatial profile by iterating from (b) with the new residual.

Large Scale Recording in Mouse Visual Cortex

Head-restrained GCaMP6f-expressing transgenic mice, running on a spherical treadmill, were pre-
sented with a visual stimulus sequence consisting of randomly placed Gabor patches (see Methods).
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Figure 4: Demixed spatial profiles and calcium activity in mouse visual cortex. (a) Full set of
spatial profiles, color-coded by depth, show significant overlap. (b) 3D locations of the spatial
profiles located in the white box in (a) show that spatial profiles are found at different depths. (c)
Time-traces of spatial profiles show sporadic activity in the 0-100s time interval. (d) Example subset
of spatial profiles (chosen from the white inset box in (a) and sorted by depth) and corresponding
time traces show rich activity patterns. The increasing separation distance as a function of depth
reflects the inverted V shape of the PSF used in this recording.

vTwINS imaging was performed in layer 2/3 of primary visual cortex (V1). Images were acquired
in a 550 µm x 550 µm area with a 45 µm-long inverted-V PSF (FWHM, 60 µm 1/e full-width) at
30 Hz frame rate over a 14 minute imaging session.

The time series fluorescence data was preprocessed with rigid motion-correction and spatio-temporal
averaging (see Methods, Supplementary Fig. 2, and Supplementary Video 1,2). Spatial profiles
obtained via SCISM (Fig. 4) show significant overlap, as expected from the relatively high density
of GCaMP-expressing cells and the vTwINS PSF. Given the spatial profiles, we used the vTwINS
PSF to extract the 3D cell positions (see Methods, Fig 4a,b). The demixed spatial profile activity
traces (Fig. 4c, Supplementary Fig. 3, 4) have the expected temporal statistics of sparsely firing
neurons. Because SCISM is an iterative method that extracted highly active spatial profiles first,
the time traces are ordered by how correlated the profiles are with the data.

The spatial profile volumetric locations (Fig. 4b) indicates that vTwINS records activity across
the entire axial extent. The range of axial depths captured by vTwINS is further illustrated by
plotting the spatial profiles in a 107 µm x 107 µm subsection of the FOV (Fig. 4d), sorted by
inferred depth, (Fig. 4d) and their corresponding position in a 3D anatomical volume (see Methods,
Supplementary Fig. 5). We note that all the spatial profiles in this subsection have a clear cell body
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in the anatomical z-stack, which corresponds to the calculated 3D position. The large variation
in separation distance between the spatial profile image pairs suggests that vTwINS does capture
and demix activity originating from many axial planes. The corresponding spatial profile activity
traces (Fig. 4d) also show that cell transients are well isolated, despite the highly overlapping spatial
profiles.
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Figure 5: Simultaneous imaging of visual cortex using conventional two-photon (green) and vTwINS
(blue). (a) Max-projection of 5 s of activity (top) and corresponding extracted spatial profiles
(bottom) demonstrate that the spatial profile extraction algorithms demix relevant neural activity.
(b) Volumetric depiction of vTwINS extracted spatial profile locations and depth. Green/blue
profiles indicate location of cells that were matched in single-plane activity. The single-plane slice
is outlined in green. (c) Time traces corresponding to cells in (a) show that for vTwINS with
diffraction-limited TPM counterparts, the temporal activity traces match. The gray bar indicates
the 5s period of activity used to isolate cells.

To validate that neural activity recorded with vTwINS is comparable to a standard method, we
compared vTwINS with single-plane diffraction-limited TPM. We verified both spatial profile loca-
tions and temporal activity by simultaneously imaging an entire neural volume with vTwINS, and
a single slice of the volume with diffraction-limited TPM. Both datasets were collected at 30 Hz
over a 470 µm x 200 µm overlapping area. A galvanometer was used to flip between the vTwINS,
using a 38 µm-long PSF (FWHM, 52 µm 1/e full-width), and standard TPM beampath configura-
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tions at every frame (see Supplementary Fig. 6). Alternating between imaging modalities at every
scan resulted in two interleaved movies recording the same neural activity with a «17 ms offset
between corresponding frames. Aside from introducing the interleaving mechanism, the only other
difference in this recording from the full FOV V1 recording (Fig. 4) was that the vTwINS PSF
used was the noninverted “V”-shaped PSF. vTwINS data was demixed using SCISM (see Methods,
Fig. 3), while we extracted spatial profiles and activity traces from the single-plane data using a
modified constrained non-negative matrix factorization (CNMF) algorithm [22] as an independent
comparison (see Methods). Spatial profiles from the two methods were identified as arising from the
same neuron using both the centroid locations and the level of temporal correlation in the demixed
activity traces (see Methods).

Comparison of spatial profiles from the simultaneous recordings (Fig. 5) indicates that vTwINS
captures both neural activity in the single slice TPM and activity at other depths. To highlight
examples of correlated cells, a 5 s max-projection was used to select a fraction of active cells within
the volume (Fig. 5a,b). Overall, in a ten minute imaging session, 454 spatial profiles were found in
the volume using vTwINS, as compared to 169 spatial profiles found in the single plane diffraction-
limited data. Activity traces corresponding to the found spatial profiles of cells identified in both
the single plane and the volume also show very high correlation between the two imaging modalities
(Fig. 5c). This correlation indicates that vTwINS still captures most of the activity at any given
depth while also capturing the additional activity elsewhere in the volume. Specifically, of the single-
slice spatial profiles, 116 spatial profiles had >1 transient per minute. Of these, 98 (84%) had a
matching spatial profiles in the vTwINS data (Supplementary Fig. 7). Of the remaining single-slice
spatial profiles, many had very low SNR, suggesting that that activity fell below the vTwINS’ lower
SNR level.

Large Scale Recording in Mouse Hippocampus

As a more challenging application of vTwINS, we recorded and demixed activity from the CA1
region of mouse hippocampus. In this region, neuronal cell soma are densely packed in a well-
defined layer; this will produce high spatial overlap in vTwINS data. To induce activity in CA1,
water-restricted mice were trained to run down a linear track in a virtual reality system [23] for
water rewards (see Methods). Images were collected over a 14 minute session in a 470 µm x 470 µm
area with a 35 µm long vTwINS PSF (FWHM, 45 µm 1/e full-width, non-inverted V) at 30 Hz
(Supplementary Fig. 8, Supplementary Video 5-6). CA1 recordings were processed and analyzed
using the same pre-processing and SCISM demixing as described for the V1 data (Fig. 6a).

The calculated the 3D positions for each of the 882 spatial profiles found using SCISM span the
entire axial range of the PSF (Fig. 6a,b). Interestingly, the tendency for shallower neurons towards
the center of the FOV and deeper neurons towards the edges of the FOV, indicates that the vTwINS
spatial profiles are capturing the curvature of CA1 (Fig. 6a). The time traces for each of the spatial
profiles (Fig. 6c, Supplementary Fig. 9, 10) demonstrate how SCISM selects more active spatial
profiles first. We illustrate the range of depths of found spatial profiles as well as example time
traces by displaying the spatial profiles situated within the 92 µm x 92 µm white box of Figure 6a
and their time traces (Fig. 6b,d). The inferred 3D location of the spatial profiles (Fig. 6b,d) were
compared to the anatomical z-stack; the calculated positions correspond well to neurons visible in
the anatomical images (Supplementary Fig. 11).
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Figure 6: Demixed spatial profiles and calcium activity in mouse hippocampus. (a) Full set of
spatial profiles, color-coded by depth, show more overlap in CA1 than in cortical recordings. (b)
3D locations of the spatial profiles from the white box in (a) show found spatial profiles at various
depths. (c) Time-traces of spatial profiles in (a) show sporadic activity in the 0-100s time interval.
(d) Example subset of spatial profiles (chosen from the white inset box in (a) and sorted by depth)
and corresponding time traces show rich activity patterns. Note that some profiles have very sparse
activity and do not contain transients in the displayed 100 s range. (e) Example demixed spatially
overlapping profiles. Profile 1 (blue) and Profile 2 (red) spatially overlap yet have demixed time
traces (right). Averaged raw fluorescence traces from pixels in the overlapping region (Overlap) are
a linear combination of the traces from Profile 1 (Region 1) and Profile 2 (Region 2). The Region
2 time-trace also contains a transient from yet another profile at 230 s.

Despite the highly overlapping spatial profiles due to both the vTwINS PSF and the high overall
neural density, vTwINS SCISM successfully demixed spatial profiles in CA1. Fluorescence time
courses in different regions of two overlapping spatial profiles illustrate the demixed time traces
(Fig. 6e). The trace from the overlapped region of the two cells contains transients from both non-
overlap regions, while the demixed traces contain only the single-profile region activity. Interestingly,
one transient at 230 s in Region 2’s trace is missing from the overlap trace, indicating that this
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transient originated from a third profile and was successfully demixed in Profile 2’s time trace.

Discussion

We have demonstrated that vTwINS can successfully record neural activity from 50 µm thick vol-
umes of the awake mouse brain without a reduction in imaging frame-rate. The novelty of vTwINS
primarily lies in using a “V”-shaped stereoscopic PSF to both ensure distinct spatial profiles and
encode depth information, and in using priors on the expected spatial profiles and the sparsity of
neural activity to motivate a greedy demixing algorithm.

Early strategies for large scale recording using calcium imaging were largely based on the idea of
using the spatial resolution of the optical instrumentation to ensure that the fluorescence from
individual neurons was collected into a set of voxels that form largely independent, disjoint, sets for
each cell. Spatial separation was the basis for hand selection of neural regions of interest (ROIs),
which have been widely used as a mask for extracting the time traces of individual active cells.
In practice, however, perfect separation of adjacent cell signals into disjoint sets of voxels has
been difficult to achieve when expression of the calcium indicator is dense. As a result, demixing
algorithms [16, 17, 22] have been developed to identify the spatial profiles corresponding to different
cells; these algorithms assume the signal in individual voxels might have contributions from more
than one active neuron. vTwINS (and also a recent multi-plane technique [24]) take this mixing
assumption as a starting point for the development of the optical instrumentation. The use of a
V-shaped PSF in vTwINS increases signal mixing in individual voxels, but it also ensures that each
neuron will have a unique spatial profile that can be efficiently used in a co-designed demixing
algorithm to extract the time traces of individual cells (and also their location in the volume).
We anticipate that this strategy in which optical instrumentation and demixing algorithm are co-
designed for large scale recording may generalize to other excitation geometries (e.g. 3 beams,
multiple objectives).

vTwINS required the ability to seek specific spatial profile shapes in the recorded movies while
maintaining flexibility to reasonably adjust to the particulars of any given dataset. SCISM per-
mitted the specification of these shapes as guides to locate relevant activity while still balancing
the general expected temporal statistics of neural activity. Current automated methods do not use
such detailed spatial information, focusing instead on temporal demixing [25–29] while imposing
no spatial constraints [16, 17] or utilizing generic locality assumptions (i.e. spatial profiles must be
fully contained in a constrained region) [22, 30]. The approach in [30] is most similar to ours and
incorporates pursuit-type methods within a dictionary learning framework, but does not leverage
detailed shape information the way SCISM does. The ability of SCISM to adapt profiles to the data
also differentiates it from standard matching pursuit-style algorithms [31–33], which assume a fixed
dictionary of features. Although we designed SCISM to seek features specific to vTwINS imaging,
it can easily accommodate other spatial profile shapes so as to be applied to non-vTwINS imaging
methods.

Additional work can further optimize vTwINS for other applications. In particular, it would be
useful to explore how the vTwINS PSF parameters (length, angle between arms, separation distance,
beam type) impact imaging in different conditions. Background fluorescence increases with the
length of the vTwINS PSF, limiting axial elongation. For neocortical and hippocampal imaging
of GCaMP6f under the Emx1-Cre driver, which provides dense labeling of excitatory neurons, we
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found good performance with «10x PSF elongation (5 µm versus 50 µm) despite high neuropil
background. In more sparsely labeled tissues, like those provided by Cre driver lines for inhibitory
neurons or excitatory neuron subtypes, longer axial extensions are possible. We anticipate that
vTwINS might work particularly well with a nuclear localized GCaMP [34], which would significantly
reduce background fluorescence from neuropil and improve SNR. The angle between arms and the
separation distance influence the available imaging FOV and the required objective lens NA. For
brain regions with limited optical access (e.g. hippocampus [23] or MEC [35]), smaller angles
between arms or separation distance may be necessary. The choice between Bessel beams and
Gaussian beams requires additional study. Bessel beams offer flexibility in controlling the axial
profile and lateral resolution [36]. Gaussian beams, while less flexible, are simpler to implement
and have higher two-photon excitation. Finally, in applications where lower imaging framerates are
acceptable, it should be possible to combine vTwINS with sequential plane imaging (e.g. remote
focusing [11], or liquid lens [6]), and image several thin volumes sequentially to image a thick volume.

Motion correction in vTwINS can potentially be compromised due to the elongated PSF reducing
high spatial frequencies. In our recordings, however, sufficient high spatial frequencies (vasculature
in visual cortex and stratum oriens in CA1) facilitated accurate corrections of motion artifacts. For
brain regions without distinct high frequency features, expression of a nuclear localized probe tagged
with a red fluorophore may be used for accurate motion correction. One unexplored potential use
of vTwINS is axial motion correction, which is impossible in single plane TPM. In single plane
TPM, axial drift can cause loss of identified neurons over long periods of imaging from the FOV. In
vTwINS, each axial position has a unique background shape, potentially allowing the axial position
of the imaging volume to be tracked over time. Additionally, vTwINS’ axial extension ensures that
the vast majority of imaged neurons remain within the imaging volume despite axial drift.

One concern of all large scale TPM calcium imaging methods is photodamage due to the excitation
laser, both linear and nonlinear. Nonlinear photodamage in vTwINS as compared to standard TPM
is reduced due to both beamsplitting [37] and a lower peak intensity of the axially extended PSF
(10x reduction in peak intensity from 50 µm long Gaussian vTwINS beam to a 5 µm long high-NA
Gaussian beam). Even with the higher laser power used in vTwINS, the peak intensity is lower than
those used in conventional TPM due to the much larger excitation volume. Photodamage due to
brain heating, however, should be limited to 200 mW average power at 920 nm [38]. In our setup
for vTwINS, we were primarily limited by tissue heating and limited average power to 100 mW per
excitation beam.

Methods

Microscope Design

The vTwINS microscope was modeled in ZEMAX (Zemax LLC) and custom MATLAB (Mathworks)
scripts. The microscope (Fig. 1c) was constructed as a modification of a resonant scanning two-
photon microscope. A beam shaping module to produce the V-shaped PSF for vTwINS was designed
to be inserted between the laser and microscope. This strategy was used so that the module could,
in principle, straightforwardly be adapted for any existing standard two-photon microscope. The
beam-shaping module consisted of three optical paths that could be switched via flip-mount mirrors
between: 1) a standard high-NA path for standard two-photon imaging, 2) a vTwINS path using
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low-NA Gaussian beams, or 3) a vTwINS path using Bessel beams.

The collimated Gaussian laser beam entering the beam-shaping module had a measured knife-edge
width (10/90 percent) of 1.3mm which corresponds to a 1{e2 diameter of 2 mm. The high-NA
path consisted of a 2.5x beam expander (AC254-40-B and AC254-100-B, Thorlabs). The Gaussian
vTwINS path consisted of a 0.3-1.2x variable telescope (G06-203-525 AC 140/31,5 Linos, LC1120 and
AC254-125-B, Thorlabs). The Bessel vTwINS path consisted of an axicon and achromat lens pair
(179.2˝ BK7 Axicon, Altechna and AC254-200-B, Thorlabs) to generate the ring-shaped excitation
for the Bessel beam. The specific choice of axicon and achromat lens pair was based on tradeoff
between lateral resolution and two-photon excitation efficiency. For the Bessel beams to be correctly
formed within the sample, the rear pupil of the objective needs to be illuminated with well focused
annuli of light. For this reason, the back aperture of the objective is conjugate to the achromatic
lens front focal plane of the Axicon-Achromat pair. If collimated, parallel beams are used, the two
branches of the PSF form a X-shape. The PSF V-shape was obtained by introducing a slight beam
convergence at the objective back-aperture created and tuned by a 1x telescope (2x AC254-100-B,
Thorlabs). When the vTwINS modalities were used, the beam was split in two parallel beams with a
half-wave plate and a Calcite beam displacer (AHWP05M-980 and BD27, Thorlabs). The half-wave
plate was oriented such that the fluorescence intensities of the two images are equal. The birefringent
beam displacer was mounted in a rotation mount and oriented such that the two beams lie in a plane
perpendicular to the resonant (fast) scanning mirror axis of rotation. This is to guarantee that the
two images formed of a fluorescent object lie on the same scanned line. A pair of BK7 windows
mounted on orthogonal rotation axes was used to adjust and center the lateral position of the beams
on the scanners. The beams separation (2.7 mm out of the Calcite beam displacer) was further
reduced using a 0.8x telescope (AC254-100-B and AC254-80-B, Thorlabs). This specific choice, in
combination with the magnification of the microscope (X3.75) and the 12.5 mm focal length of the
water immersion Nikon objective resulted in an angle of 43˝ between the two branches of the PSF.
This choice of angle resulted in an accurate axial localization of the cell bodies (Supplementary
Fig. 1). When the high-NA path was used for conventional two-photon imaging, the half-wave
plate was rotated to zero the power of one of the emerging beams, and the two BK7 windows were
oriented to center the remaining beam on the optical axis of the microscope.

A Ti:Sapphire laser (Chameleon Vision II, Coherent) at 920 nm was used for two-photon excitation,
and dispersion compensation in the laser was adjusted to maximize the two-photon signal. A Pockels
cell (Model 350-80 with 302RM driver, Conoptics) was used to modulate laser intensity and a half-
wave plate plus polarizing beamsplitter cube (Thorlabs) was used to adjust the maximum laser
intensity. The two-photon microscope body consisted of a resonant scanning head (6215/CRS
8 kHz, Cambridge Technologies), a 100 mm f ´ θ scan lens (4401-464-000, Linos) and a 375 mm
achromat pair tube lens (2x PAC097, Newport), and an objective lens (N16XLWD-PF, Nikon
[39]). The excitation and emission were separated by a shortpass dichroic (T680-DCSPXR-UF3
52 mm x 75 mm x 3 mm, Chroma), and the collection optics (ACL7560-A, LC1611-A, ACL25416U-
A, Thorlabs) focused the emitted light onto two PMTs (H10770PA-40, Hamamatsu), separated into
red and green channels (FF555-Di03-40x54, FF01-720/SP-50, FF02-525/40-32, FF01-593/40-32,
Semrock). The PMT signal was amplified with an 80MHz preamplifier (DHPCA-100, Femto) and
digitized with a FPGA (NI PXIe-7961R and NI 5732 DAQ, National Instruments). Scanning and
data acquisition were controlled with Scanimage 2015 (Vidrio). Average power during vTwINS data
acquisition varied between 150 mW and 200 mW at 920 nm, and average power during high-NA
acquisition was between 50 mW and 70 mW at 920 nm. Images here were typically acquired at 30Hz
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with an image size 512x512 pixels at with a 90% spatial cutoff, corresponding to an image size of
470 µm x 470 µm (2.8 zoom) or 550 µm x 550 µmm (2.4 zoom). Nearly simultaneous calcium imaging
using rapid switching between vTwINS excitation and the traditional focused high-NA Gaussian
PSF was performed using an alternate optical setup (Supplementary Fig. 6). A galvanometer
(6210H, Cambridge Technologies) was used to select between high-NA and vTwINS paths, which
were recombined downstream with a (50 µm, 0.88˝ optical) offset. A modified Scanimage analog
control was used to switch between the two paths at every frame. For each modality, images were
acquired at 30 Hz with a 512x256 pixel image size.

Transgenic Mice

All experimental procedures were approved by the Princeton University Institutional Animal Care
and Use Committee. Transgenic GCaMP6f-expressing mice were produced by crossing Emx1-Cre
(B6.129S2´Emx1tm1pcreqKrj{J , Jax #005628), CaMK2-tTA (B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ,
Jax #007004) and TITL-GCaMP6f (Ai93; B6.Cg ´ Igs7tm93.1ptetOGCaMP6fqHze{J , Jax #024103)
strains [40]. Male or female transgenics heterozygous for all three genes were used for all experi-
ments.

Imaging Mouse Visual Cortex

For imaging in mouse visual cortex, mice underwent surgery under isoflurane anesthesia for im-
plantation of imaging windows and head-plates. A 5 mm diameter craniotomy was made over
one hemisphere of parietal cortex (centered 2 mm caudal, 1.7 mm lateral to bregma). A custom
titanium head-plate and optical window (#1 thickness, 5 mm diameter glass coverslip, Warner In-
struments) bonded to a steel ring (0.5 mm thickness, 5 mm diameter, SS316 ring, Ziggy’s Tubes
and Wires, Inc.) were attached to the mouse’s skull with dental cement (Metabond, Parkell). The
location of V1 was estimated using a separate widefield imaging microscope to record retinotopic
responses in fluorescence activity as the mouse viewed horizontally and vertically drifting bars on a
32” monitor [41]. Boundaries between the primary and secondary visual areas were defined using an
automated algorithm to locate reversals in the retinotopic gradients [42]. Five days after surgery,
mice were trained to run on a spherical treadmill (8 inch diameter Styrofoam ball) surrounded by
a 270˝ toroidal screen [43]. Visual stimuli were generated using the Psychophysics Toolbox [44–46]
and displayed on the toroidal screen using a DLP projection system (Mitsubishi HC3000), consisting
of «100 randomly placed/oriented Gabor patches, with visual field size 5´10˝, updated at 4 Hz. To
prevent light from the projected display from entering the fluorescence collection system, the region
between the base of the objective lens and the head-plate was light-proofed using a black rubber
tube prior to imaging. The rubber tube was glued to a silicone ring and the ring itself attached to
the titanium headplate with silicone elastomer (Body Double, Smooth On Inc.). Examples of images
from cortical imaging are depicted in Supplementary Figures 2,12 and Supplementary Video (1-4).

Imaging Mouse Hippocampus

For imaging in mouse hippocampus, mice underwent surgery under isoflurane anesthesia for im-
plantation of an imaging window and a head-plate for head-restraint in virtual reality [47]. Optical
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access to the hippocampus was obtained as described previously [23]. Briefly, a « 3 mm diameter
circular craniotomy over the left hemisphere was performed, centered 1.8 mm lateral to the midline,
and 2.0 mm posterior to bregma. The cortical tissue overlying the hippocampus was aspirated, and
a circular metal cannula with a #1 coverslip bonded to the bottom was implanted, with a thin
layer of Kwik-sil (WPI) between the hippocampus and coverslip. During the surgery, a titanium
headplate was attached to the skull with Metabond. After recovery, mice were water restricted for
five days and then trained to run on a 4 m virtual linear track using a virtual reality setup similar
to that described in Domnisoru et al. 2013 [48]. Visually distinct towers were placed every 1m and
4 µL water rewards given at 1.6 m and 3.6 m down the track. Mice ran on a 6 inch diameter Sty-
rofoam cylinder (The Baker’s Kitchen) whose position was detected by an angular encoder. Mice
were trained for a 60 minute session per day and were given 1-1.5 mL of water a day total (in-
cluding behavioral training and supplemental water). The virtual reality projection system was as
described previously [43, 47] and controlled with ViRMEn [49]. Lightproofing around the objective
was performed as described for experiments in visual cortex. Examples of images from hippocampal
imaging are depicted in Supplementary Figure 8 and Supplementary Video (5,6).

Fluorescent Bead Sample and Measured PSFs

As an initial test of vTwINS we imaged 1 µm green fluorescent beads (L1030, Sigma) embedded
in a 1% agarose gel. The beads were embedded at random locations, creating an off-grid set of
positions. The exact bead positions were determined via a diffraction-limited two-photon multi-
plane volumetric scan (z-stack). vTwINS was then used to image the same volume with a single
scan (one image). As shown in Figure 1 each bead appears in the vTwINS projection image as a
pair of dots; lines drawn between all pairs are parallel and aligned with the direction of the vTwINS
PSF in the sample. The distance between dot pairs varies with the bead’s depth in the volume.
Using the single vTwINS image, SCISM was used to automatically locate the spatial profiles for each
bead. The found profiles were used in turn to infer each bead’s 3D coordinates in the sample, using
the vTwINS relationship between depth and inter-image distance. Beads at the edge of the imaged
volume with only one projection into the vTwINS image were discarded as the depth location could
not be ascertained.

Z-stacks of these fluorescent beads (1 µm step size) were taken to measure the vTwINS PSFs for
each set of experiments. The axial length of PSFs were measured by averaging the fluorescence
intensity at each slice of the z-stack. The averaged fluorescence signal was used to calculate the
FWHM and 1/e full-width axial lengths. The PSFs were not measured in vivo, although this can
be done to correct for index mismatch and scattering if higher accuracy is desired.

Motion Correction and Pre-processing

All video sequences were first subject to a normalized cross-correlation-based motion correction
algorithm. This algorithm, implemented via the template matching function of OpenCV [50], found
the best horizontal and vertical shifts for each frame to match a fixed template. The template used
was set to the median across frames. Shifts were set to have a maximum allowable value (set to 10
pixels for the V1 data and 15 pixels for the CA1 data). Videos were cropped to remove edge rows
and columns with missing data due to shifting.
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After motion correction, all data was subject to spatio-temporal averaging as a pre-processing step
aimed to improve SNR and run-time of the demixing algorithm. Specifically, five-frame temporal
running averages and a two-fold spatial binning were applied to the data prior to running a demix-
ing algorithm. We ran our automated demixing algorithm on the pre-processed vTwINS movies.
Although the two-fold spatial binning is not required for demixing, it greatly improved run-time.

vTwINS Orthogonal Matching Pursuit

In this section, we describe the mathematical details of the vTwINS Sparse Convolutional Iterative
Shape Matching (SCISM) demixing algorithm. Let Y P RNˆT denote the calcium video sequence,
X P RNˆK denote the neural spatial components (spatial profiles), and S P RTˆK denote the
neural temporal activity traces, where N is the number of pixels in each image, T is the number of
images (or time points), and K is the number of neurons. Thus, the columns of Y represent single
frames of the video, the columns of X represent individual spatial profiles, and the columns of S
represent temporal activity traces of single neurons. We model background activity with a set of
B background components Xbg P RNˆB and denote the (inferred) background temporal activity
Sbg P RTˆB.

Our algorithm is designed to exploit a priori knowledge of both the spatial profile shapes as well as
neural firing statistics. Specifically, the algorithm seeks to factor the full movie matrix Y into the
set of spatial profiles X and time-traces S such that

1. The sum of outer products of spatial profiles and time traces explains the observed data
(Y « XST ).

2. The time-traces S are sparse in time.

3. The spatial profiles are shaped like pairs of neuronal somata (disks or annuli), offset hori-
zontally by a small separation distance. The dark center in each soma is due to the lack of
GCaMP6f in the nucleus.

4. Few latent sources (active neurons) relative to the size of the data generate activity in the
observed data, making the fluorescence movie low-rank. This constraint captures the physical
density constraints on neuron tissue.

The optimization program that includes all these terms is

!

xX, pS, xXbg, pSbg

)

“

arg min
X,S,Xbg ,Sbgą0

«

›

›Y ´ XST ´ XbgS
T
bg

›

›

2

F
` λd}X ´ D}2F `

ÿ

k

pλgs}sk}2 ` λsp}sk}1q

ff

(1)

where sk is the kth column of S, representing the activity of neuron k, }Z}2F “
ř

i,j Z
2
i,j is the

squared-Frobenius norm, D is a matrix whose columns represent all possible expected neural spatial
profile shapes, λd is the trade-off parameter for penalizing the deviation of spatial profile shapes X
form the idealized shapes in D, λgs is the group-sparse penalization parameter for ensuring that not
all spatial profiles are active and λsp is the penalization parameter than ensures the time traces are
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sparse. Each column dk of D represents the expected spatial profile for a neuron at one volumetric
neural location. We set the spatial profiles dk as annuli separated by a depth-dependent distance
(Fig. 3a), where the annuli were modeled as the difference of two Gaussian functions, separated by
a distance

dkpi, jq “ e
´

pi´ix´∆{2q2`pj´jyq2

σ2
out ´ Ae

´
pi´ix´∆{2q2`pj´jyq2

σ2
out ` e

´
pi´ix`∆{2q2`pj´jyq2

σ2
out ´ Ae

´
pi´ix`∆{2q2`pj´jyq2

σ2
out

For all datasets analyzed here, the annuli were set to have σout “ 2 pixels and σin “ 0.84 pixels, the
center amplitude depression was set to A “ 0.7, and pix, jyq simply indicate the pixel which dk is
centered around. We used 10 different inter-image distances, ∆, equally spaced between 21.4 µm to
92.4 µm for full FOV V1 data spanned, 18.4 µm and 51.4 µm for half FOV V1 data, and 14.6 µm
to 56.8 µm for full FOV CA1 data. In total, the number of columns of D is the number of pixels
N (all potential spatial locations) times the number of inter-image distances K (D P RNˆNK).
This matrix, however, never needs to be constructed, as any the spatial invariance of the neural
profiles permits the use of convolution operations. The parameters used for our analysis reflects the
particulars of our microscope setup (i.e. zoom, beam angle setting etc.) and should be modified to
fit the expected statistics of any new dataset.

The optimization program in Equation (1) results from modeling the measurement noise as Gaus-
sian, and placing appropriate sparsity- and shape-penalizing priors on the spatial profiles and tran-
sients. The measurement model and Gaussian prior over the spatial profiles X are given by

Y “ XST ` XbgS
T
bg ` E, Ei,j „ N p0, σ2q

xk „ N pdk, σ
2
pIq,

where the non-zero mean of the Gaussian prior over spatial profiles induces the expected spatial
structure. The prior over time traces sk

ppskq9e´γ1}sk}2´γ2}sk}1 ,

includes two terms penalizing both overall sparsity and group sparsity (each neural trace being a
group). In terms of the model parameters, the trade-off parameters in Equation 1 are λd “ σ2{σ2

d,
λgs “ γ1σ

2, and λsp “ γ2σ
2. No specific prior was placed on either the background shape or its

temporal fluctuations.

Direct optimization of Equation (1) can be inefficient due to the problem size and the large search
space (potential spatial profiles). We thus approximated a solution to Equation (1) with a greedy,
iterative approach wherein spatial profiles are sequentially determined. Our method iterates between
finding the best element of D that approximates Y given the sparsity constraints and updating that
profile to the data. The first step sets X “ D and solves for the best single trace to approximate
Y (solving the first and third terms). The shape refinement step then uses the first two terms with
the newly found time-trace to allow the spatial profile xk to deviate from its mean dk. SCISM
is in essence a modification of the orthogonal matching pursuit (OMP) method for greedy sparse
signal estimation [31, 51]. Our method extends OMP by including an additional temporal sparsity
penalty and a shape refinement step that allows for deviations from the stereotyped neuronal shapes
(traditional OMP assumes a fixed dictionary of features).

We initialized our algorithm by estimating the background spatial profile, Xbg using the normalized
temporal median of the pre-processed motion-corrected video sequence and Sbg as its least-squares
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time course
xXbg “

Medianpytq

}Medianpytq}2
, pSbg “ xX`

bgY ,

where X` denotes the pseudo-inverse of X. In the case of shorter video sequences (20000 frames
or less) we only used a single background spatial profile (B “ 1). For longer video sequences a
background spatial profile was added for each 5000 consecutive and non-overlapping frames, which
allowed the background to change over the course of the video sequence (e.g. due to slow axial
drift). The residual movie R was then initialized at the first step to the median-subtracted full
movie Y

R “ Y ´ xXbg
pST
bg.

The algorithm (summarized graphically in Fig. 3 and algorithmically in Alg. 1) begins each iteration
by seeking the stereotyped annuli pair that had the largest correlation with the residual movie R.
Specifically, the algorithm seeks the index k and the corresponding pair dk with the largest value
vk calculated as,

vk “
ÿ

t

Tλ

`

dT
k rt

˘2
, (2)

where Tλ is a soft thresholding function restricted to positive values

Tλpxq “

"

x ´ λ x ě λ
0 x ă λ

, (3)

and rt are the columns of R (the frames of the residual video). vk estimates the total energy of the
estimated time trace sk that minimized Equation (1) conditioned on xk “ dk, and all past profiles
and time traces being fixed. The thresholding operation induces temporal sparsity (the last term
in Eqn. (1)), and prevents noise accumulation over long videos from dominating the values of vk.
Thus even very sparsely firing neurons can be identified, provided they fluoresce above the noise
floor. Because the noise floor is not spatially constant, we set the sparsity penalization parameter λ
to be a function of the local statistics effecting each potential spatial profile shape. Specifically, we
set λ to be proportional to the 99th percentile of the residual projected into the stereotyped shapes,

λk “ 0.05 ˚ p0.99pdT
k rtq. (4)

This local parameter setting measures the potential brightness at each location. As brighter loca-
tions have higher backgrounds and higher noise levels, λ is thus set higher at these locations.

After calculating vk, the stereotyped spatial profile d
pk

at pk “ argmaxkpvkq is added to the set
of spatial profiles. As dk only approximates the profile shape, a spatial profile that balances the
observed data and prior shape information is obtained using a shape refinement step. The shape
refinement step estimates xk from R and dk as

pxk “
1

N

ÿ

t

M prtq
TλprTt dkq

}M prtq }2
(5)

where Mp¨q is a mask that restricts the averaged frames to the location of dk (thereby preventing
spurious activity from across the video from being included in the spatial profile xk). The normal-
ization by the magnitude of rt prevented spurious high activity frames, where the activity may not
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come from that particular neuron, from dominating the average and corrupting the results. In terms
of the original cost function, this essentially prevents contributions from yet-to-be located neurons
from influencing the spatial profile of the current neuron. While SCISM could be modified to refine
all past spatial profiles at each iteration in order incorporate the new profile, such an extension is
not explored here.

Given the updated spatial profile list, the time traces S and sbg are obtained via non-negative
LASSO

!

pS, pSbg

)

“ arg min
S,Sbgě0

«

›

›

›
Y ´ xXST ´ xXbgS

T
bg

›

›

›

2

F
` λsp

ÿ

k

}sk}1

ff

(6)

and the residual movie is updated as

R “ Y ´ xX pST ´ xXbg
pST
bg.

The algorithm then repeats, using the new residual to find the next neural spatial profile, starting
again from Equation (2).

We ran SCISM until either a pre-set number of spatial profiles was found, or the activity trace
for the most recently found spatial profile was essentially zero. Ideally, however, SCISM would
iterate until the recovered spatial profiles no longer resemble neurons. While our neural activity-
based criterion attempted to determine if newly found spatial profiles represented neurons, more
sophisticated methods would increase accuracy. Since testing if a spatial profile represents a neuron
is still an open problem [20], one potential approach is to manually check new spatial profiles as
they are found and manually stop when newer profiles are deemed to no longer be capturing neural
activity. An example of SCISM processing vTwINS data is provided in Supplementary Video 7.

Once the algorithm is ended, the full-temporal resolution time-traces is obtained via non-negative
LASSO (Eqn. (6)) with the non-temporally averaged data in place of Y .

Algorithm 1 SCISM algorithm for locating pairs of neuronal images in volumetric calcium data.
1: Set λ1, λ2 and K or s0
2: Set m “ 1
3: Initialize xXbg “

Medianpytq

}Medianpytq}2
, pSbg “ xX`

bgY

4: R “ Y ´ xXbg
xX`

bgY
5: repeat
6: vl “

ř

t Tλ1

`

dT
l rt

˘2

7: k “ argmaxl vl

8: pxk “ 1
N

ř

tM prtq
Tλ2

prT
t dkq

}Mprtq}2

9:
!

pS,Sbg

)

“ argminS,Sbgě0

”

}Y ´ xXST ´ xXbgS
T
bg}2F ` λsp

ř

k }sk}1

ı

10: R “ Y ´ xX pST ´ xXbg
pST
bg

11: m “ m ` 1
12: until mink }sk}22 ď s0 OR m ą“ K

13: Output xX, pS, xXbg, pSbg

To improve the computational efficiency of our method, we introduced two optional modifications
to the algorithm’s order of computations. First, because inner products of distant spatial profile
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shapes are nearly independent, multiple new spatial profiles can be selected at each iteration by
seeking multiple, well-separated, local maxima of vt. Second, calculating all inner products with the
residual at each iteration can be computationally expensive (essentially K 3D convolutions between
each dk and the data). For small-to-medium sized datasets, we offset some of the computational
burden, at the cost of additional memory, by using the linearity of the inner product. Using the
reformulation

pY ´ XST qTdk “ Y Tdk ´ SXTdk,

the algorithm could pre-calculate the inner products with the data (Y ˙dk) and the spatial profiles
(XTdk), and the inner products with the residual were then calculated via a small number of outer
products SpXTdkq and a subtraction operation. The computational savings of this reorganization,
however, were diminished for larger datasets where memory allocation became as burdensome as
calculating convolutions. SCISM was implemented in MATLAB and made use of the TFOCS
library [52] to solve the weighted, non-negative LASSO optimization step. Typical analysis ran at
a rate of approximately 20 s per profile found.

vTwINS and High-NA Spatial Profile Registration

High resolution anatomical z-stacks (median of 200-300 frames per slice at 2.5-4µm slice separation
taken with the high-NA beam path) were taken for each vTwINS imaging volume to align the
vTwINS spatial profiles to anatomical positions. Alignment between the anatomical z-stack and
the vTwINS imaging volume was performed in two steps: 1. The 3D position of cells was estimated
to their position within the vTwINS volume. 2. The estimated 3D positions were offset to the
anatomical volume. First, the centroids of each half of the spatial profile were used to calculate the
3D cell position via d “ 0.5p∆ ´ ∆minq{ tanpθq, where ∆min is the minimum inter-beam distance of
the PSF and θ is the beam angle from the axial direction. A correction to the xy position was made
for any differences in θ between the two halves of the vTwINS PSF. Second, a 3D offset between
the estimated positions and anatomical z-stack positions was either automatically or manually
calculated. For automatic alignment, the anatomical stack was first deconvolved (Lucy-Richardson)
with the high-NA PSF and then convolved with the vTwINS PSF. A 3D cross-correlation was then
calculated between the convolution stack and the median vTwINS image and the peak of the cross-
correlation was used as the offset between the vTwINS images and the anatomical z-stack. For
manual alignment, highly active cells with similar cell shapes between the vTwINS spatial profiles
and high-NA anatomical z-stacks were located manually and used to estimate the offset between
the vTwINS images and anatomical z-stack.

For simultaneous vTwINS and conventional TPM imaging, neural activity was independently ex-
tracted from raw images with separate analyses. Neural activity underlying calcium dynamics for
conventional TPM was estimated using the Constrained Non-negative Matrix Factorization and
deconvolution algorithm (CNMF) to demix contributions from possibly overlapping cells [22, 53].
Spatial profiles extracted using CNMF were manually selected for regions that approximated a cell
shape (roughly circular, 10-15 µm in diameter). To compare number of spatial profiles between
imaging modalities, spatial profiles from either methods were only included if their center position
was within 20 pixels (18 µm) of the x (fast-scanning) edge of the acquisition region. This is to
prevent bias from clipping half of a single vTwINS profile near the edges of the image.

Spatial profiles and time traces extracted using vTwINS OMP and CNMF were paired off by their
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normalized time trace Pearson correlation (Supplementary Fig. 7), subject to the constraint that
the extracted spatial profile center positions were within 5 pixels (4.5 µm) in the y (slow-scanning)
direction and 40 pixels (37 µm) in the x (fast-scanning) direction. This distance is roughly equal
to half the maximum separation distance between vTwINS spatial profile image pairs, which does
not restrict pairing of CNMF spatial profiles to vTwINS spatial profiles with a single blocked beam.
Spatial profiles and time traces were paired off until the correlation dropped below a 5σ excess of
the average correlation between any two time traces. Only high activity cells with >1 statistically
significant transient/min [54] were included for this analysis. A transient was considered statistically
significant if its peak was >3σ above the average noise levels.
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Supplementary Figures and Videos

Supplementary Video 1: Video of motion-corrected vTwINS images acquired from V1 and used in
Figure 4.

Supplementary Video 2: Video of pre-processed vTwINS images acquired from V1 and used in
Figure 4. Images were pre-processed images (5-frame temporal average and two-fold spatial binning)
with background-subtraction (median of movie).

Supplementary Video 3: Video of motion-corrected vTwINS images acquired from V1 and used in
Figure 5.

Supplementary Video 4: Video of pre-processed vTwINS images acquired from V1 and used in
Figure 5. Images were pre-processed images (5-frame temporal average and two-fold spatial binning)
with background-subtraction (median of movie).

Supplementary Video 5: Video of motion-corrected vTwINS images acquired from CA1 and used
in Figure 6. Images were averaged with 5 frames temporally.

Supplementary Video 6: Video of pre-processed vTwINS images acquired from CA1 and used in
Figure 6. Images were pre-processed images (5-frame temporal average and two-fold spatial binning)
with background-subtraction (median of movie).

Supplementary Video 7: Video corresponding to SCISM demixing for V1 data Figure 4. The upper
left portion of the videos shows the spatial locations of all profiles found in all iterations thus far.
Each pair of circles with a connected line show the pair of images comprising the found profiles.
The upper right portion of the video shows the pair locations (circles with connected lines from the
upper left portion) super-imposed on the mean-to-variance ration of the movie (a simple measure
of activity). This demonstrates that pairs of activity locations f similar strength are picked up.
The bottom portion of the video shows the time traces for the set of profiles found at the current
iteration.
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Supplementary Figure 1: vTwINS depth recovery of fluorescent beads. (a) vTwINS image of a
volume containing beads at different locations. Circles depicting locations of all the beads in the
vTwINS axial range are color coded by depth (blue is deeper, indicating nearer images, and green
is shallower, implying wider images). (b) Spatial profiles recovered automatically from the single
vTwINS image are color coded on the same depth scale. Beads at the edge of the field of view
have occluded images, and are thus excluded from the analysis as depth cannot be ascertained. (c)
Histograms depicting the axial localization error in as well as the total displacement error show
that vTwINS can recover bead locations to within approximately 5 µm. (d) The 3D scatter plot
compares both the true location of the beads (red dots) and the estimated location (blue circles) to
better visualize the vTwINS accuracy.
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Example frame 1

Pre-processed frame 1

Example frame 2

Pre-processed frame 2

Supplementary Figure 2: Example frames of full FOV vTwINS data acquired from V1. Top: two
examples of vTwINS images from V1. Bottom: Corresponding pre-processed images (5-frame tem-
poral average and two-fold spatial binning) with background-subtraction. Pre-processing makes
active pairs of neuronal images more apparent.
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Supplementary Figure 6: Alternate optical setup for simultaneous imaging using vTwINS and con-
ventional TPM. After each frame, a galvanometer switches between a conventional high-NA TPM
path and a low-NA Gaussian vTwINS path. A mirror is used to recombine the two paths, with an
offset angle of 0.88˝.
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Supplementary Figure 7: Extended comparison between vTwINS and high-NA spatial profiles and
time traces. (a) Histogram of correlations between vTwINS and high-NA time traces. The majority
of correlations cluster tightly around zero, and the tail of outliers indicates the correlations for paired
traces. (b) Pearson correlations remain high for the top 98 paired profile traces before falling sharply
when no more good pairings remain. The red line indicates the ρ “ 0.5 cutoff for determining a
pairing. (c) Four examples of paired traces for both vTwINS imaging (black lines, top of each pair of
plots) and high-NA imaging (blue lines, bottom of each pair of plots). Red horizontal lines indicate
the 3σ threshold for significant transients.
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Supplementary Figure 8: Example frames of full FOV vTwINS data acquired from CA1. Top:
two examples of vTwINS images from V1. Bottom: Corresponding pre-processed images (5-frame
temporal average and two-fold spatial binning) with background-subtraction. Pre-processing makes
active pairs of neuronal images more apparent.
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Supplementary Figure 11: Anatomical z-stack comparison of found spatial profiles in CA1. (a)
Example spatial profiles and time traces from CA1. (b) Corresponding location of activity in the
anatomical z-stack. White numbers at the top of each image indicates the relative depth in the
z-stack.
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Supplementary Figure 12: Example frames of half FOV vTwINS data acquired from V1. Top:
two examples of vTwINS images from V1. Bottom: Corresponding pre-processed images (5-frame
temporal average and two-fold spatial binning) with background-subtraction. Pre-processing makes
active pairs of neuronal images more apparent.
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