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Abstract

Disease tolerance is a defense strategy against infections that aims at main-
taining host health even at high pathogen replication or load. Tolerance
mechanisms are currently intensively studied with the long-term goal of ex-
ploiting them therapeutically. Because tolerance-based treatment imposes
less selective pressure on the pathogen it has been hypothesised to be “evolution-
proof”. However, the primary public health goal is to reduce the incidence
and mortality associated with a disease. From this perspective, tolerance-
based treatment bears the risk of increasing the prevalence of the disease,
which may lead to increased mortality. We assessed the promise of tolerance-
based treatment strategies using mathematical models. Conventional treat-
ment was implemented as an increased recovery rate, while tolerance-based
treatment was assumed to reduce the disease-related mortality of infected
hosts without affecting recovery. We investigated the epidemic and endemic
phases of two types of infections: acute and chronic. Additionally, we con-
sidered the effect of pathogen resistance against conventional treatment. We
show that, for both acute and chronic infections, tolerance-based therapy
enlarges the population of infected hosts, which in turn increases the preva-
lence and incidence of the disease. For low coverage of tolerance-based treat-
ment, chronic infections can cause even more deaths than without treatment.
Overall, we found that conventional treatment always outperforms tolerance-
based treatment, even when we allow the emergence of pathogen resistance.
Our results cast serious doubts on the potential benefit of tolerance-based
over conventional treatment. Any clinical application of tolerance-based
treatment of infectious diseases has to consider the associated detrimental
epidemiological feedback.
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Introduction

Hosts can respond to infections in various ways. The host can reduce the
pathogen replication or load and thus improve its health. In evolutionary
ecology, such a response is called “host resistance”.

Another possible host response is “disease tolerance” , that induces a
state, in which the host, at a given pathogen load, suffers less from the
negative consequences of being infected.

In evolutionary ecology, disease tolerance has received attention as a host
strategy that impacts the evolutionary dynamics of host-pathogen systems
very differently from host resistance [1, 2]. For example, resistance genes are
predicted to disappear in the long run. First, they drive the pathogen pop-
ulation to extinction, but eventually resistance genes are lost, since they do
not confer any fitness advantage without pathogen pressure. Host resistance
might select for resistant pathogens. Tolerance genes, on the other hand,
do not drive the pathogen to extinction. They even increase the prevalence
of the pathogen, thus increasing the selective pressure favoring themselves.
This positive evolutionary feedback often leads to the fixation of tolerance
genes [3, 4] — although scenarios explaining polymorphisms in tolerance have
been considered [5].

The particular molecular and immunological mechanisms that confer host
resistance are clinically relevant as they provide targets for therapeutic agents.
The most common treatment agents, such as antibiotics or antivirals, aim at
reducing pathogen replication or burden and are often based on host resis-
tance mechanisms. A class of agents against HIV, for example, inhibits the
coreceptor CCR5 — a treatment strategy inspired by a naturally occurring
polymorphism in the gene encoding CCR5 that reduces the susceptibility of
individuals to HIV infection [6].

But tolerance mechanisms can also be exploited therapeutically. For ex-
ample, widely used anti-inflammatory drugs reduce the negative impact of
an infection without targeting the pathogen directly. Other examples of tol-
erance mechanisms involve Plasmodium that leads to the release of heme
from erythrocytes, which has proinflammatory properties. The inflamma-
tion triggers a reactive oxygen species response that can lead to liver failure
in individuals with malaria. Some individuals, however, express an enzyme
— heme oxygenase 1 (HO-1) — that prevents liver failure by limiting the
reactive oxygen species response. Because this does not affect the level of
the pathogen it represents a tolerance mechanism. Inhibiting the reactive
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oxygen species response with a pharmacological agent that acts similarly to
HO-1 has been shown to limit liver failure in mouse models [7]. HO-1 was
also shown to provide host tolerance by preventing free heme from promoting
severe sepsis [8]. Additional tolerance mechanisms against severe sepsis have
recently been discovered [9], which involve the inhibition of cytokine produc-
tion by anthracyclines. Similarly, based on the observation that sickle human
hemoglobin confers tolerance to malaria, it was proposed that modulation of
HO-1 via the transcription factor NF-E2-related factor 2 (Nrf2) might be
a therapeutic target for treating cerebral malaria [10]. We refer to treat-
ment strategies that are based on tolerance mechanisms as tolerance-based
treatment.

Tolerance-based treatment is seen to have great promise [11] — in part,
simply as a complement to more conventional treatment based on the ex-
ploitation of host resistance mechanisms. Some even hypothesize that tolerance-
based treatment is resistance-proof as it does not exert any selection pressure
on the pathogen [1, 12].

However, also negative consequences of tolerance-based treatment have
been considered. Treated hosts could become healthy carriers of the pathogens,
hence giving them more opportunity for transmission [3, 13, 14, 15]. More-
over, it was postulated that damage-limitation treatments — a form of
tolerance-based treatment — might select for increased pathogen transmis-
sion [15, 16]. In an evolutionary context, it was also found that pathogen
virulence may increase in a tolerant host population [17]. In the context of
public health, this translates into a risk of evolution towards higher virulence
in response to tolerance-based treatment. But in the study by Miller et al.
this higher virulence did not affect host mortality because all hosts carried
the tolerance gene.

Generally, the translation of insights from evolutionary ecology to the
public health situation is hindered by the fact that tolerance genes usually
fix in the host population, and hosts are therefore protected from dying.
Tolerance-based treatment, even if it confers great benefits to individual
hosts, cannot be expected to be applied to the entire population. As a
consequence, disease-induced mortality could increase when tolerance-based
treatment is rolled out.

Here, we assess the promise of tolerance-based treatment (TOL) on the
population level and investigate the public health impact of treatment at var-
ious levels of coverage. While most previous studies focused on changes in the
incidence and prevalence of the disease, we specifically focus on the disease-
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induced mortality. To this end, we use mathematical models. Specifically,
we extend the well-known epidemiological SIR model, featuring susceptible,
infected, recovered individuals, by an additional compartment of treated in-
dividuals. We investigate the effect of TOL for two types of infections: acute
and chronic.

While, at the individual level, TOL can be effective, and may even pre-
vent the evolution of pathogen resistance in the long run, it is problematic
epidemiologically. As TOL introduces asymptomatic carriers of the disease,
it may increase mortality when its coverage is low. We indeed show that for
chronic infections the disease-induced mortality increases for low treatment
coverage. Comparing TOL to conventional treatment, based on a reduction
of load (ROL), we find that for both, acute and chronic infections, ROL al-
ways outperforms TOL even when we consider that pathogen resistance can
emerge against ROL.

Methods

Compartment model for a single treatment

We consider an extended SIR model in which infected patients can be treated.
The model is depicted in Fig 1. Susceptible (uninfected) hosts S enter the
population at a rate Λ, and die at a per capita rate δ. They can be infected
by individuals that are either untreated (I) or treated (Iθ). Susceptible hosts
become infected at a rate that depends on the number of susceptible S, the
total number of infected I+Iθ and transmission rates β and β(1− cθ), where
cθ is a cost of transmission associated to treatment. This reflects contact-
dependent transmission from infected hosts to uninfected hosts. Infected
hosts die at a rate δ+ v, with v ≥ 0 indicating a higher mortality of infected
than susceptible. Infected can recover at a per capita rate r and become part
of the recovering population R. Similarly, treated infected die at a rate δ+vθ
and can recover at a per capita rate rθ. Untreated infected individuals are
treated at a rate θ, and become immediately treated infected. The model is
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summarized by the system of ordinary differential equations

Ṡ = Λ − δS − βS(I + (1 − cθ)Iθ)

İ = βS(I + (1 − cθ)Iθ) − (δ + v)I − θI − rI

(1)

İθ = θI − (δ + vθ)Iθ − rθIθ

Ṙ = rI + rθIθ − δR.

We assume that treatment is instantaneous and that infected individuals
become treated infected at a rate θ. Infected individuals leave the infected
state at a rate δ + v + r + θ, and a fraction

ϕ =
θ

θ + r + v + δ
(2)

of them become treated infected. This rate ratio can be regarded as the prob-
ability for an infected individual to be treated instead of leaving to another
state (death or recovery). Our current model can easily be modified to con-
sider independently a non-instantaneous treatment rate τ and a fraction of
treated population 0 ≤ f ≤ 1. In that case, the term θ in the system of equa-
tions (1) has to be replaced by the rate fτ , and the fraction of infected hosts
that effectively become treated infected is equal to ϕ = fτ

fτ+r+v+δ
. The frac-

tion of effectively treated increases from ϕ = 0 for f = 0 to ϕmax = τ
τ+r+v+δ

for f = 1. All the following measures of the efficacy of treatment (Figs. 2
and 3) are presented for a fraction of treated population ranging from 0 to
1. These results can be directly extended to the non-instantaneous treat-
ment rate model, where the fraction of treated population has to be limited
between 0 and ϕmax to account for the additional parameter τ .

Implementation of the treatments

For the implementation of the TOL, we assume that the death rate is lower
for treated than untreated individual (vTOL = vθ < v), but that the hosts are
still infectious (rTOL = rθ = r). Moreover, we consider that the transmission
rates of treated and untreated hosts are the same (cTOL = cθ = 0).

For a ROL the hosts recover faster than without a treatment, but the
mortality rate is the same (rROL = rθ > r and vθ = v). In the numerical
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applications we chose the transmission rate to be the same with and without
treatment (cROL = cθ = 0).

In addition, we consider a treatment that combines the properties of TOL
and ROL (TOL+ROL). We translate this effect by combining the benefits of
the two treatments, the increased recovery rate of the ROL and the decreased
mortality rate of the TOL (rTOL+ROL = rROL and vTOL+ROL = v).

In this study, we will evaluate the benefits of a treatment by considering
three measures. First, the incidence, defined as the number of new infections
in a period of time, is

βS(I + (1 − cθ)Iθ). (3)

Second, the prevalence of the disease, which is the ratio of infected individuals
over the total population, is

I + Iθ
S +R + I + Iθ

. (4)

Finally, we will measure the disease-induced mortality, which is the fraction
of deaths that are due to the disease over the total number of deaths, given
by

vI + vθIθ
δS + δR + (v + δ)I + (vθ + δ)Iθ

. (5)

Throughout this study, we evaluate how these three measures vary at equi-
librium with the fraction of treated population. Model (1) has two equilib-
ria: the disease free equilibrium (DFE) and the endemic equilibrium (EE).
Whether one equilibrium or the other is attained depends on the relative
value of the model parameters (See Supplementary Text S1 for details on the
equilibrium values and the equilibrium stability analysis).

Moreover, the efficacy of the treatments are evaluated for two types of
infection: an acute infection, which is highly transmissible, with fast death
and recovery rates, and a chronic infection, with a slower dynamics than
the acute infection, and for which no recovery is possible in the absence of
treatment.

Model of pathogen resistance to the conventional treat-
ment

In an extension of the model, we assumed that ROL can induce pathogen
resistance to treatment, and added to the compartment model the number
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IR of hosts that are infected by pathogens resistant to treatment. Treated
individuals can develop resistance to treatment at a rate sRES, called acquired
(or de novo) resistance. Susceptible individuals can be infected by treated,
untreated, or resistant hosts. If a susceptible individual is infected by a
non-resistant, it becomes infected non-treated, but becomes resistant if it
is infected by a resistant individual. Individuals infected by the resistant
pathogen die at a rate δ+vRES. The model is an extension of model (1) with
an additional compartment for the infected resistant and the corresponding
transition rates (Fig 1) and is described by the set of equations

Ṡ = Λ − δS − βS(I + (1 − cROL)IROL + (1 − cRES)IRES)

İ = βS(I + (1 − cROL)IROL) − (δ + v)I − rI − θROLI

İROL = θROLI − (δ + vROL)IROL − rROLIROL − sRESIROL (6)

İRES = β(1 − cRES)SIRES + sRESIROL − (δ + vRES)IRES − rRESIRES

Ṙ = rI + rROLIROL + rRESIRES − δR.

In our model, resistance can appear in two ways. First, individuals receiving
ROL can acquire resistance at a rate sRES, and second, susceptible indi-
viduals can be infected by resistant infected. Transmission of the resistant
pathogen is described by a mass action law with an infection rate β(1−cRES),
where cRES > 0 represents the fitness cost of transmission associated to
pathogen resistance to treatment.

Similarly to the case without resistance to treatment, the system of equa-
tions has a disease-free and an endemic equilibrium. Additionally, there is a
third equilibrium where all the infected individuals are resistant to the treat-
ment. It can be shown analytically that there is always a threshold value of
the treatment coverage such that only resistant pathogens exist at equilib-
rium, provided that the cost of transmission of the resistant pathogen cRES
is small enough. Details of the equilibrium values for the model of pathogen
resistance are given in Supplementary Text S2.
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Choice of parameters

Parameters in the absence of treatment: The death rate without a
disease is set to δ = 1/70 years−1 and Λ is determined so that the ratio Λ/δ
is equal to a fixed population size in the case of no epidemic. We choose
Λ = 106δ = 1.43 104 years−1. The transmission rate β is chosen so that the
basic reproductive ratio R0 = Λβ

δA
= 2 when no treatment is applied. We

assume that the TOL reduces the death rate of the disease, and that the
ROL increases the recovery rate.

For an acute infection: The parameters r and v are chosen so that one
out of fifty infected individuals dies without treatment. Hence, v

r+v+δ
= 1

50
.

Moreover, we set the duration of the infection to be 1
r+v+δ

= 2 weeks.

• Death rates v = 0.01 week−1 vROL = vRES = v, vTOL = 0.

• Recovery rates r = 0.49 week−1, rROL = 0.98 week−1, rTOL = r, rRES =
r.

• Transmission rates β = 1.0 10−6 week−1, costs of transmission cROL =
cTOL = 0, and cRES = 0.2 (fitness cost of pathogen resistance to treat-
ment).

• Rate of acquired resistance sRES = 0.007 week−1.

For a chronic infection: Infected untreated individuals cannot recover,
and die from the infection in 10 years.

• Death rates v = 0.002 week−1, vROL = vRES = v, vTOL = 0.

• Recovery rates r = 0, rROL = 0.02 week−1 , rTOL = 0, rRES = 0.

• Transmission rates β = 4.4 10−9 week−1, costs of transmission cROL =
cTOL = 0, and cRES = 0.2 (fitness cost of pathogen resistance to treat-
ment).

• Rate of acquired resistance sRES = 0.007 week−1.

In the Supplementary Information, we provide results for various sets
of parameters, and show that the main conclusions of this study remain
unchanged (Fig S1).
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Results

We investigated the impact of TOL on the population of hosts with a math-
ematical model. We based our model on the SIR model [18, 19, 20], which
describes susceptible, infected, and recovered hosts. To describe treatment,
we divided the compartment of infected individuals into a treated and an un-
treated compartment (see Figure 1). Treated individuals arise from infected
untreated individuals at a given rate and remain infectious.

ROL treatment is implemented in this model as an increased recovery rate
of treated individuals. Treated individuals are less infectious than untreated
ones because they recover faster. Per unit time their infectiousness is not
assumed to be affected by treatment. Tolerance-based treatment, on the
other hand, does not affect the rate of recovery but lowers the disease-induced
death rate of treated hosts. Because TOL, by definition, does not affect the
pathogen load we assume that treated individuals are equally infectious as
untreated ones per unit time. However, they cause more infections than
untreated individuals because they live longer and thus have an extended
infectious period.

We assess the effect of treatment on three epidemiological quantities:
prevalence, incidence, and disease-induced mortality. We determine these
quantities in the endemic equilibrium for different levels of treatment cov-
erage. In the Method section, we show how we calculated these quantities
from our model equations. Because TOL increases the infectious period,
we expect the incidence and prevalence to rise. The effect of TOL on the
population-wide disease-induced mortality depends on how the higher preva-
lence is balanced by the lower mortality of treated individuals.

We investigate the impact of TOL and ROL for acute and chronic in-
fections. Acute infections are modeled with influenza in mind, and are
characterized by a short period of infection and a high transmission rate.
Specifically, an untreated infection is assumed to last two weeks and the case
fatality proportion is set to 1/50. Chronic infections are assumed to last
years and there is no recovery, as for HIV infection. For both types of in-
fection, the basic reproduction number R0 = 2 in the absence of treatment.
We neglect seasonal fluctuations in any of the model parameters because this
would preclude an equilibrium analysis.
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Tolerance-based treatment is beneficial on the popula-
tion level only when coverage is large

We assessed the efficacy of treatment by evaluating numerically the incidence,
prevalence and disease-induced mortality for different levels of treatment cov-
erage. We vary treatment coverage by changing the rate of treatment, θ. We
define treatment coverage as the fraction of treated hosts, which is the prod-
uct of the rate of treatment times the duration of an untreated infection:

θ
θ+δ+v+r

.
ROL reduces the incidence, the prevalence and the disease induced mor-

tality (Fig 2a-f). Thus, ROL is unambiguously effective on the population
level, which is owed to the fact that it shortens the infectious period. For the
parameters chosen here, chronic infections can even be eradicated by ROL if
the coverage exceeds 55% (Fig 2d-f).

TOL, on the other hand, affects the epidemiology very differently. Un-
like ROL, TOL increases incidence and prevalence (Fig 2a,b,d,e). This effect
is due to TOL lengthening the infectious period. The rise is way less pro-
nounced for acute than for chronic infections. For the acute infection, the
incidence increases by only 2% with the treatment coverage (Fig 2a), while,
for chronic infections, it rises from 140 to 260 new infections per week (Fig
2d). Similarly, the prevalence increases by 2% in acute infections (Fig 2b),
as compared to the chronic infection where the prevalence rises from 0.11 to
0.93 (Fig 2e).

The effect of TOL on disease-induced mortality is similar to ROL. For
large treatment coverage, disease-induced mortality is reduced for both, ROL
and TOL. However, there are subtle differences: In chronic infections TOL
can even increase the disease-induced mortality when the coverage is low
(Fig 2f). This is due to the fact that there is no recovery from chronic
infections in our model, and treated hosts keep infecting for life. This effect
is maintained even when infected hosts can recover, provided that the time
to recovery is long enough. Thus, for chronic infections, the population-level
disadvantages of TOL outweigh the benefits to the individual.

Combining ROL and TOL decreases the mortality in
acute infections

To assess if TOL could be a useful addition of our treatment repertoire when
combined with ROL, we implemented a strategy we call TOL+ROL. Indi-
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viduals receiving this combination treatment experience both, faster recovery
(due to ROL) and decreased mortality (due to TOL) (see the system of equa-
tions(1) in the Methods section). Again, we calculate the endemic incidence,
prevalence and disease induced mortality under TOL+ROL and compare it
to these measures under TOL and ROL alone (Fig 2).

We find that TOL+ROL does not improve on ROL in terms of incidence
and prevalence but it does not do worse either — a very conceivable outcome
given that individuals receiving TOL+ROL live longer. Apparently, the gain
in life expectancy of individuals receiving TOL+ROL does not translate into
a substantial increase of incidence and prevalence (Fig 2a,b,d,e) because,
due to fast recovery under TOL+ROL, this strategy does not produce many
asymptomatically infected individuals that increase the force of infection.
With respect to disease induced mortality, TOL+ROL outperforms ROL in
acute infections (Fig 2c). This effect is a direct consequence of the lower
mortality rate of individuals treated with TOL+ROL as compared to ROL.

Thus, TOL can be a useful additional treatment strategy, especially for
acute infections, if combined with ROL. Unlike on its own, in combination
with ROL it is certainly not predicted to have negative public health conse-
quences. It can be shown that TOL+ROL has public health benefit across
the entire range of possible treatment coverage if the faster recovery out-
weighs the increase in life expectancy. Formally, the duration of infection in
treated individuals, 1/(δ+vθ+rθ), needs to be smaller than that in untreated
individuals, 1/(δ + v + r).

Resistance to the ROL treatment

Up to this point in our analysis, TOL did not have any advantage over
ROL. One supposed advantage of TOL, which we have not yet taken into
account, is that it does not provoke pathogen resistance. The reason for this
is that TOL does prolong rather than shorten the infectious period in treated
individuals and thus increases pathogen fitness. Reduction of the pathogen
load that follows ROL treatment, on the other hand, imposes a negative
selection pressure on the pathogen by reducing the duration of infection. In
response, the pathogen might evolve resistance.

To assess the promise of TOL more comprehensively, we included pathogen
resistance to ROL into our model. To this end, we added a compartment for
individuals infected with resistant pathogen strains (Fig 1). Individuals enter
this compartment either after being infected and receiving treatment, which
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may trigger de novo resistance emergence. Resistant pathogen strains are also
assumed to be transmitted. We further assume that resistant pathogens ren-
der ROL ineffective, i.e. individuals infected with resistant pathogen strains
have the same recovery and disease-induced death rates as untreated infected
individuals. Lastly, we allow resistant pathogens to carry a fitness cost in
terms of a lower transmission rate.

We do not implement the emergence of resistance as a stochastic process.
While this would be admittedly more realistic, treating resistance determin-
istically is more favorable to TOL. We thus present the best case scenario
for TOL.

We find that resistance outcompetes the wildtype pathogen strain if the
treatment coverage exceeds a threshold, ϕROL. For the parameters we chose,
ϕROL = 0.2 for acute and ϕROL = 0.4 for chronic infections (Fig 3a and e).
Below this threshold, wildtype and resistant pathogen strains coexist.

Below the threshold ϕROL, the incidence, prevalence and disease-induced
mortality are very similar to the model without pathogen resistance. Above
the threshold, the three measures under ROL and TOL+ROL become inde-
pendent of treatment coverage because treatment is assumed not to affect
resistant pathogen strains. The incidence and prevalence under ROL and
TOL+ROL still remain below the levels they attain under TOL even if we
allow pathogen resistance to evolve. However, the disease-induced mortality
under TOL can become smaller than under the other treatment strategies
for high treatment coverage (Fig 3d and h). For chronic infections, the levels
of treatment coverage for which TOL becomes advantageous is much larger
than the threshold ϕROL: TOL becomes beneficial if treatment coverage ex-
ceeds approximately 60% (Fig 3h). Some of these results depend critically
on our equilibrium assumption (see Discussion).
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Discussion

Tolerance mechanisms are currently considered to be exploited therapeuti-
cally [11]. Undoubtedly, once developed, tested and approved, TOL will
benefit treated individuals. This clear benefit of TOL should not cloud our
view for what is most important: the direct public health consequences of
such treatment as measured by the number of lives saved population-wide.
In this paper, we assessed the potential of TOL from the public health per-
spective.

We find that TOL is not more beneficial on the population level than ROL
unless coverage is very high. This applies to acute and chronic infections
alike, irrespective of whether we take pathogen resistance into consideration.
The levels of coverage required to make TOL superior to ROL — above 50%
in our simulations — could probably be attained only for chronic infections in
countries with an excellent public health infra-structure. For acute infections,
treatment coverage will be low. Thus, TOL on its own is not a promising
treatment strategy from a public health perspective.

TOL is also of limited use as a supplement to other interventions. We
considered the combination of TOL and ROL. Except for acute infections
and low coverage, this combination is not better than ROL on its own.

Because specific agents for tolerance-based treatment are still in develop-
ment, a mathematical modeling approach is currently the most appropriate
way to assess the public health impact of TOL. Mathematical modeling also
allows to gain insights into a wide range of different infections and to apply
TOL and ROL at different levels of coverage, separately and in combina-
tion. Having said that, experimental study systems are being developed that
will allow to directly assess the epidemiological effect of TOL. A recently
developed transmission model, involving Salmonella infection of tolerant and
non-tolerant mice, highlighted the role of tolerant mice in the spread of the
infection [21]. While being certainly more biological, such transmission mod-
els cannot easily be scaled up to the population sizes a pathogen encounters
during an epidemic. Furthermore, the treatment agents might have multi-
ple effects that do not easily fall into the categories of TOL or ROL. Thus,
even with transmission models, mathematical modeling will play a role in
assessing the public health consequences of treatment.

Formally, our modeling of TOL bears most similarities with studies on
the epidemiological and evolutionary aspects of imperfect vaccines [22, 23].
In particular, the anti-toxin vaccines discussed in these studies reduce the
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virulence in the vaccinated hosts without affecting transmission, recovery, or
infection probability, and are therefore identical to TOL in terms of their
effect on the infection parameters of an individual. However, anti-toxin vac-
cines differ from TOL in that they are given also to uninfected hosts. Thus,
these vaccines are equivalent to prophylactic TOL. As a consequence, the
impact of anti-toxin vaccines on mortality differs from TOL: when evolution
is not considered, the mortality continuously decreases with increasing vac-
cine coverage. In our study in contrast, we find that mortality first increases
before decreasing for chronic infections.

Other notable mathematical model of TOL [15] studied the potential epi-
demiological and evolutionary effects of damage-limitation treatment, which
targets pathogen virulence or increase host tolerance. The model of Vale
et al. has similarity with a previous model by Miller et al. [17], that was
formulated in the context of the evolutionary dynamics of tolerance genes.
In these models, 100% of the hosts carried the tolerance gene. Translated
into the context of TOL this represents a regime, in which all individuals re-
ceive damage-limitation treatment irrespective of whether they are infected
or not. As a consequence, these models provided only limited insight into an
assessment of a potential public health benefit of TOL: while the prevalence
of the disease is predicted to be increased, disease-induced mortality is re-
duced. This model is similar to the vaccination model proposed by Gandon
and colleagues [22] in that treatment is administered prophylactically. More-
over, Vale et al. [15] study the effects only in a scenario in which all hosts
are tolerant, i. e. at 100% coverage.

In contrast, our analysis focuses on a treatment given only to infected
individuals, and is thus not prophylactic. Moreover, the treatment is given to
a fraction of the infected population. Thus, our model addresses the impact
of treatment coverage on the epidemiological feedback of TOL. In particular,
we focused on the disease-induced mortality — the most relevant entity for
public health. This feedback is most pronounced at low treatment coverage
where the increase in prevalence due to TOL meets a sufficient frequency of
untreated, and hence vulnerable, hosts.

TOL could be useful when linked with transmission control, or if the tol-
erance induction goes hand-in-hand with a reduction of transmission. Some-
times such transmission reductions are a side effect of TOL [24]. Our model
allows us to calculate the transmission reduction required for TOL not to
increase disease prevalence: transmission has to be reduced by 2% in acute
and by 88% in chronic infection (see Supplementary Text S3). However,
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such transmission control might reduce pathogen fitness, and pathogen could
evolve in response to TOL. In this study, we do not consider the potential
evolutionary consequences of TOL. Recent papers [15, 16] suggest that TOL
could increase pathogen virulence, especially when virulence and pathogen
fitness are tightly linked [25]. Our model suggests that pathogen evolution
could have a dramatic effect in chronic infections, where infected hosts are
infectious for a long time. The mortality, that already increases because of
the epidemiological feedback, will be amplified by the higher virulence of
evolved pathogens. Further studies are needed to assess the public health
implications of pathogen evolution in response to TOL. To go beyond the
insights of Vale et al., such studies should focus on the non-prophylactic use
of TOL and consider a broad range of treatment coverage.

Tolerance treatments might however be applied in hospitals, where trans-
mission can be curbed. The benefits for the individual would not be out-
weighed by the damage for the population. Of particular interests are tol-
erance mechanisms involving free heme regulation, which suggest promising
applications for treating severe sepsis [8], especially since available treatments
are limited [26].

The main disadvantage of TOL that we identified does not rely on the
evolution of the pathogen but arises simply through the epidemiological feed-
back that is amplified by TOL. Our results raise serious doubts about the
promise of tolerance-based strategies applied without transmission control,
especially when treating chronic infections.
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Figure 1: Schematic of the compartment model. The main model
is presented in eq. (1). The extended model, that includes resistance to
treatment, is represented in dashed lines in the schematic and is detailed in
eq. (6).
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Figure 2: Evaluation of the efficacy of TOL and ROL in acute and
chronic infections. Equilibrium values of the incidence (a,d), prevalence
(b,e), and fraction of mortality due to infection (c,f), which normalizes the
disease-induced mortality by the overall mortality. These epidemiological
measures are plotted against the fraction of the population that receives
treatment. The effect of TOL is displayed in light red, that of ROL in black,
and that of TOL and ROL combined in blue. Parameters for both acute and
chronic infections are given in the Methods section.
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Figure 3: All pathogens become resistant to treatment for large cov-
erage of the ROL treatment. Fraction of the population infected by the
resistant pathogen over the total infected population (a, e), and equilibrium
values of the incidence (b,f), prevalence (c,g), fraction of mortality due to
infection (d,h). These epidemiological measures are plotted against the frac-
tion of the population that receives treatment. The effect of ROL is displayed
in black, that of TOL and ROL in blue. TOL, which does not lead to re-
sistance, is represented in red and is reproduced for comparison from Fig 2.
Parameters for both acute and chronic infections are given in the Methods
section.
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Supporting Information

• S1 text. Equilibrium analysis of the tolerance-based treatment model.

• S2 text. Equilibrium analysis with pathogen resistance to treatment.

• S3 text. Impact of the different treatments on the basic reproduction
number.

• Fig S1. Robustness of the results to parameter changes.
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