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Abstract 
 
Until recently, 13C-based flux analyses have almost exclusively relied on 
analysis of labelled amino acids in proteins. This approach is not directly 
applicable to Leishmania, as these parasites scavenge most of their amino 
acids from the media. Leishmania are also unusual in that they i) share little 
genomic similarity with other organisms ii) constitutively express their 
metabolic genes and iii) display minimal changes in the enzyme levels 
throughout their life cycle stages. The three factors have contributed to an 
early development of comprehensive and reproducible 13C-based 
metabolomics approaches in these parasites. The work presented here 
contributes to the creation of new 13C-based metabolic flux approaches based 
on the isotopologue analysis of free metabolite pools in Leishmania mexicana. 
Namely, a new approach is presented for simultaneous calculation of in vivo 
fractional fluxes (or flux ratios) into two or more metabolite nodes with carbon 
dioxide condensation, based on isotopologue analysis of free metabolite 
pools. This method is used to perform the first quantitative in vivo fractional 
flux calculation of central carbon metabolism in any human parasite. 
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Introduction 
 
Current metabolic research focuses on how to harness the newly acquired 
omics data in order to be able to i) restore metabolic function when things go 
wrong (e.g. in numerous metabolic diseases), ii) disable metabolism of 
pathogens, and iii) optimise metabolic production rates of biotechnologically 
relevant organisms. Most importantly we want to be able to alter cellular 
metabolism in a predictable, rather than previously ad hoc, manner. The 
cellular metabolism comprises a large number of biochemical reactions, and 
the reconstruction of the metabolic network topology is an important first step 
in understanding metabolic function in a particular cell. This static picture 
gives information on the cell’s metabolic capacity. What is of more interest 
however, is the amount of activity throughout different parts of the network. 
Metabolic flux, defined as the rate of flow of metabolite atoms through the 
metabolic network, is the direct measure of a metabolic pathway’s (or 
individual reaction’s) activity level. 
 
In general, metabolic flux inside the cell is regulated by altering the number 
and/or the capacity of enzymes that catalyse a particular reaction. Therefore 
flux increase or decrease is often hypothesized based on the measurements 
of the relevant enzyme or metabolite levels. This can often lead to incorrect 
conclusions, as an increase in enzyme levels does not necessarily indicate an 
increase in the metabolic flux, as enzymes can be present but inactive [1,2].  
Alternatively, an enzyme can be active without having any significant control 
of the overall pathway flux (this scenario is the subject of metabolic control 
analysis [3]). Similarly, metabolite levels alone are not accurate indicators of 
enzymatic activity. The tendency of an organism, or a cell, to maintain internal 
equilibrium by adjusting its physiological processes (homeostasis) often 
results in metabolite pool levels remaining constant even though a 
coordinated increase, or decrease, of enzymatic activity throughout a pathway 
is taking place [4]. Moreover, metabolite levels can change in the opposite 
direction to the related enzyme’s activity, if enzymes upstream or downstream 
of them have been activated or deactivated. Therefore, data on enzyme and 
metabolite levels are only able to generate predictions about the rate of flow of 
metabolite atoms between different nodes. Metabolic flux on the other hand, is 
the true measure of this rate. 
 
Only a small number of fluxes, such as nutrient uptake, product secretion and 
biomass production can be measured directly. The intracellular fluxes, which 
carry the most important information, are not directly measurable. Different 
mathematical modelling strategies have been developed to solve the problem. 
According to whether they measure fluxes as a function of time or constant 
fluxes at metabolic steady state, they can be divided into dynamic and static 
(or steady-state) modelling approaches respectively. This work is focused on 
the latter. 
 
All living cells maintain steady state by regulatory mechanisms in order to 
compensate for changes in their external environments, e.g. temperature, 
nutrient content or pH level. It has been observed that even after relatively 
large environmental perturbations, cells reach a new steady state within 
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minutes. Measuring fluxes in metabolic equilibrium, reached after 
perturbations of interest, provides valuable information on the adjustments 
that cells make to regulate metabolic function. At metabolic steady state, 
metabolite levels in the network are constant (or assumed to be near enough 
constant compared to the relevant flux values). Thus, based on the law of 
mass conservation, the sum of all the fluxes that add to a particular 
intracellular metabolite pool must equal the sum of all the fluxes that deplete 
the same pool. Therefore, utilising known reaction stoichiometry, a set of 
linear equations can be written for each intracellular metabolite pool inside the 
metabolic network. The number of equations in the model will be equal to the 
number of metabolites in the network, and the number of unknowns will be 
equal to the number of reactions (or flux values to be determined). In a typical 
metabolic network, metabolites are shared between reactions and hence the 
number of metabolites will be smaller than the number of reactions. This 
means that the overall linear equation system will be underdetermined. In 
other words, there will be more unknowns than the equations to solve for 
them. Two different strategies have been devised to deal with this: i) flux 
balance analysis [5,6,7] and ii) 13C-based flux analysis. Our focus is on the 
latter. 
 
The two most prominent 13C-based approaches are: 13C metabolic flux 
analysis (13C-MFA) [8,9,10,11], and 13C metabolic flux ratio analysis (13C-
MFRA) [12,13,14]. Typically, 13C-labelled substrates are fed to the cells under 
study, allowing different metabolic pathways to cleave and scramble 
substrates' carbon backbone. Under the conditions of metabolic and isotopic 
steady-state, isotopic composition of metabolic intermediates depends on the 
labelling state of the input substrates, network topology, and fluxes operating 
in the network. The isotopic composition of intermediates (and products) can 
be measured by NMR [15,16,17] or mass spectrometry [18,19,20], and given 
that the input substrates and the network topology are known, fluxes operating 
in the metabolic network can be inferred by mathematical modelling. However, 
underlying this is a significant mathematical modelling effort, and a number of 
challenges remain. Firstly, 13C-MFA requires that the topology of the 
metabolic network is known, i.e., as a part of mathematical modelling the 
network topology is assumed. This in turn implies that it is possible to assume 
incorrect network topology, and obtain a seemingly reasonable solution 
(fluxes that fit the experimental data), without any warning signs. Secondly, 
because of the integral nature of the model, any errors in the input data will 
propagate to affect the entire solution. Once the solution fluxes are obtained 
by 13C-MFA a detailed statistical evaluation of the results is recommended 
[21].  
 
13C metabolic flux ratio analysis (13C-MFRA) is a ‘divide and conquer’ variation 
on 13C-MFA. Namely, the method relies on a set of measurements from 13C-
labelling experiments, at isotopic steady state, to resolve relative flux 
contributions of metabolic pathways and/or reactions to a single metabolic 
network node of interest. Unlike 13C-MFA, it does not require comprehensive 
network topology. This comes at the price of being able to compute only 
relative and not net flux values. However, in organisms where topology is yet 
unknown this strategy can prove invaluable in deciphering topology before 
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embarking on a more elaborate 13C-MFA work. The widely available detailed 
drawings of metabolic networks can often leave a novice with a belief that 
very little, if anything, is unknown due to the evolutionary preservation of 
metabolic pathways. However, a recent review estimates that 30-40% of 
metabolic activities are missing enzyme and/or gene allocation in an average 
organism [22]. The view of enzymes as a single substrate converting catalyst 
is also challenged by the existence of so called promiscuous enzymes which 
have the ability to catalyse more than one reaction [23,24]. Therefore, 
although often unjustifiably neglected, 13C-MFRA offers an important insight 
into in vivo flux activity around individual network nodes. This approach is also 
essential to reduce the overall computational effort when the biological 
question of interest can be answered by considering only a few metabolic 
nodes.  
 
Leishmania cause the human disease leishmaniasis, the clinical symptoms of 
which range from cutaneous and mucocutaneous forms through to visceral 
leishmaniasis that is fatal unless treated. It is estimated that 12 million people 
are currently infected worldwide, and that more than 350 million people are at 
risk [25,26]. The leishmaniasis is thought to result in 60,000 deaths each year 
[27], making it the second deadliest protozoan infection after malaria. There is 
no vaccine against leishmaniasis [28] and current chemotherapies are often 
costly, cause severe side effects, and demonstrate increasing rates of 
resistance [29,30,31]. There is an urgent need to identify new drug targets, 
with metabolic pathways that are necessary for growth, differentiation and 
virulence of these important human pathogens being likely candidates. These 
pathways must, at the same time, not present or at least be minimally utilised 
by their host. As well as targeting these novel parasite-specific pathways, it 
may be possible to create metabolic ‘bottlenecks’ leading to the accumulation 
of toxic intermediates. Alternatively, inhibition of an enzyme with slow turnover 
in a parasite and fast turnover in the host is an option (e.g. [32]). Studying 
mechanisms by which these pathogens acquire drug resistance is another 
important area of research. 
 
In microorganisms, 13C-based flux analyses have almost exclusively relied on 
analysis of labelled amino acids isolated from hydrolysed proteins. In 
prokaryotes, this approach is favoured as these organisms synthesise many 
of their amino acids de novo. Even though incorporation of 13C atoms into 
protein takes much longer then into the cellular precursors (i.e. proteinogenic 
amino acids), the abundance of protein within the cell makes it an easy 
substrate to isolate and analyse. Furthermore, in 13C-based flux analyses, out 
of 20 amino acids, 8 metabolite patterns are usually discernible and this is 
often enough to constrain the stoichiometric model of central carbon 
metabolism [33]. Furthermore, metabolite extraction from bacteria is still an 
unsolved problem [33]. These analyses, however, are hampered in organisms 
that scavenge extracellular amino acids, such as Leishmania spp. For 
example L. mexicana have been shown to scavenge most of their amino acids 
from the media and, with the exception of alanine, glutamate and aspartate, 
the labelling of other amino acids is negligible [34]. 
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In common with analyses in other eukaryotes, accurately determining flux in 
Leishmania spp. is further complicated by unknown gene functionality and 
network topology as well as the intracellular compartmentalisation of 
metabolites and pathways. For example, the GeneDB database indicates that 
60% of L. major genes currently have no known functionality [35,36]. The 
knowledge of metabolic gene function is necessary, but not sufficient. The 
connectivity and arrangement of metabolic pathways need to be 
experimentally elucidated for each organism of interest. Nonetheless some 
progress has been made in identifying important carbon sources and 
delineating the network topology of central carbon metabolism [34]. This was 
made possible by using a range of 13C-substrates and detecting the 13C-
enrichment of metabolic intermediates. Despite these advances, 13C-based 
flux analysis has not been applied to Leishmania spp. 
 
The study of flux throughout central carbon metabolism in Leishmania spp. is 
of particular interest given the pathways’ central roles in parasite growth and 
virulence [37]. This is despite the observation that central carbon metabolism 
is largely conserved between species as it is anticipated that, given the 
significant differences in compartmentalisation and regulatory mechanisms 
between host and parasite, central carbon metabolism remains a good drug 
target in Leishmania spp. 13C-MFRA is attractive means to delineate central 
carbon metabolism flux in Leishmania spp. Firstly, 13C-MFRA requires only 
the knowledge of reactions which top up a metabolite pool of interest and, as 
a result, the calculation is often largely independent of the overall network 
topology. This is particularly useful given methods to experimentally ascertain 
Leishmania’s metabolic network topology are still evolving. Secondly, 13C-
MFRA is amenable to high-throughput analysis, and coupled with the 
advances in GC-MS techniques, can lead to the development of rapid 
methods capable of scanning a multitude of different experimental set ups 
within reasonable time frames. 
 
We present here a novel approach for simultaneous calculation of in vivo 
fractional fluxes (or flux ratios) into two or more metabolite nodes with carbon 
dioxide condensation, based on isotopologue analysis of free metabolite 
pools. This method highlights the yet unexplored potential of combining 13C-
MFRA and direct metabolomics measurements for the quantitative study of 
metabolism. In particular the approach will benefit the study of i) the 
organisms whose metabolic network topology is poorly understood, and 
ii) the organisms in which a sufficient number of metabolite mass isotopic 
distributions cannot be inferred from the measurements of proteinogenic 
amino acids. The utility of the approach is demonstrated by its application on 
the data collected for the malate and oxaloacetate nodes in central carbon 
metabolism of rapidly dividing L. mexicana parasites, providing the first in vivo 
quantitative fractional flux values for Leishmania spp., or any other protozoan. 
These are also, to the best of our knowledge, the first fractional flux results 
based on the mass isotopic distribution measurements of free intracellular 
metabolic intermediates. 
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Methods 
 
Notation. In this section we introduce the notation used throughout. The 
property that will be of central interest in considerations below is mass isotopic 
distribution vector I. Let s denote the vector of a single chemical species that 
differ in their isotopic composition s = [ s0, s1, …, sn ] (here chemical species 
can be either a single atom or a molecule). Let m denote the vector of 
corresponding masses m = [ m0, m1, …, mn ], such that m0 is the mass of the 
isotopic species s0, m1 is the mass of the isotopic species s1, and so on. Let I 
denote the isotopic distribution vector I = [ a0, a1, …, an ]  where the numbers 
a0, a1 … an represent abundances of individual isotopic species with masses 
m0, m1, …, mn, such that a0 + a2 + … + an = 1. In the standard convention the 
vectors s, m and I are ordered according to the increasing mass (m0 < m1 < 
… < mn) such that a0 is the abundance of the isotopic species s0 which has 
the smallest mass m0. Mass spectrometry (MS) measures m/z ratios to 
produce intensity patterns called mass spectra. The mass spectrum observed 
experimentally by MS, is directly related to the mass isotopic distribution of the 
chemical species under observation. In case of singly charged species (z=1) 
MS measures directly atomic/molecular masses of the species involved. Most 
mass spectrometers can distinguish masses of 0.05 u apart, however 
detected masses are commonly binned in integer increments. In 
metabolomics, all masses detected in the range from −0.3 to +0.7 relative to 
an integer mass are usually summed and recorded as the integer mass 
intensity. 
 
There are two distinct ways in which two isotopic populations of atoms can 
combine into a complex mixture: simple mixing and chemical bonding. In 
simple mixing of two chemical species with well-defined isotopic populations I1 
and I2, the mass isotopic distribution of the resulting population is given by: 
 

1 1 2 2f f= +I I I   
 
where f1 and f2 are mixing fractions of the two populations. 
 
In mixing due to chemical bonding (i.e. mixing of isotopic species occurs due 
to chemical reactions) atoms combine in fixed stoichiometric ratios. If the two 
populations of chemical species are characterized by mass isotopic 
distributions I1 and I2, the resulting chemical species will have the mass 
isotopic distribution: 
 

1 2= ⊗I I I   
 
where '⊗' denotes discrete convolution (also known as Cauchy product [38]). 
This simple relationship is a direct result of integer binning of detected 
masses. 
 
A metabolite node without condensation or cleavage. Consider two metabolic 
pathways converging to a single metabolite within a larger metabolic network. 
Figure 1A shows two metabolites, D and E, both converted to G. Let us 
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assume that isotopic populations of D and E are well defined, and given by ID 
and IE respectively. If no condensation or cleavage occurs in either of the two 
reactions D → G and E → G, then G inherits the carbon backbone directly 
from D or E. If the metabolic network is in metabolic and isotopic steady state, 
the resulting mass isotopic distribution of G will be a result of simple mixing, 
given as a combination of the two mass isotopic distributions in proportions 
determined by relative contributions of fluxes vD and vE: 
 

D E
G D E

D E D E

v v
v v v v

= +
+ +

I I I  

 
or 
 
G D D E Ef f= +I I I   

 
where fD and fE are fractional contributions of  D → G and E → G reactions, 
respectively. The above equation can be rewritten in a matrix form: 
 
T T
G f=I Z   

 
where f = [ fD, fE ] contains mixing fractions, and fD + fE = 1. The matrix Z 
contains mass isotopic distributions and its columns are mass isotopic 
distributions for individual chemical species arranged in the same order as the 
fractional contributions in the vector f (i.e. Z = [IDT, IET]). If one is able to 
measure ID, IE, and IG, the fractional contributions of the two reactions fD and 
fE can be obtained by solving the above matrix equation for f. In general, Z is 
not a square matrix.  However, in the majority of central carbon metabolism 
reactions which are of interest in the labeling experiments, the number of 
distinct isotopic populations being mixed is at most 3 (number of Z columns), 
and the smallest number of carbon atoms in their skeletons is at least 3, 
hence the number of Z rows is at least 4. Therefore, the number of rows will 
be greater than the number of columns. Hence, provided that isotopic 
distribution vectors of the populations entering the node are linearly 
independent, Z will have a left inverse: 
 

( )T -1T T T
G= f Z Z Z I                             [1] 

 
We note that the Equation 1 can be extended to a node where k metabolites 
converge without condensation or cleavage, with mass isotopic distributions 
ID, IE, …, IM, and respective fractional contributions vector is f = [ fD, fE, ..., fM ], 
provided that left inverse of Z exists. 
 
A metabolite node with CO2 condensation. The situation where two or more 
metabolites converge to a single node without condensation or cleavage is 
rare. Consider a prototypical model of the TCA cycle with several anaplerotic 
reactions, as shown in Figure 2. In this schematic, five metabolite nodes can 
be identified as candidates for flux ratio determination: PEP, Pyr, OAA, Mal, 
and Suc (on the basis that these metabolites’ carbon backbones are produced 
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in more than one reaction, and hence potentially display different isotopic 
distributions). At each of these metabolite nodes one contributing reaction 
involves CO2, either as a cleavage or condensation. More specifically, three 
metabolite nodes involve CO2 cleavage (PEP, Pyr, and Suc) and two nodes 
involve CO2 condensation (Mal and OAA). The latter reaction, where a N-1 
carbon backbone is converted into a N carbon backbone involving CO2 
condensation, will be analysed in more detail below. 
 
Consider a model reaction involving five metabolites D, E, F, G and CO2, 
assumed to be a part of a larger metabolic network, and to combine as shown 
in Figure 1B. Metabolites D and E are converted to G without a loss or gain or 
carbon atoms, while the metabolite F combines with CO2 to produce G 
(therefore, metabolites D, E, and G have N carbon atoms, while metabolite F 
has N-1 carbon atoms). The fractional contributions to the total influx into the 
node G are: 
 

 ,   ,   
      
D E F

D E F
D E F D E F D E F

v v vf f f
v v v v v v v v v

= = =
+ + + + + +

  

 
the mass isotopic distribution vector for the metabolite G can be written as: 
     

( )G D D E E D E F CO2= f + f + 1  f f ] [− − ⊗I I I I I      [2] 
where fD + fE ≤ 1, and IF ⊗ ICO2 represents the discrete  convolution of mass 
isotopic distribution vectors for metabolites F and CO2. 
 
Since the elements of mass isotopic distribution vectors are normalized to 
one, we can replace ICO2 = [ x, 1-x ]. If ID, IE, and IF are measured, the 
Equation 2 has three unknowns on the right-hand side: fE, fD, and x. The 
quantity on the left hand side is the isotopic distribution vector IG of the 
metabolite G. Furthermore, we denote the measured value of IG as IGm , and 
define function Φ1 such that: 
 

2
1 G Gm|| ||Φ = −I I         [3] 

 
where double bars denote a vector 2-norm. If ID, IE, IF , and IG are measured, 
Φ1 is a function of fE, fD, and x. Hence, the values for fE, fD, and x can be 
obtained by constrained optimization of the function Φ1 (fE, fD, x): 
 

( )1  ,  ,     0  ,  ,    1  +  1D E D E D Emin f f x such that f f x and f fΦ ≤ ≤ ≤   [4] 
 
where Φ1 is defined by the Equation 3. Typically an optimisation algorithm is 
employed to solve Equation 4  (e.g. Matlab FMINCON function [39]) , and the 
main challenge then is to ensure that the algorithm has reached a global, 
rather than a local minimum.  
 
Two metabolite nodes with CO2 condensation. The extended version of the 
previous scenario is depicted in Figure 1C. The relationship between 
metabolites D, E, F, and G is as described previously. We also have a mirror 
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metabolite node S, which is coupled to the node G via CO2. The metabolites P 
and Q convert to S without a loss or gain or carbon atoms, while the 
metabolite R combines with CO2 to produce G (therefore, metabolites P, Q, 
and S have N carbon atoms, while metabolite R has N-1 carbon atoms). The 
mass isotopic distribution vector for the metabolite G is as per Equation 2, and 
the mass isotopic distribution vector for the metabolite S can be written as: 
 

( )S P P Q Q P Q R CO2= f + f + 1 ]f f  [− − ⊗I I I I I    [5] 
 
We denote the measured value of IS as ISm, and define function Φ2 such that: 
 

2
2 S Sm|| ||Φ = −I I      [6] 

 
If IP, IQ, IR, and IS are measured, Φ is a function of fp, fQ, and x. And the values 
for fP, fQ, and x can be obtained by constrained optimization of the function Φ2 
(fA, fB, x): 
 

( )2  ,  ,     0  ,  ,    1    1P Q P Q P Qmin f f x such that f f x and f fΦ ≤ ≤ + ≤    [7] 
 
Recognizing that the mass isotopic distribution of CO2 is a property of the 
system that arises from mass balances in the metabolic and isotopic steady-
state (Figure 2), one can combine Equations [4] and [7] into a single 
optimization problem: 
 

( ) 2  ,  , ,  ,   =

. . 0  ,  , ,  ,    1, +   1,    1
D E P Q

D E

m

P Q D E P Q

min f f f f x

s t f f f f x f f and f

| |

f

| |Φ

≤ +

−

≤ ≤ ≤

I I
      [8] 

 
where I = [ IG , IS ], Im = [ IGm , ISm ] (see Equations 2 and 5). 
 
Parasite strains and labelling conditions. L. mexicana wild type (WT) 
(MNYC/BZ/62/M379) promastigotes were cultured in RPMI medium (Sigma) 
supplemented with 10% heat inactivated foetal bovine serum (iFBS, 
GibcoBRL) at 27 oC. Parasites were passaged twice weekly (1/100 and 
1/1000) into fresh media to maintain log phase growth.  Mid-log phase 
promastigotes (1 x 107 cell/ml) were harvested two days after inoculation of 
the media. Cells were pelleted and resuspended in a pre-labelling media to 
equilibrate (at 2 x 107 cells/mL, 1 hour, 27 oC). Briefly, this completely defined 
media (modified from [40]) included glucose (6 mM, 12C-U-glc), and most 
other amino acids except for the non-essential amino acid, alanine. Fatty 
acids were included as lipid containing bovine serum albumin (BSA, 0.5 % 
final). After equilibration, cells were pelleted (805 x g, 10 minutes) and 
resuspended in the labelling media containing 3 mM [U-13C6] glucose and 3 
mM [1-13C1] glucose for 15 hr in order to reach isotopic equilibrium (2 x 107 
cells/mL).   
 
Sampling and metabolite extraction. Parasite metabolism was quenched as 
described in [41]. Briefly, aliquots of promastigote batch cultures (8 x 108 
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parasites total, approximately 40 mL) were metabolically quenched by 
immersing the 75 cm2 flask in a dry ice-ethanol slurry to rapidly cool the cell 
suspension to 0 oC. Immediately, the chilled parasites were centrifuged (805 x 
g, 10 minutes, 0 oC) and the resulting cell pellet was suspended in ice-cold 
PBS and 16 replicates (4 x 107 cell total) were transferred to a microfuge tube 
and washed twice with cold PBS (10,000 x g, 1 min, at 0 oC). The cell pellet 
was extracted in chloroform:methanol:water (CHCl3:CH3OH:H2O, 1:3:1 v/v, 
250 µL, vortex mixed), containing 1 nmol scyllo-inositol as internal standard 
(60 oC, 15 min). Insoluble material was removed by centrifugation (16,100 x g, 
0 oC, 5 minutes) and the supernatant adjusted to CHCl3:CH3OH:H2O 1:3:3 v/v, 
with addition of H2O, vortex mixed and centrifuged (16,000 x g, 5 min) to 
induce phase separation. The upper phase of the replicates were transferred 
to a fresh microfuge tube for analysis of polar metabolites. 
 
Analysis of polar and apolar metabolites by GC-MS. Polar phases were dried 
into 250 µL glass vial inserts (in vacuo, 55 oC) and free aldehyde groups 
protected by derivitization in methoxyamine chloride (Sigma, 20 µl, 20 mg/ml 
in pyridine) with continuous mixing (14 hrs, 25 oC). Replicates were derivitized 
(silylation) with either BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide 
containing 1% trimethylchlorosilane (TMCS), Pierce, 20 µl, 1 hr, 25 oC) or 
MTBSTFA (N-Methyl-N-[tert-butyldimethyl-silyl]trifluoroacetimide containing 
1% tert-butyldimethylchlorosilane (TBDMCS), Pierce, 20 µl, 1 hr, 25 oC). All 
samples were analysed by GC-MS with a DB5 capillary column (J&W 
Scientific, 30 m, 250 µm i.d., 0.25 µm film thickness), with a 10 m inert 
duraguard  and fitted with a gerstel autosampler. The injector insert and GC-
MS transfer line temperatures were 270 oC and 250 oC, respectively. The 
oven temperature gradient was programmed as follows: 70 oC (1 min); 70 oC 
to 295 oC (12.5 oC/min); 295 oC to 320 oC (25 oC/min); 320 oC (2 min). Data 
was collected in both SCAN and selected ion-monitoring (SIM) modes for 
metabolite identification and quantification (dwell time 20 ms), respectively. 
For TMS derivitised samples, the metabolites and ions monitored were: PEP 
(369.1, 370.1, 371.1, 372.1, and 373.1 m/z), citrate (465.15, 466.15, 467.15, 
468.15, 469.15, 470.15, 471.15, and 472.15 m/z), succinate (247.1, 248.1, 
249.1, 250.1, 251.1 and 252.1 m/z), and malate (335.1, 336.1, 337.1, 338.1, 
339.1, and 340.1 m/z). For TBDMS derivitised samples, the metabolites and 
ions monitored were: alanine (260, 261, 262, and 263 m/z), aspartate (418, 
419, 420, 421, and 422 m/z) and glutamate (432, 433, 434, 435, and 436 
m/z). For the TBDMS samples, SIM data was collected in split/splitless mode 
Replicates were randomised and similarly prepared standards were also 
analysed. 
 
Results  
 
Validation using a model network. A simple model network (shown in Figure 
2), comprising of lower glycolysis (v1 and v3), TCA cycle (v4-v8, v12), 
glycosomal succinate fermentation (v9, v13, and v15) pathway [42] and several 
anaplerotic reactions (v10, v11, v14), was constructed based on previously 
published data for L. mexicana [34,37]. Glucose and aspartate are assumed 
to be the only carbon sources (alanine was not present in the media). And 
carbon leaves the network via carbon dioxide, alanine, acetate, glutamate, 
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and succinate. There are a total of 20 fluxes in this reaction network, and 
assuming a metabolic steady-state it results in nine equations as shown in 
Table 2. Assuming flux values for the reactions participating in the network 
and isotopic composition of input substrates it is possible to calculate exact 
mass isotopic distributions of individual metabolites at metabolic and isotopic 
steady-state. To validate the method for calculating flux ratios described 
above, we assumed the reaction fluxes shown in Figure 3, the composition of 
input substrates, and calculated the steady-state mass isotopic distributions 
for the carbon backbone of phosphoenolpyruvte (PEP), pyruvate (Pyr), 
succinate (Suc), malate (Mal), oxaloacetate (OAA), and CO2 in metabolic and 
isotopic steady-state (see Table 3). Then we applied the Equation 4 to back-
calculate the fractional fluxes around Mal and OAA nodes. 
 
It is straightforward to show that for the assumed fluxes in Figure 3, the 
steady-state equations hold (Table 2). The substrate labelling was assumed to 
be 50% [U-13C6] + 50% [1-13C1] glucose and unlabelled aspartate (Glcin and 
Aspin in Figure 3). Mass spectrometry measurements yield mass isotopic 
distributions of molecular fragments that can be corrected to obtain mass 
isotopic distribution vectors of the carbon backbone alone. Therefore for the 
purpose of this work, the values in Table 3 represent idealized measurements 
(no experimental error), obtained on the metabolic network shown in Figure 2 
and a specific set of fluxes (Figure 3). 
 
For Mal node, Equations 3 and 4 can be written explicitly as follows: 
 

( )13Mal 8 Suc OAA 8 13 Pyr CO2= f + f + 1  f ]f  [  − − ⊗I I I I I     [9] 

( )8 13 8 13 8 13  ,  ,     0  ,  ,    1  +  1Malmin f f x such that f f x and f fΦ ≤ ≤ ≤   [10] 
    
 
where f8, f11, and f13 are fractional fluxes corresponding to net fluxes v8, v11, 
and v13 respectively (see Figure 2), and f11 = 1 – f8 – f13. Similarly, for OAA 
node Equations 3 and 4 can be written as: 
 

( ) 15inOAA 2 2 15 Mal PEP CO2Asp
= f + 1 f  f +  [ ]f ⊗− −I I I I I    [11] 

( )2 15 2 15 2 15  ,  ,     0  ,  ,    1  +  1OAAmin f f x such that f f x and f fΦ ≤ ≤ ≤  [12] 
   
 
where f2, f12, and f15 are fractional fluxes corresponding to v2, v12, and v15, 
respectively (Figure 2), and f12 = 1 – f2 – f15. In the above equations, the 
variable x refers to m0 in the mass isotopic distribution vector of CO2 (i.e. ICO2 
= [ x, 1-x ], see above). As before, recognizing that the mass isotopic 
distribution of CO2 is a property of the system that arises from mass balances 
in the metabolic and isotopic steady-state, one can combine Equations [10] 
and [12] into a single optimization problem: 
 

( )2 8 13 15

2 8 13 15 8 13 2 1

2

5

  ,  , ,  ,  = || ||
. . 0  ,  , ,  ,    1, +   1,    1

mmin f f f f x
s t f f f f x f f and f f

−Φ

≤ ≤ ≤ + ≤

I I
   [13] 
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where I = [IMal , IOAA] is the concatenation of calculated mass isotopic 
distribution vectors for Mal and OAA respectively, Equations 9 and 11 or 
explicitly: 
 

,0 13 ,0 8 ,0 ,0 13 8

,1 13 ,1 8 ,1 ,0 ,1 13 8

,2 13 ,2 8 ,2 ,1 ,2 13 8

,3 13

( 1)

( ( 1) )( 1)

( ( 1) )( 1)

Mal OAA Suc Pyr

Mal OAA Suc Pyr Pyr

Mal OAA Suc Pyr Pyr

Mal

I f I f I I x f f
I f I f I I x xI f f
I f I f I I x xI f f
I f

= + − + −

= + + − − + −

= + + − − + −

=

          

          

           

  ,3 8 ,3 ,2 ,3 13 8

,4 13 ,4 8 ,4 ,3 13 8

,0 12 ,0 2 ,0 ,0 12 2

,1 12 ,1 2 ,1

( ( 1) )( 1)

( 1)( 1)

( 1)

(

OAA Suc Pyr Pyr

Mal OAA Suc Pyr

OAA Mal Asp PEP

OAA Mal Asp P

I f I I x xI f f
I f I f I I x f f
I f I f I I x f f
I f I f I I

+ + − − + −

= + + − + −

= + − + −

= + +

         

          

         

      ,0 ,1 12 2

,2 12 ,2 2 ,2 ,1 ,2 12 2

,3 12 ,3 2 ,3 ,2 ,3 12 2

,4 12 ,4 2 ,4

( 1) )( 1)

( ( 1) )( 1)

( ( 1) )( 1)

EP PEP

OAA Mal Asp PEP PEP

OAA Mal Asp PEP PEP

OAA Mal Asp PEP

x xI f f
I f I f I I x xI f f
I f I f I I x xI f f
I f I f I I

− − + −

= + + − − + −

= + + − − + −

= + +

   

         

          

      ,3 12 2( 1)( 1)x f f− + −    

 

 
and Im is the concatenation of the same measured vectors. 
 
This formulation of the problem allows a single optimization of the objective 
function of five variables, subject to upper and lower boundary constraints as 
well as two independent inequality constraints, to obtain fractional distribution 
of incoming fluxes around Mal and OAA nodes. Since the proposed approach 
delineates flux distributions around two nodes simultaneously, it falls between 
the traditional 13C MFA (resolves all fluxes in the underlying network topology) 
and metabolic flux ratio analysis (resolves distribution of fluxes around a 
single node). 
 
Stability of the solution. We investigated stability of the optimization described 
by Equation 13, by repeated optimizations on idealized data. The fluxes were 
assumed as shown in Figure 3, and an equimolar mix of [U-13C6] and [1-13C1] 
glucose and unlabelled aspartate were assumed as substrates. Isotopic 
steady-state labelling of PEP, Pyr, Suc, Mal, and OAA were calculated by 
EMU methodology [43]. The calculated values of mass isotopic vectors were 
confirmed by forward labelling calculations carried in OpenFlux [44] and 
Metran [45]. We employed 100 randomly initialised runs of Matlab FMINCON 
optimiser to compute the fractional fluxes for the malate and oxaloacetate 
nodes. The results (Figure 4) showed that the sum of squared residuals (SSR) 
value returned was different each time. This means that either objective 
function surface is very flat causing the optimisation algorithm to terminate in 
a vicinity of the global minimum (but rarely, if ever, at the global minimum) or 
the surface of the objective function had numerous closely spaced shallow 
local minima in the vicinity of the global minimum. Moreover, the existence of 
the global minimum is not guaranteed. Further tests with 1000, 10000, 100000 
and 1000000 randomly initialised runs of FMINCON optimiser were 
conducted, and although each time the results got sufficiently close to the 
expected (synthetic) values, SSR value distribution was similar to that of 100 
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runs (Figure 4). In the case of experimental data (where the results are not 
known) it would have been very difficult to ascertain how many randomly 
initialised optimisation runs were sufficient. Decreasing the value of the 
objective function stopping criteria and increasing the number of iterations per 
optimisation run was also tested with unsatisfactory results. Noting that if x 
was known both fractional fluxes could be solved for analytically via Equation 
1, an alternative approach is to vary x from 0 to 1, compute fractional fluxes  
and the objective function Φ, and then plot the value of Φ against the value of 
x. This will reveal the existence and the location of the global minimum, and 
the corresponding values. Firstly, we utilised quadratic programming to 
calculate the objective function value for a range of, for example, 100,000 
equidistant x values. The results are shown in Figure 5A, and they indicate 
that the objective function has a global minimum. The minimum value of this 
new range is shown in Figure 5B, and has been observed to produce more 
precise results than 1, 000, 000 runs of FMINCON optimiser in the previous 
section (Table 4). Moreover, on a computer where 1, 000, 000 runs of 
FMINCON optimiser takes 10 hours, this approach runs in less than 10 
minutes and is therefore suitable for high-throughput applications. 
 
Validation in the presence of noise. Experimental data will always be affected 
by noise, various artifacts due to machine imperfections, and possibly human 
error. Therefore an important question is, are the fractional fluxes computable 
in the presence of realistic levels of experimental noise? In instruments that 
deploy detectors with electron multipliers, a proportional relationship between 
the measured mean intensity and variance is often observed (e.g. in mass 
spectrometry [46] and microarrays [47]. In our data (five metabolites, a total of 
23 m/z channels measured), a strong relationship between the mean intensity 
and variance was not apparent (Figure 6). The observed correlation 
coefficient between the mean intensity and variance was 0.448, and the p-
value for testing the hypothesis of no correlation was 0.03. Furthermore, the 
data for each m/z channel appeared normally distributed in the first 
approximation: for only one out of 23 m/z channels the hypothesis that the 
observed values are drawn from a normal distribution could be rejected at the 
95% confidence level by Lilliefors test (specifically for Mal m0+2 data set, 
which showed two groups of tightly grouped values). However, the distribution 
of variances calculated for 23 m/z channels (Figure 6, y-axis) failed 
Kolmogorov-Smirnov and Lilliefors tests for normality. Therefore, the observed 
distribution of variances across different m/z channels is unlikely to be normal. 
To approximate this distribution, we fitted the parameters of the Weibull 
distribution to the calculated variances across 23 m/z channels. The Weibull 
distribution is widely used in reliability engineering and life data analysis 
because it can model a wide range of behaviours [48]. Best fit to the 
experimental data resulted in α=0.0031 (scale) and β=1.5315 (shape) of the 
Weibull distribution. Therefore to simulate noise similar to that observed 
experimentally, we assumed the following: (a) no correlation between the 
noise variance and m/z channel intensity; (b) noise for each m/z channel was 
normally distributed; and (c) the variances of individual m/z channels follow 
the Weibull distribution with  α=0.0031 and β=1.5315. 
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In summary, the data with noise was simulated in the following way. Isotopic 
steady-state labelling of PEP, Pyr, Suc, Mal, and OAA were calculated by 
EMU methodology [43], assuming the fluxes as given in Figure 3, and an 
equimolar mix of [U-13C6] and [1-13C1] glucose and unlabelled aspartate as 
substrates. This produced backbone labelling patterns of  PEP, Pyr, Suc, Mal, 
and OAA, as idealized intensities for 23 m/z channels (m0, m0+1, m0+2, m0+3 
for three carbon backbones of Pyr and PEP, and m0, m0+1, m0+2, m0+3, m0+4 
for four carbon backbones of Suc, Mal, and OAA). To simulate noise, a set of 
variances was drawn from the Weibull distribution with α=0.0031 and 
β=1.5315, and variances were randomly assigned to 23 m/z channels. In the 
next step, for each m/z channel a noise value was drawn from a normal 
distribution characterized with the assigned variance, and the noise was 
added to the channel intensity. The plot of mean intensity vs standard 
deviation for the experimental data, as well as for an example simulated data 
with noise, is shown in Figure 6. The fractional flux estimation method 
(Equation 13) was run with the noisy synthetic data, and it was able to retrieve 
the original fractional fluxes to within the confidence intervals (Table 5). This 
validates the approach in the presence of the level of noise found in our 
experimental data. 
 
Application to experimental data. We applied the optimizaition via Equation 13 
to determine fractional fluxes around Mal and OAA nodes in L. mexicana. 
Rapidly dividing L. mexicana parasites were cultured in completely defined 
media containing equimolar [U-13C6] and [1-13C1] glucose for 15 hrs. 
Metabolites were extracted, derivitised and analysed by GC-MS. The 
normalized data obtained for PEP, Pyr, Suc, Mal, and OAA, corrected for the 
presence of natural isotopes and heteroatoms [49] is shown in Table 6. For 
these five metabolites a total of 23 m/z channels were measured (m0, m0+1, 
m0+2, m0+3 for three carbon backbones of Pyr and PEP; and m0, m0+1, m0+2, 
m0+3, m0+4 for four carbon backbones of Suc, Mal, and OAA). Pyr labelling 
was measured via free intracellular alanine, and OAA labelling via intracellular 
aspartate.  A total of 8 experimental replicates were measured. The 
experimental data acquired on L. mexicana is shown in Table 6. We assumed 
the network topology shown in Figure 2, and proceeded to determine 
fractional fluxes around Mal and OAA nodes according to Equation 13. Table 
7 lists best solutions for f2, f8, f13, and f15, for each experimental replicate 
achieved by minimization of the objective function. A simple measure of the 
uncertainty in the solution is given as standard deviation in Table 7, calculated 
from eight experimental replicates. The estimated fractional fluxes for Mal 
node (f8, f11, and f13) and OAA node (f2, f12, and f15) are shown graphically in 
Figure 7, and a pictorial representation of the fractional fluxes in L. mexicana 
determined from the experimental data is shown in Figure 8. We observed 
that OAA is chiefly derived from malate (f12, 86%) rather then from aspartate 
(f2, 4%) or PEP (f15, 10%). Malate was primarily derived from succinate (f8, 
61%) and OAA (f13, 38%) while pyruvate contribution was found to be 
negligible (f11, 1%).  
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Discussion 
 
A total of six flux ratios into the oxaloacetate and malate pools, as well as the 
mass isotopic distribution of carbon dioxide, have been computed in the 
rapidly dividing L. mexicana promastigotes at metabolic and isotopic steady 
state (Table 7). These results, shown in Figures 7 and 8, represent the first in 
vivo quantitative fractional flux values for Leishmania spp. or any other 
protozoan. They are also, to the best of our knowledge, the first fractional flux 
results based on the mass isotopic distribution measurements of free 
intracellular metabolic intermediates. Together these two firsts highlight the 
yet unexplored potential of combining 13C-MFRA and direct metabolomics 
measurements for the quantitative study of metabolism. The newly developed 
approach for simultaneous calculation of in vivo fractional fluxes into two or 
more nodes with carbon dioxide condensation falls in between traditional 13C-
MFA (computes a number of net fluxes in the network) and 13C-MFRA 
(computes fractional fluxes around a single node). The metabolic reactions 
where carbon dioxide from the environment is incorporated into a metabolite’s 
carbon skeleton are commonly encountered in biology. Specifically, the new 
approach will be essential in experimental set-ups where the carbon dioxide 
mass isotopic distribution cannot be accurately and precisely quantified (e.g. 
bioreactors operated in batch mode).  
 
The fractional flux results show that the oxaloacetate pool is predominantly 
topped up from the malate pool (~86% of the oxaloacetate carbon backbone 
comes from the malate carbon skeleton), a small amount (~10%) of the 
oxaloacetate is generated from PEP (produced by glycolysis) through the 
glycosomal succinate fermentation (GSF) pathway, and a very small amount 
of the oxaloacetate (~4%) comes from the uptake of exogenous aspartate 
(Figure 8). 
 
Fractional flux results for the malate node indicate that the malic enzyme 
operation in the direction from pyruvate to malate is negligible, and almost 
twice as much malate is created through the TCA cycle from succinate than 
via the GSF pathway from oxaloacetate. This result confirms the irreversibility 
of the malic enzyme reaction reported previously [34]. Fractional influxes into 
the malate pool display considerably larger confidence intervals than fractional 
influxes into the oxaloacetate pool (Figure 7). Analysis of additional 
metabolites, such as the mass isotopic distribution of fumarate which is closer 
to malate than the measured succinate, may improve the fit for the malate 
node. Alternatively, the larger confidence may actually arise from metabolite 
compartmentation in which the mass isotopic distributions of malate may differ 
according to its subcellular localisation. 
 
In Leishmania spp. malate serves as both an intermediate of the TCA cycle, 
within the mitochondria, and as an intermediate in PEP fermentation to 
succinate within the glycosome. Indeed several intermediates (fumarate, 
OAA, and succinate) are located in both the glycosome and mitochondria. 
Indeed OAA and malate may also be found in the cytosol. This 
compartmentalisation adds another level of complexity to the analysis of 
eukaryotic cells that is not found in prokaryotes. Unfortunately, currently 
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available techniques are unable to measure compartment-specific metabolite 
labelling patterns. Commonly, the existence of compartments is ignored in 
13C-based metabolic flux modelling by assuming uniform labelling patterns of 
individual metabolites inside multiple compartments. No studies currently exist 
to prove or disprove this assumption [50]. Indeed, the analyses presented in 
this work have only been made feasible with the recent development of the 
novel experimental methods for the detection of labelling patterns inside free 
intracellular metabolites. It is expected that within the next decade, further 
advances in the experimental and measurement techniques will allow 
compartment specific metabolite measurements, and this level new resolution 
will make 13C-based metabolic approaches even more powerful.  
 
Due to potential reversibility of all reactions involved in topping up the OAA 
and malate nodes, no definitive conclusions can be drawn about the net flux 
values through the TCA cycle and GSF pathway. However in the future, if 
enough metabolic network nodes are analysed and the extracellular fluxes are 
measured, the resulting information can be assembled to compute net fluxes. 
Moreover, future studies into enzyme reversibility using approaches such as 
those recently developed by Kleijn and co-workers [51], could be incorporated 
into this model. Nevertheless, the results for both nodes point to relatively high 
activity in the TCA cycle, which is also supported by the high production of 
carbon dioxide reported earlier [34]. Therefore, while some of the relative flux 
differences can be explained by reaction reversibility, the flux through the TCA 
cycle might still be higher than that through the GSF pathway. Hence, while 
the flux through the TCA cycle is not expected to be eight times the value of 
the GSF flux, as this would interfere with the energetics inside the glycosome, 
it could still be relatively higher. Its currently believed that approximately half 
of the PEP produced by glycolysis is imported back into the glycosome for 
fermentation to succinate in order to regenerate the investment of ATP and 
NADPH made in the preparatory stages of glycolysis. This would severely 
restrict the availability of PEP for import into the TCA cycle as OAA (f15) [34]. 
 
In summary, methodologies developed in this work contribute to the rapid 
estimation of in vivo fractional fluxes (or flux ratios) in L. mexicana parasites, 
based on GC-MS 13C-based metabolomics measurements of free metabolic 
intermediates. Ultimately, 13C-based flux modelling provides a high resolution 
on key areas of metabolism, and the approach presented here and its further 
development will result in a comprehensive tool for the elucidation of 
molecular pathogenicity, and precise measurements of the parasite’s 
metabolic response to different perturbations of interest, such as genetic 
modifications, nutritional and other environmental changes, including, the 
effect of the existing and new candidate drugs, and in different life cycle 
stages. It is hoped that due to the generality of the problem formulation, the 
approach will also find a wider application to 13C-MFRA studies in various 
other organisms. 
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Figure 1. Three scenarios for converging metabolites. 
 
Panel (A): metabolites D and E are converted to metabolite G without 
condensation or cleavage. In this case G inherits the carbon backbone directly 
from both D and E. Panel (B): three metabolites D, E, and F contribute carbon 
backbones to metabolite G. In this case metabolites D and E carbon 
backbones are form metabolite’s G backbone without condensation or 
cleavage, while the metabolite F’s backbone combines with the carbon in CO2 
to form the carbon skeleton of G. Panel (C): similar to (B) except that there 
are now two nodes coupled via CO2. 
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Figure 2. The model reaction network. 
 
The network includes the prototypical TCA cycle, lower glycolysis, and several 
anaplerotic reactions. It is based on central carbon metabolism network 
topology published by Saunders et al., in 2011 [34]. The solid square 
represents the system boundary; Glcin and Aspin represent glucose and 
aspartate, assumed to be only substrates; Sucout, Gluout, Aceout, Alaout, and 
CO2

out represent secreted succinate, glutamate, acetate, alanine, and carbon 
dioxide, respectively; PEP, Pyr, AcCoA, Cit, αKG, Suc, Mal and OAA 
represent intracellular phosphoenolpyruvate, pyruvate, acetyl coenzyme A, 
citrate, α-ketoglutarate, succinate, malate and oxaloacetate, respectively. The 
reactions are as given in Table 1. 
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Figure 3. Graphical representation of synthetic fluxes assumed to operate in 
the reaction network in Figure 2. 
 
The assumed fluxes are as follows: v1 = 1.1, v2 = 0.6, v3 = 1.0, v4 = 1.1, v5 = 
0.4, v6 = 0.4, v7 = 0.4, v8 = 0.4, v9 = 0.4, v10 = 1.2, v11 = 0.9, v12 = 0.1, v13 = 
0.4, v14 = 2.0, v15 = 2.1, v16 = 2.1, v17 = 0.2, v18 = 0.7, v19 = 0, v20 = 0.4. The 
zero flux (i.e. v19) is shown as a dashed line; the thickness of the lines 
representing the rest of the fluxes is directly proportional to their value. 
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Figure 4. Results based on ideal synthetic data and 100 runs of Matlab’s 
FMINCON optimisation function.  
 
Optimisation run numbers are based on the results sorted by the value of the 
objective function (i.e. 1st optimisation run has the smallest objective function 
value, and 100th optimisation run has the largest objective function value. 
Similar results were obtained for 1000, 10000, 100000 and 1000000 
optimisation runs, in that no single value for the objective function is reached 
in more than one run. 
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Figure 5. Results based on ideal synthetic data without an optimisation 
function.  
 
Panel (A) shows the value of the objective function for 1000 equidistant values 
of x. Panel (B) zooms in on 10 of the previous points belonging to the values 
of x closest to the x value corresponding to the objective function minimum. 
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Figure 6. Intensity mean vs. standard deviation for 23 m/z channels across 
five metabolites. 
 
Intensity mean vs. standard deviation for 23 m/z channels across five 
metabolites (PEP, Pyr, Mal, Suc, and OAA). For experimental data plotted are 
the mean and standard deviation calculated from eight replicate experiments. 
For the simulated data set, m/z channel intensities were taken from mass 
isotopic distributions of five metabolites calculated based on fluxes shown in 
Figure 3, and standard deviations were derived from Weibull distribution 
whose parameters were derived from the best fit to experimental data. Only a 
weak correlation between the mean intensity and variance in the experimental 
data was observed (a correlation coefficient of 0.448). The plot suggests that 
the strategy adopted for the simulation of noise in data approximates well 
noise in experimental data. 
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Figure 7. Fractional fluxes f13, f8, f11 (Mal node) and f15, f2, f12 (OAA node). 
 
Fractional fluxes f13, f8, f11 (Mal node) and f15, f2, f12 (OAA node) calculated by 
optimization via Equation 11 for rapidly dividing L. mexicana promastigotes. 
Mean and standard deviation from eight replicate experiments are shown. 
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Figure 8. Incoming fractional fluxes around OAA and Mal nodes obtained from 
experimental data.  
 
Shown is the mean based on eight independent replicate experiments. The 
thickness of the reaction arrows is proportional to the obtained mean values of 
fractional fluxes in Table 6. Graphical representation is derived from Figure 2 
by focusing only on the relevant metabolic subnetwork, all other metabolites 
and reactions are omitted. 
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Tables 
 
Table 1. The reactions for the model shown in Figures 2 and 3, with their 
stoichiometries. 
 
Flux Description Stoichiometry 
v1 PEP produced from 

glucose via glycolysis 
Glcin = PEP 

v 2 Aspartate uptake Aspin = OAA 
v 3 Pyruvate kinase PEP = Pyr + ATP 
v 4 Pyruvate 

dehydrogenase complex 
Pyr = AcCoA + CO2 + 
NADH 

v 5 Citrate synthase AcCoA + OAA = Cit 
v 6 Aconitase and Isocitrate 

dehydrogenase 
Cit = αKG + CO2 + 
NADPH 

v 7 α-ketoglutarate 
dehydrogenase and 
succinyl-CoA synthase 

αKG = Suc + CO2 + 
NADH + ATP 

v 8 Succinate 
dehydrogenase and 
fumarase 

Suc = Mal + CoQ10H2 

v 9 Fumarate hydratase and 
fumarate reductase 

Mal + NADH = Suc 

v 10 Malic enzyme Mal = Pyr + CO2 + 
NADPH 

v 11 Malic enzyme Pyr + CO2 + NADPH = 
Mal 

v 12 Malate dehydrogenase Mal = OAA + NADH 
v 13 Malate dehydrogenase OAA + NADH = Mal 
v 14 PEP carboxykinase OAA + ATP = PEP + 

CO2 
v 15 PEP from glycolysis PEP + CO2 = OAA + 

ATP 
v 16 Carbon dioxide 

secretion 
CO2 = CO2

out 

v 17 Alanine secretion Pyr = Alaout 
v 18 Acetate secretion AcCoA = Aceout 
v 19 Glutamate secretion αKG = Gluout 
v 20 Succinate secretion Suc = Sucout 
 
Table 2. Metabolic steady-state equations for the network shown in Figures 2 
and 3. 
 
Node Metabolic steady-state equation 
PEP v1 + v14 = v3 + v15 
Pyr v3 + v10 = v4 + v11 + v17 
AcCoA V4 = v5 + v18 
Cit V5 = v6 
αKG V6 = v7 + v19 
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Suc V7 + v9 = v8 + v20 
Mal V8 + v11 + v13 = v9 + v10 + v12 
OAA v2 + v12 + v15 = v5 + v13 + v14 
CO2 v4 + v6 + v7 + v10 + v14 = v11 + v15 + v16 
 
 
Table 3. Calculated steady-state mass isotopic distributions for the carbon 
backbone of the key metabolites for the assumed fluxes in Figure 3. 
 
 m0 m1 m2 m3 m4 
CO2 0.747152 0.252848    
PEP(3) 0.447893 0.189819 0.017475 0.344812  
Pyr(3) 0.453369 0.200297 0.052123 0.294211  
Asp(4)

in 0.957882 0.041441 0.000672 0.000005 0.00000 
Suc(4) 0.314743 0.220152 0.226117 0.159334 0.079653 
Mal(4) 0.363796 0.240843 0.112386 0.208842 0.074134 
OAA(4) 0.469236 0.208786 0.049947 0.203994 0.068036 
 
Assumed input substrates consisted of 50% [U-13C6] + 50% [1-13C1] glucose 
and unlabelled aspartate (Glcin and Aspin in Figure 3). Given the assumed 
fluxes, the forward labelling of key metabolites was calculated using the EMU 
framework [43]. The numbers in the subscript refer to the number of carbon 
atoms in the fragment. 
 
 
Table 4. Comparison of solutions with and without the use of the optimisation 
function.  
 
Variable Actual values  FMINCON  QUADPROG 
SSR  0.0000 4.89·10-11  2.05·10-12 
f8  0.2353  0.235320  0.235298 
f13  0.2353  0.235298  0.235281 
f2  0.2143  0.214273  0.214281 
f15  0.7500  0.749971  0.749979 
 
Comparing our approach (without the use of an optimisation function) with 
Matlab’s FMINCON optimisation function. The second column shows the best 
of 1,000,000 randomly initialised FMINCON optimisation runs. The third 
column shows the values obtained via the quadratic programming approach. 
Note that the values in both columns were produced using ideal synthetic 
data. 
 
 
Table 5. Synthetic fractional flux estimation in the presence of noise.  
 
 Oxaloacetate node Malate node  
  f12  f2  f15  f13  f8  f11  SSR 
actual  0.0357 0.2143 0.7500 0.2353 0.2353 0.5294   
#1  0.0495 0.2112 0.7393 0.2185 0.2352 0.5462 3.21·10-05 
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#2  0.1031 0.2130 0.6840 0.2226 0.1819 0.5955 1.14·10-04 
#3  0.0087 0.2140 0.7773 0.1957 0.1820 0.6223 2.20·10-05 
#4  0.0000 0.2204 0.7796 0.2490 0.2568 0.4943 9.55·10-05 
#5  0.0026 0.2263 0.7712 0.2873 0.2707 0.4420 2.36·10-05 
#6  0.0746 0.2135 0.7119 0.2202 0.2473 0.5326 1.06·10-05 
#7  0.0516 0.2206 0.7277 0.2465 0.2386 0.5149 2.15·10-05 
#8  0.0449 0.2070 0.7481 0.2545 0.2559 0.4896 8.84·10-06 
mean  0.0419 0.2157 0.7424 0.2368 0.2336 0.5297   
stdev  0.0366 0.0062 0.0339 0.0283 0.0337 0.0585   
 
The results shown are based on simulated noisy data (8 synthetic replicates).  
 
 
Table 6. Mass isotopic distributions for PEP, Pyr, Suc, Mal, and OAA in 
rapidly dividing Leishmania mexicana promastigotes at isotopic and metabolic 
steady state measured by GC-MS. 
 
  m0 m0 + 1 m0 + 2 m0 + 3 m0 + 4 
PEP 
#1 0.38455 0.20987 0.11943 0.28615   
#2 0.37930 0.21352 0.11075 0.29644   
#3 0.36596 0.23151 0.11043 0.29209   
#4 0.37409 0.21702 0.10981 0.29909   
#5 0.37149 0.21954 0.11077 0.29819   
#6 0.37592 0.21428 0.11387 0.29593   
#7 0.36610 0.21884 0.10979 0.30527   
#8 0.36393 0.22847 0.11218 0.29542   
Pyr 
#1 0.38218 0.23950 0.14000 0.23832   
#2 0.38705 0.23748 0.13820 0.23727   
#3 0.39041 0.23660 0.13741 0.23558   
#4 0.38387 0.23952 0.13962 0.23698   
#5 0.39245 0.23608 0.13719 0.23428   
#6 0.38715 0.23756 0.13855 0.23674   
#7 0.38345 0.23938 0.13952 0.23765   
#8 0.39008 0.23710 0.13718 0.23564   
Suc 
#1 0.33850 0.25392 0.20144 0.16545 0.04070 
#2 0.33424 0.25585 0.20493 0.16515 0.03982 
#3 0.33238 0.25613 0.20762 0.16223 0.04164 
#4 0.33631 0.25507 0.20521 0.16500 0.03841 
#5 0.33504 0.25559 0.20507 0.16586 0.03844 
#6 0.33312 0.25563 0.20422 0.16668 0.04035 
#7 0.33600 0.25541 0.20533 0.16436 0.03890 
#8 0.33544 0.25512 0.20575 0.16356 0.04013 
Mal 
#1 0.35553 0.25190 0.19805 0.15909 0.03543 
#2 0.34944 0.25284 0.19578 0.16669 0.03525 
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#3 0.34035 0.25339 0.19901 0.16815 0.03909 
#4 0.35047 0.25311 0.19523 0.17021 0.03098 
#5 0.35427 0.25523 0.19517 0.16446 0.03088 
#6 0.34552 0.25818 0.19886 0.16142 0.03601 
#7 0.34642 0.25226 0.19846 0.17282 0.03004 
#8 0.34664 0.25460 0.19817 0.16466 0.03594 
OAA 
#1 0.36490 0.25232 0.17912 0.16952 0.03414 
#2 0.36846 0.25170 0.17974 0.16568 0.03442 
#3 0.37368 0.24910 0.17746 0.16435 0.03542 
#4 0.36197 0.25387 0.18154 0.16793 0.03469 
#5 0.37238 0.25012 0.17976 0.16376 0.03398 
#6 0.36467 0.25087 0.18096 0.16801 0.03549 
#7 0.36321 0.25248 0.18173 0.16808 0.03450 
#8 0.37055 0.25107 0.17918 0.16553 0.03366 
 
Heavy carbon was fed through 50%[U-13C6] +  50%[1-13C1] glucose for 15 hrs 
(see Methods). PEP, Mal and Suc were TMS derivatised, while alanine (used 
for Pyr) and aspartate (used for OAA) were TBDMS derivatised before GC-
MS analysis. Measured intensities were obtained by manual integration using 
ChemStation (Agilent Technologies). For each metabolite raw intensities were 
normalized, and corrected for natural isotopic contributions originating from all 
atoms except for the backbone carbon atoms. 
 
Table 7. Flux ratio estimation results in rapidly dividing L. mexicana 
promastigotes.  
 
 Oxaloacetate node Malate node  
  f12  f2  f15  f13  f8  f11  SSR 
#1  0.8172 0.0246 0.1582 0.4271 0.5729 0.0000 1.13·10-04 
#2  0.8827 0.0384 0.0789 0.4257 0.5743 0.0000 4.05·10-05 
#3  0.8611 0.0560 0.0829 0.1694 0.7523 0.0783 4.84·10-05 
#4  0.8846 0.0339 0.0816 0.5190 0.4810 0.0000 5.26·10-05 
#5  0.8630 0.0440 0.0930 0.4821 0.5179 0.0000 2.92·10-05 
#6  0.8353 0.0377 0.1270 0.3268 0.6732 0.0000 3.98·10-05 
#7  0.8701 0.0445 0.0854 0.3925 0.6075 0.0000 9.43·10-05 
#8  0.8568 0.0450 0.0983 0.3129 0.6871 0.0000 3.33·10-05 
mean  0.8589 0.0405 0.1006 0.3819 0.6083 0.0098   
stdev  0.0229 0.0093 0.0279 0.1108 0.0910 0.0277   
 
The results shown are based on experimental data (Table 6) and Equation 13. 
Mass isotopic distribution vector of CO2, [x, 1 − x], was also computed (x = 
0.7537 ± 0.1058).  
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