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Highlights

• High-resolution 4SU pulse labeling of RNA allows for quantifying synthesis, processing and decay rates

across thousands of coding and non-coding transcripts.

• Synthesis and processing rates of lncRNAs are lower than mRNAs, while degradation rates were

substantially higher.

• Differences in the splicing efficiency between slow/lncRNA and fast/mRNA introns are explained by

GC-content, splicing regulatory elements and unphosphorylated RNA poll II.

• A new annotation-agnostic classification of RNAs reveals seven clusters of lncRNAs and mRNAs with

unique metabolism patterns that provides behaviorally coherent subsets of lncRNAs.

• Classes are distinguished by evolutionary patterns and sensitivity to cellular RNA regulatory pathways.
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Abstract

The pervasive transcription of the human genome results in a heterogeneous mix of coding and long non-coding

RNAs (lncRNAs). Only a small fraction of lncRNAs possess demonstrated regulatory functions, making it

difficult to distinguish functional lncRNAs from non-functional transcriptional byproducts. This has resulted

in numerous competing classifications of human lncRNA that are complicated by a steady increase in the

number of annotated lncRNAs.

To address these challenges, we quantitatively examined transcription, splicing, degradation, localization and

translation for coding and non-coding human genes. Annotated lncRNAs had lower synthesis and higher

degradation rates than mRNAs, and we discovered mechanistic differences explaining the slower splicing of

lncRNAs. We grouped genes into classes with similar RNA metabolism profiles. These classes contained

both mRNAs and lncRNAs to varying degrees; they exhibited distinct relationships between steps of RNA

metabolism, evolutionary patterns, and sensitivity to cellular RNA regulatory pathways. Our classification

provides a behaviorally-coherent alternative to genomic context-driven annotations of lncRNAs.

Introduction

Over the last decade, the increasing evidence for pervasive transcription of the human genome has spurred

efforts to identify and functionally characterize long non-coding RNAs (lncRNAs) (Birney et al., 2007).

lncRNAs are defined as non-coding transcripts longer than 200 nucleotides, an ad-hoc convention to differen-

tiate them from well-characterized small non-coding RNA, such as microRNAs (miRNA), small nuclear and

nucleolar RNAs (snRNAs/snoRNAs), and transfer RNAs (tRNA) (Djebali et al., 2012). Present annotations

now include many tens of thousands of this expanding ragtag group of RNAs, in some cases substantially

outnumbering protein-encoding messenger RNAs (mRNA) (Iyer et al., 2015).

The vast majority of lncRNAs are transcribed by RNA polymerase II (pol II), as well as 5’-capped, spliced

and polyadenylated (Guttman et al., 2009). The defining characteristic of lncRNA, the absence of a translated

open reading frame, has received intense scrutiny given their extensive polyribosomal association and detection

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/073643doi: bioRxiv preprint 

https://doi.org/10.1101/073643


in ribosome profiling experiments (Banfai et al., 2012; Calviello et al., 2015; Guttman et al., 2013; Ingolia

et al., 2014; van Heesch et al., 2014). Many exhibit tissue-specific expression, leading to speculation that

they are subject to regulation (Cabili et al., 2011; Derrien et al., 2012). However, pol II transcription is

a low-fidelity process (Struhl, 2007), which constrained by cell-type specific chromatin architecture and

transcription factor expression can generate condition-specific “transcriptional noise” that might be interpreted

as spatiotemporally restricted expression patterns. Furthermore, non-coding transcripts originating from

regulatory regions have shown to be indicative of their activation status. Many such transcripts have been

annotated as lncRNA, but they are largely actively degraded by nuclear surveillance mechanisms and as such

unlikely to have any functions as RNA in trans (Andersson et al., 2014).

Only a small proportion of human lncRNA have known regulatory functions (Quek et al., 2014). It remains

unclear which lncRNA are likely to be functional as distinct RNA species, either by encoding a short peptide

or directly through interactions with proteins and nucleic acids (Rinn and Chang, 2012); which ones may be

non-functional byproducts of a stochastic cellular environment; and which ones may indicate or influence

transcriptional activity via the process of transcription itself but not as functional RNA (Ulitsky and Bartel,

2013). Attempts to classify lncRNA rely on either conservation, chromatin signals, or most often the genomic

position and orientation relative to coding genes (extensively reviewed by Laurent et al. (2015)). However,

the heterogeneity in the form and function of lncRNAs remains a major obstacle making it difficult 1) to

prioritize lncRNAs for in depth characterization and 2) to generalize knowledge derived from individual

lncRNAs to other lncRNAs.

RNAs that share common steps of RNA biogenesis and maturation often have similar functions as in the

case of miRNAs, snRNAs and tRNAs. The idea is generalizable to mRNAs as well assuming common

RNA metabolism behavior reflects common regulation by trans-acting factors, which have been shown to

coordinate the expression of mRNAs encoding functionally related proteins (Keene, 2007). Since lncRNAs

(and small non-coding RNAs) do not encode a separate molecule and are themselves the final active cellular

molecule, their biogenesis and maturation necessarily constrain the types of regulation the participate in.

We propose lncRNAs exhibiting similar RNA metabolism behaviors may have similar functional capacities.

Therefore, we systematically profiled RNA metabolism at multiple steps across all RNAs in the human
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genome. We quantitatively examined each major step, specifically transcription, splicing, degradation,

localization and translation, and found substantial differences between annotated lncRNA and mRNA. For

instance, computational modeling of individual intron excision revealed mechanistic differences in splicing

between lncRNA and mRNA introns. Our observations motivated us to perform a new annotation-agnostic,

unsupervised classification of RNAs based on their full RNA metabolism profile. Each of seven classes contain

both mRNAs and lncRNAs to a different extent, exhibit distinct evolutionary patterns and fitness constraints,

differential sensitivity to cellular RNA regulatory pathways and different relationships between steps of RNA

metabolism, significantly expanding the current definition based on coding potential only: Both lncRNAs and

mRNAs exist on a spectrum of biogenesis and maturation, and can be grouped into behaviorally-coherent

subclasses that will be invaluable for detailed functional inference.
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Results

Differences in expression and maturation between coding and non-coding genes

Unlike mRNAs, for which a single copy can be translated numerous times, a lncRNA must be expressed at

sufficient levels for the RNA product to have a function in a given cellular context. Therefore, we performed

strand-specific paired-end RNA sequencing in triplicate using ERCC spike-in RNAs in human embryonic

kidney cells (average depth of ~31 million uniquely aligned reads) to determine average RNA copy numbers

per cell for 27,803 genes (Supplementary Fig. 1a-c). Typical of RNA-seq experiments, we detected a low

expression regime (n=13,685 genes) and a high expression regime (n=14,118 genes) with average RNA copies

per cell of 0.05 and 11.45, respectively. Protein-coding genes exhibited higher expression than lncRNAs and

pseudogenes (Fig. 1a), a general observation confirmed by examination of 101 different tissues and samples

from ENCODE (Supplementary Fig. 1d). Only 20% of lncRNAs were in the abundant population compared

to 68% of coding genes. Since the presence of an intron can enhance expression (Hir et al., 2003), it was not

surprising that only 2.6% of protein coding genes in the high expression regime were intronless, compared

to 32% and 51.9% of lncRNAs and pseudogenes, respectively (Supplementary Fig. 1e,f). Yet, multi-exonic

lncRNAs exhibited were less robustly processed (Fig. 1b, see Supplement for estimation of primary and

mature RNA expression). These results clearly demonstrated and confirmed differences in steady-state mature

RNA levels and RNA maturation between coding and non-coding RNA (Cabili et al., 2011). Furthermore,

most lncRNA were not expressed at a copy number to be consistent with a trans-acting function for the RNA

product. Since RNA copy number estimates were derived from a population of cells, we cannot exclude the

possibility that low copy RNAs represent high expression in a minor subset of cells. However single-molecule

imaging of numerous lncRNAs in HeLa cells found that low expression was not explained by such ‘jackpot’

cells (Cabili et al., 2015).

Progressive metabolic labeling of RNA

To obtain a mechanistic understanding of the differences in behavior between mRNA and lncRNAs, we

generated progressive snapshots of RNA production, maturation, and degradation by metabolic labeling
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of RNA with 4-thiouridine (4SU) (Windhager et al., 2012). After pulse-labeling cells with 4SU for 7.5,

15, 30, 45, and 60 minutes, total RNA was purified and newly-transcribed/labeled RNA was subsequently

biochemically separated and strand-specifically paired-end sequenced in biological triplicate (Fig. 1c). The

4SU-labeled samples were sequenced to an average depth of 18 million uniquely mapping read pairs.The

fraction of primary transcript in 4SU samples was high relative to other HEK293 data types representing

different stages of RNA maturation, including genomic run-on (GRO-seq) (Fong et al., 2014) and RNA-seq

of cellular fractions (nuclear, cytoplasm, cytosol, polyribosomal (Sterne-Weiler et al., 2013; Sultan et al.,

2014)) (Supplementary Fig. 1g). We detected coverage for 79.6 million nucleotides in the 4SU-samples;

by comparison, 171.7 million nucleotides of the human genome are annotated across all GENCODEv19

(Harrow et al., 2012) (Supplementary Fig. 1h). There was a strong correlation between 4SU and GRO-seq

for genes detected in common (R = 0.83). Unstable regions, such as introns of coding genes and lncRNAs

(Supplementary Fig. 1i-m), exhibited the most pronounced coverage differences between the two methods.

Overall, 4SU-labeling was comparable to GRO-seq for analysis of RNA synthesis but did not require in vitro

perturbation of nuclei.

Scrutiny of individual loci revealed increases in production of mature mRNA from 7.5 to 60 minutes for

well-transcribed genes ACTB and MYC (Fig. 1d,e). Since ACTB had higher steady-state levels than

MYC, we could correctly infer that ACTB mRNA was more stable than MYC mRNA. We also detected

progressive increases in production of the relatively stable lncRNAs XIST and GAS5, though they exhibited

less complete intron excision (Fig. 1f,g). We inferred synthesis, processing, and degradation rates for genes

transcriptome-wide by comparing primary and mature RNA concentrations of 4SU-labeled RNA to total

RNA using INSPEcT, a differential equation-based modeling framework (de Pretis et al., 2015). The inferred

rates of synthesis, processing, and degradation from different labeling times were precise and consistent with

the observed behavior (Fig. 1h-j). The two lncRNAs exhibited slower splicing of individual introns and

lower gene-level processing rates than the two coding genes suggesting fundamental differences in splicing

mechanisms.
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Figure 1 Progressive metabolic labeling of RNA. The average RNA copy number per cell (CPC) for
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endogenous genes was estimated using the fit determined for the ERCC spike-in RNAs. (a) CPC distribution

of coding, pseudogene and lncRNA genes. (b) The ratio of mature CPCs versus primary CPCs for the high

expression population of genes based on annotation category. (c) Time-points of progressive 4SU labeling.

Longer labeling correspond to darker shades of blue. Coverage (library size normalized fragments per million)

of 4SU data (blue) and total RNA (green) profiles for (d) ACTB, (e) MYC, (f) XIST, and (g) GAS5. Rates

of (h) synthesis, (i) processing, and (j) degradation of ACTB, MYC, XIST, and GAS5 for each of the five

labeling times calculated using INSPEcT. The y-axis represents the full range of values for that rate and the

dashed line is the average.
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Splicing differences between coding and non-coding genes

Together with previous studies indicating lncRNAs are less efficiently spliced (Tilgner et al., 2012), the

differences we observed for individual intron removal for specific lncRNAs prompted us to analyze splicing

differences between individual lncRNAs and coding introns in detail. For each junction with sufficient coverage

across all labeling time-points (n = 21,782), we calculated an intron-centric splicing value, θ (Supplementary

Fig. 2a), which ranged from 0 (unspliced) to 1 (spliced). We identified three clusters of introns representing

fast, medium, and slow intron excision dynamics (Fig. 2a). Introns of lncRNA were 17.3x more likely than

introns of coding genes to belong to the slow class (Fig. 2b). Additionally, the slow class was 8.3x more likely

to contain exons exhibiting higher skipping (low spliced-in values, Ψ, see supplemental methods) (Fig. 2c).

Mirtrons were spliced out more quickly than introns not containing small RNAs, while snoRNA-containing

introns were spliced more slowly (Fig. 2d).

To investigate the mechanisms underlying the different splicing behavior, we used features corresponding

to nucleotide composition and length, canonical splicing signals, and exonic splicing regulatory elements as

well as RNA metabolism (synthesis and decay on the gene-level), in a random forest classifier trained to

discriminate between the fast and slow intron classes (Supplementary Fig. 2b). The model was trained using

all features as well as separately excluding rates derived from the 4SU data (synthesis and degradation rates).

Both models had similar performance, with a modest improvement when adding metabolic features (auROC

from 0.79 to 0.82; Fig. 2e). Similar features were important using an orthogonal approach using individual

splicing models to predict θ for coding introns, lncRNA introns, snoRNA host introns, and mirtrons using

random forest regression (Supplementary Fig. 2c-f).

The distance of introns from the transcription start site (TSS) and, especially, to the transcription end site

(TES) were important physical features for prediction and positively correlated with splicing speed (Fig. 2f).

The GC-content of the introns and flanking exons were of particular note because they were more important

for the prediction of fast introns and significantly lower for fast introns and flanking exons. With respect

to canonical splicing signals, fast introns exhibited stronger splice sites, weaker branchpoints but similar

polypyrimidine tract scores. Upstream and downstream exons flanking fast introns exhibited significantly
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higher levels of ESEs and lower levels of ESSs compared to slow introns, consistent with recent evidence for

purifying selection to preserve exonic splicing signals in lncRNAs (Haerty and Ponting, 2015; Schuler et al.,

2014).

The higher synthesis rates of genes containing slow introns (Fig. 2f, “syn”) prompted us to examine

phosphorylation status of the C-terminal domain (CTD) of RNA polymerase II (Hsin and Manley, 2012)

at splice sites using native elongating transcript sequencing data (NET-seq) (Nojima et al., 2015). We

observed similar total and ser2p NET-seq signal at the 5’ splice site (Fig. 2g,i), but substantially more

unphosphorylated RNA poll II signal at flanking 5’ splice sites of slow introns (Fig. 2h). These data indicated

the relative absence of proximal RNA polymerase II phosphorylation as a potential mechanism for the

decreased splicing efficiency of these lncRNA introns, consistent with in vitro results (Hirose et al., 1999). In

combination, GC-content, splicing regulatory elements and RNA pol II phosphorylation were very different

between fast and slow introns and were important for their classification, as well as for discriminating coding

and lncRNA introns.
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Figure 2 Dynamics of intron excision. Introns with fast, medium and slow intron excision speeds were

were identified by clustering θ values of introns with sufficient data (n=21,782) at all labeling time-points.
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Violin plots depicting the distribution of θ values for introns grouped based on (a) excision dynamics, (b) host

gene annotation, (c) constitutive or alternatively spliced adjacent exons (mean Ψ values =0.37), and (d) the

type of small RNA hosted by the intron. (e) The average receiver operating characteristic (ROC) curve for

predictions using 5-fold cross-validation using all features (black) or all features excluding those derived from

4SU data such as synthesis and degradation rates (red). (f) Bubble plot depicting the differential contribution

and importance of features to classification. The difference (fast-slow) in mean decrease in model accuracy for

each class (y-axis) plotted against the t-statistic of the difference of means between intron classes (fast-slow).

The circle size is the mean decrease in Gini coefficient representing the importance of that feature for the

classification. Features with statistically significant differences (t-test, p < 0.05) are labeled in bold red text.

The average NET-seq signal +/- 25 nucleotides from the 5’ splice site of (g) total RNA polymerase II, (h)

unphosphorylated RNA polymerase II, and (i) ser2p RNA polymerase II for fast (green), medium (yellow),

and slow (red) introns.
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Differences in RNA metabolism between coding and non-coding genes

The differences in steady-state transcript levels observed between lncRNA and mRNA must be due to

differences in the metabolism of lncRNAs. To monitor the full sequence of RNA life, from synthesis to

translation, we complemented the 4SU-derived features with the following quantitative estimates of subcellular

localization and translation status all in HEK293 cells (see Supplement for detailed explanation): the

enrichment of cytosolic over nuclear expression (CytN) (Sultan et al., 2014); the enrichment of polyribosomal

over cytosolic expression (PlyC) (Sterne-Weiler et al., 2013); and translational potential (TrP), which

represents the amount of translating ribosomes on a transcript based on their codon-by-codon movement

(Calviello et al., 2015). We focused the rest of our analysis on the 15,120 genes for which we had complete

data.

We observed high correlation between rates calculated from different labeling times (Supplementary Fig. 3

a-d), and degradation rates were similar to previous estimates (R=0.53) (Gregersen et al., 2014). Consistent

with earlier results from mouse cells (Rabani et al., 2011), transcripts encoding ribosomal proteins exhibited

high synthesis and processing as well as low degradation rates, confirming the quantitative behavior of the

estimated rates (Fig. 3a). Very different RNA metabolism patterns generated similar steady-state behavior:

for example, KRAB domain transcription factors exhibited average synthesis rates and high degradation

rates, while extracellular proteins exhibited low synthesis rates and average degradation rates (Fig. 3a). Yet,

these two groups showed similarly low steady-state RNA levels, revealing the limitations of solely assaying

abundance.

The average synthesis and processing rates for lncRNAs were 3.4x and 2.9x lower than protein coding genes,

respectively (Fig. 3b,c). LncRNAs had 9.6x higher average degradation rates than mRNAs (Fig. 3d),

a conspicuous difference to earlier less comprehensive studies reporting lncRNAs to be on average only

1.6x (Clark et al., 2012) or 0.97x (Tani et al., 2012) less stable than mRNAs. Overall lncRNAs were only

slightly more localized in the nucleus than mRNAs (Fig. 3e) and their polyribosomal localization was similar

(Supplementary Fig. 3e).The vast majority of lncRNA did not contain an actively translated open reading

frame (ORF) (Calviello et al., 2015)(Fig. 3f), confirming their status as bona fide non-coding RNA. Amongst
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polyribosomal lncRNA, those exhibiting evidence for translation were more transcribed (Supplementary Fig.

3f) and more stable (Fig. 3g).

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/073643doi: bioRxiv preprint 

https://doi.org/10.1101/073643


voltage−
gtdinchnnl

G
P

C
R

extracellularregin

defense/im
m

ntyprtn

celladhesionm
olecl

plasm
a m

em
brane

integraltom
em

brane

E
C

M
 protein

E
C

M

K
R

A
B

 box T
F

helix−
turn−

helixT
F

hom
eobox T

F

nn−
rcptrsrn/thrnpk

actin cytoskeleton

D
N

A
 helicase

helicase

R
N

A
 helicase

cytosol

reductase

m
itochondrion

ribosom
e

ribosom
al protein

histone

translation factor

R
N

P
 com

plex

nucleus

m
R

N
A

splicingfactor

m
R

N
A

 processing

TrP

PolyCyt

CytNuc

Deg

Proc

Syn

−10

−5

0

5

10

Functional characterization of mRNAs by metabolism similarities
Enriched

Depleted

A)

1e−04

0.001

0.01

0.1

1

10

coding pseudo lncRNA

T
P

M
/m

in

Synthesis Rates

0.001

0.01

0.1

1

10

coding pseudo lncRNA

1/
m

in

Processing Rates

1e−04

0.001

0.01

0.1

1

10

coding pseudo lncRNA
1/

m
in

Degradation Rates

−4

−2

0

2

4

coding pseudo lncRNA

Lo
g 2

 (C
yt

o/
N

uc
)

Cyt vs Nuc

−2

0

2

4

coding pseudo lncRNA

Tr
P

Translation

−1

0

1

2

Not Translated Translated

D
eg

 R
at

e 
(1

/m
in

)

Polyribosomal lncRNA

B) C) D)

E) F) G)

Figure 3 RNA metabolism of mRNA and lncRNA. (a) Clustering of gene ontology enrichment

for protein-coding genes based six hallmarks of RNA processing: synthesis rates (Syn), processing rates

(Proc), degradation rates (Deg), cytoplasmic vs nuclear localization (CytNuc), polyribosomal vs cytoplasmic

localization (PolyCyt), and translational status from ribo-seq data (TrP). Each feature (e.g. Syn) was

rank-ordered and the p-value of enrichment for each gene sets was calculated using PantherDB. The scale

indicates the log10(p-value) for enriched gene sets (red) and -log10(p-value) for depleted gene sets (blue).

(b-g) Distribution of (b) synthesis rates, (c) processing rates, (d) degradation rates, (e) cytoplasmic vs nuclear

localization, (f) translation for coding, lncRNA, and pseudogenes. (g) Distribution of degradation rates
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for polyribosomal lncRNA (PolyCyt > 0.1) divided into groups based on the presence or abscence of a

RiboTaper-detected translated ORF from ribosome profiling data in HEK293 cells for coding, lncRNA, and

pseudogenes.
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Annotation-agnostic classification of genes using RNA metabolism profiles

Although we observed substantial differences in numerous aspects of RNA metabolism between annotated

coding genes and lncRNAs, we also noticed that both lncRNA and mRNA exhibited a wide and overlapping

range of behavior (Fig. 2,3). This highlighted the heterogeneity in metabolism of both lncRNA and mRNA

with respect to annotation. We hypothesized that genes with similar RNA metabolism features would

reflect the coordinated activity of specific RNA processing factors. Importantly, for non-coding RNAs this

classification would help distinguish which, if any, of the wide range of regulatory mechanisms they might

participate in. Therefore, we clustered all 15,120 genes (including annotated coding and non-coding as well

as pseudogenes) de novo based on all six features of the metabolism profiles. The number of clusters was

determined using the gap-statistic (Supplementary Fig. 4a).

We identified seven RNA classes containing from 921 to 3293 genes (Fig. 4a). Classes c1-c4 were enriched for

coding genes (n=10,793), although they contained 220 lncRNAs (Fig. 4b). Classes c5-c7 were enriched for

lncRNA (n=1752), although they contained a similar number of coding genes (n=1838). Importantly, all

GENCODE-defined lncRNA subcategories (e.g., lincRNA or antisense) were non-specifically found across

clusters c5-7 (Fig. 4c), demonstrating that classification based on positional genomic features does not coincide

with specific lncRNA behavior. Consistent with earlier studies that indicated many processed-transcript

RNAs to be translated (Calviello et al., 2015), this biotype was more likely to be in c1-c4 than other lncRNA

biotypes.

Even though protein-coding genes were enriched in classes c1-c4, they occurred in all seven classes enriched

for distinct characteristics and encoding functionally related proteins (Supplementary Fig. 4b). Genes in c1

and c2 exhibited the most similar RNA metabolism profiles, with c1 genes having modestly higher synthesis

and processing rates, lower degradation rates and higher translation. The c1 genes exhibited the highest

expression and lowest tissue specificity, consistent with “housekeeping”/constitutive genes such as mRNAs

encoding ribosomal proteins. Genes in c3 were synthesized and processed well, but had relatively higher

degradation rates and were less cytoplasmic; this class was enriched for transcription factors, particularly the

aforementioned KRAB domain transcription factors. These genes may be subject to nuclear retention as
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a mechanism to reduce cytoplasmic gene expression noise created by transcriptional bursts (Battich et al.,

2015; Halpern et al., 2015); indeed, c3 genes exhibited a lower level of cytoplasmic localization relative to

other classes in a recent study of subcellular expression in mouse liver (Supplementary Fig. 4d). Genes in c4

had relatively lower synthesis, processing and translation rates along with higher degradation rates compared

to c1-3 and were enriched for receptors; they were also depleted of ribosomal proteins and RNA processing

factors. These genes exhibited the most tissue specificity of c1-4 and had steady-state expression levels similar

to genes in c6. Within c5-7, the c6 genes had the highest synthesis rates and most nuclear localization and

were enriched for pseudogenes along with calcium and ion channel-encoding mRNAs. Genes in c5, typified

by GPCRs and ion channels, and c7, typified by peptide hormones, exhibited similar steady-state levels of

expression but very different degradation rates and localization. The c7 genes had the highest proportion of

protein-coding genes with no functional classification and that are part of the “missing” proteome (Wilhelm

et al., 2014) (Supplementary Fig. 4c), raising the possibility that many of these genes may not (or no longer)

be protein-coding.

The classes exhibited overlapping gene expression distributions (Supplementary Fig. 4e), and thus were

not recapitulated by steady-state expression or any individual RNA metabolism feature. For all classes,

the maximum expression level of genes across tissues/cell-lines (101 tissue/cell-lines from ENCODE) were

correlated with their expression in HEK293 cells (Fig. 4d, see Supplementary Methods for details). Classes

c4-c7 exhibited the most tissue/cell-line specific expression (Supplementary Fig. 4f). Additionally, genes not

expressed in HEK293 cells had the lowest distribution of maximum expression levels across tissues/cell-lines

(Fig. 4e). These results supported the generality of RNA metabolism-derived classes and not simply a

HEK293 cell-specific behavior. Importantly, they highlighted the distinct utility of our new classes compared

to existing classifications or biotypes (Supplementary Fig. 4g).
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Figure 4 Classification of genes by RNA metabolism profiles. (a) Centered and scaled values for

each metabolic feature for each of seven classes determined by k-means clustering. The number on the class

labels represents the number of genes in each class. (b) Odds-ratio (Fishers exact test) for overlap between

class membership and GENCODE V19 annotation classes. Numbers of genes in each class and annotation

category shown above bars. (c) The number of lncRNA genes a given GENCODE V19 biotype for each RNA

class. Numbers of genes in each class and biotype category shown above bars. (d) Bubble plot of median

value of HEK293 expression (x-axis) and of maximum TPM across 101 tissues/cell lines from ENCODE

(y-axis) for all genes in a class. The bubble size represents tissue specificity score (higher score = more tissue

restricted). (e) Boxplot showing distribution the maximum TPM across 101 ENCODE cell lines and tissues

for genes in each RNA class and for genes excluded from the clustering of RNA features due to insufficient

data in HEK293 cells.
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Classes exhibit specific evolution and fitness signatures

Our RNA metabolism-derived classes exhibited differences in gene age (origination in vertebrate phylogeny

derived from (Zhang et al., 2010)). Classes c1, c2, and c3 were enriched for ancestral protein-coding genes

predating the divergence of vertebrates (Fig. 6a). Most lncRNAs originated throughout mammalian and

primate evolution, while pseudogenes were mainly gained in primates. Genes in c4 and c5 were gained prior

to the divergence of eutherians mammals. Classes c3, c6 and c7 showed significant enrichment for gains in

the primate lineage, with the latter two enriched for human-specific genes. These two classes had the highest

degradation rates, which more strongly correlated with gene age than synthesis rates (Fig. 5b,c). This is

consistent with observations of high turnover of lineage-specific lncRNAs in tetrapods (Necsulea et al., 2014)

as well as rodents (Kutter et al., 2012), specifically. Unique to our approach, we were able to observe that

young genes have managed to be synthesized but not avoided being degraded, as has been suggested for

the balance between splicing and polyadenylation of RNAs produced from divergent transcription (Wu and

Sharp, 2013).

Distinct regulatory pathways shape RNA classes

The classes responded in specific ways to perturbations of cellular RNA quality control and/or regulatory

pathways (Fig. 5d). Genes in c3 were the most down-regulated upon depletion of HuR/ELAVL1, an RBP

antagonizing AU-rich element (ARE) mediated decay. The genes’ nuclear preference is thus aligned with the

pre-mRNA stabilizing function of HuR (Mukherjee et al., 2011). They also exhibited the highest 3’ UTR

ARE content and degradation rates except for c7, consistent with a particular sensitivity of these genes to

cytoplasmic ARE-mediated decay mechanisms. The nuclear poly A binding protein (PABPN1 ) and polyA

polymerase (PAP) mediated RNA decay (PPD) pathway limits the accumulation of inefficiently processed

nuclear RNAs (Bresson et al., 2015). Genes in c5 and especially c7 exhibited the slowest processing rates

and increased the most upon over-expression of a dominant-negative PABPN1 mutant (LALA) that binds

RNA but cannot stimulate PAP (Bresson et al., 2015). Interestingly, only c5 and c7 genes exhibited strong

negative correlation between processing rate and export to the cytoplasm (Fig. 5 f,h), explaining the lower
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sensitivity of c6 genes to PPD. Furthermore, the classes exhibited unique patterns of response to depletion of

different RBPs in K562 cells from ENCODE (Supplementary Fig. 5a). Altogether these results indicated

that RNA classes are controled by distinct regulatory pathways in multiple human cell types.

We examined the relationship between different steps of RNA metabolism by quantifiing each pairwise

association between any two features while accounting for all other features (partial correlation analysis, see

Supplementary Methods). For example, class c1 genes exhibited the most interdependence between different

steps of RNA metabolism (Fig. 5c), while c6 and c7 (Fig. 5 g,h) exhibited the least interdependence. The

coupling between various steps of RNA metabolism is expected to be dependent on cis-regulatory elements

allowing these genes to interact with the responsible RNA processing machinery. Thus, less coupling of RNA

metabolism is indicative of classes enriched for “younger” genes (Fig. 5a), with a lower fraction of sequence

under evolutionary constraint.
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Figure 5 Evolutionary and regulatory differences between RNA classes. (a) Heatmap of -log10

p-value of overlap enrichment between the phylogenetic point of gene origination and RNA classes. Odds-ratio

for overlap between gene origination and annotation category, specifically coding (purple), pseudogene

(orange), or lncRNA (green). Boxplot of (b) synthesis and (c) degradation rates for genes grouped by

origination class. A line is depicted connecting the means for each class (point). (d) Log 2 fold change of

RBP perturbation - control in HEK293 cells. Median AREscore of all 3’UTR sequences from class (grey) and

percent intronless (yellow). (e-h) Partial correlation coefficient between different RNA metabolism features

c1, c5, c6, and c7.
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lncRNA in different classes exhibit different behavior

Finally, we focused our characterization of classes on lncRNAs, specifically asking which classes were enriched

for known functional lncRNAs from lncRNADB v2.0 (Quek et al., 2014). Classes c1, c2, and c3 exhibited the

strongest overlap with lncRNADB (Fig. 6a) compared to c4 and c6, which were only ~1.5x more likely to be

found in lncRNADB than expected. In contrast, c5 and especially c7 were less likely to be in lncRNADB

than expected. Importantly, lncRNA biotypes showed fewer distinct differences in overlap with lncRNADB,

with processed transcripts, as expected, showing the strongest enrichment (Supplementary Fig. 6a).

Although informative the gene origination analysis suffered a lack of comprehensiveness particularly for

lncRNA genes. Thus, we compared genic regions using FitCons, an approach that integrates sequence

divergence in primates and sequence polymorphisms across human poulations together with functional

genomic data to estimate the probability that a point mutations will have a fitness consequence (Gulko et al.,

2015). Independent of the gene region (cds exon, coding exon) or annotation (coding/lncRNA) examined,

c1-4 and c6 had higher fitCons scores than c5 and c7 (Fig. 5b and Supplemental Figure 5c,d). Of the classes

enriched for lncRNAs (c5-7), c6 had better coverage scores and behaved more like the the “coding-like” c1-4

genes. c5 lncRNA exons had lower fitCons coverage than those from c7, which have substantially higher

degradation rates. The lower constraint on c7 (younger) exonic lncRNA sequence was consistent with earlier

evolutionary studies (Kutter et al., 2012; Necsulea et al., 2014). These differences for “fitness consequences”

in the exonic sequence encoded by both coding genes and lncRNAs strongly support the utility of our classes,

in general, and with respect to lncRNA biotypes, in particular (Supplementary Fig. 5e).

Histone modifications at transcription start sites (TSSs) have been used to distinguish between promoter

(H3K4me1) and enhancer-like regulatory elements (H3K4me3). This approach has been used to define

different classes of intergenic lncRNAs (Marques et al., 2013). We compared the ratio of H3K4me1 versus

H3K4me3 at annotated TSSs (-250 to +750 bp) of lncRNAs in different classes (Fig. 6c). We found that

c1-c4 were had the lowest H3K4me1:H3K4me3 ratio and c5-c7 had the highest ratio. The c1-c4 lncRNAs are

thus not likely to have potential for enhancer-like cis regulation of neighboring genes, compared to c5-c7. The

latter classes, particularly c7, may involve a mechanism indicative of transcriptional regulatory activity but
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unlikely to function as RNA.

The classification of lncRNAs based on their RNA metabolic pattern thus provided insights into their potential

functions. For example, an unstable nuclear lncRNA cannot perform a cytoplasmic trans-regulatory function.

LINC00493 (Fig. 6d) and DANCR (Fig. 6e) were similar with regards to synthesis, processing, degradation

and export, but belonging to different clusters. However, LINC00493, belonging to c1, contained a highly

translated ORF with peptide evidence, thus providing additional evidence to annul its status as a bona

fide lncRNA (Michalik et al., 2014). DANCR was a member of c2 and has been reported to be involved

in the antagonism of miRNAs (Kretz et al., 2012; Yuan et al., 2015), consistent with its high stability and

cytoplasmic localization. MALAT1, a well-known nuclear lncRNA, belonged to the category of stable and

nuclear localized c3 genes (Fig. 6f), consistent with its known role in splicing (Tripathi et al., 2010). The

genes in c4 and c6 had similar synthesis, processing, and degradation rates, but c6 genes were strongly

localized to the nucleus. Accordingly, TUG1, a lncRNA capable of recruiting polycomb-repressive complex

2 and silencing a subset of genes (Khalil et al., 2009), was a member of c6 (Supplementary Fig. 6c). The

lncRNAs in c4 may have cytoplasmic and/or nuclear functions. HOTAIRM1A, one of these genes, has a

nuclear function given its ability to modulate the expression of neighboring HOX genes (Zhang et al., 2009),

although we also detected a spliced cytoplasmic isoform (Fig. 6g). The lncRNAs in c5 and especially c7

were most likely quickly degraded transcriptional byproducts, and thus are the least likely to be functional

as RNAs (Supplementary Fig. 6b,d). In this way, representative well-studied lncRNA now provide specific

hypotheses for additional lncRNA belonging to the same cluster.
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Figure 6 Distinct behavior of lncRNA classes. (a) The odds-ratio of the overlap between lncRNAs

that were either found (“yes”) or not found (“no”) in lncRNADb for each RNA class. The numbers represent

the gene count in each category. (b) The fraction of nucleotides of lncRNA exons in a particular class with a

fitCons score > S calculated. (c) Boxplot of the distribution of H3K4me1 vs H3K4me3 input normalized

ChIP-seq signals in the promoter (-250 to +750 nucleotides from the annotated transcriptional start site) of

genes in each class. (d-g) Coverage of 4SU (blue), total (green), cytoplasmic (red) and nuclear (cyan) RNA
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profiles for lncRNAs belonging to c1-c4.
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Discussion

This study represents one of the most multi-faceted and quantitative examination of RNA metabolism in a

human cell line. Consistent with other studies in human we also observed that lncRNAs were slightly more

enriched in the nucleus compared to mRNA (Cabili et al., 2015; Derrien et al., 2012; Djebali et al., 2012).

However their remains a popular misconception regarding strong preference toward nuclear localization for

lncRNAs (Ulitsky and Bartel, 2013), which may be due to chromatin-associated regulatory activity of a

few of the most well known lncRNAs, such as XIST or MALAT1. The relatively poorer processing and

higher degradation of lncRNAs would at least partially explain the less cytoplasmic/more nuclear localization

of lncRNAs relative to mRNAs rather than specific regulation of lncRNA localization. Additionally, we

confirmed that steady-state lncRNA copy numbers in human are typically ~10x lower than mRNA (Cabili et

al., 2011) and show this is due to differences in both synthesis and degradation. This is an important question

that cannot be answered from steady-state RNA levels alone. One could envision even a low abundance

lncRNA having a trans-acting function if it is stable and it may even participate in sequential interactions

thereby “amplifying” its regulatory capacity similar to mRNAs being translated multiple times.

We are aware of only one study that explicitly compared mRNA and lncRNA stability in human cells, which

observed minimal differences in RNA stability (Tani et al., 2012); a study conducted in mouse neuroblastoma

cells also observed similar stability (Clark et al., 2012). These studies used different methods for measuring

expression and determining stability and may not have had sufficient depth to capture rare RNAs. Only 30

lncRNAs with measured stability are found in both datasets. These 30 lncRNAs belonged to class c1/2/3/6

and, importantly, none were in c7, the extremely unstable and most tissue-specific class accounting for

31.6% of our detected lncRNAs. Consistent with our findings, Rabani et al. (2014) also point to substantial

differences between ‘lincRNA’ and mRNA stability in LPS response of mouse dendritic cells, but they reported

similar synthesis and processing rates between mRNA and a subset of abundant ‘lincRNA’. Each study used

different annotation information and none of these studies focused on the same group of lncRNAs or even

“lincRNAs”. Beyond technical, species- and context-specific differences, the heterogeneity of lncRNAs and the

lack of a coherent classification make it inherently difficult to reconcile conclusions from different studies.
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Thus our annotation-agnostic unsupervised classification of genes based on six hallmarks of RNA processing,

represents an important step toward providing functional and relational coherence to the field.

Intriguingly, we not only identified lncRNA in protein-coding dominated classes, but also identified hundreds

of protein-coding transcripts with metabolism profiles that appear more lncRNA-like. In fact, any given

gene exists on a continuum within a specific cellular and evolutionary context, and can be in the process of

gaining or losing specific characteristics. For instance, some of the protein-coding genes that cluster with

pseudogenes or unstable lncRNAs are likely to never generate proteins, but this apparent pseudogenization

may have occurred too recent to allow for accumulating sequence changes typically used to identify bona fide

pseudogenes. Likewise, a small number of currently annotated lncRNAs do not just encode translated open

reading frames with detectable peptides being produced, but their whole processing resembles protein-coding

genes and to such an extent that they can now safely be re-annotated. However we find that most of the

known functional lncRNAs are enriched in RNA classes showing evidence for translation c1-c4, though no

detectable peptide. It is unclear the extent to which the translational signature relates to the functional

lncRNAs and if they tend to be bi-functional genes, such as SRA1 (Cooper et al., 2011).

Our results substantially expand the understanding of the features governing intron excision. We show

that introns that took longer to be excised were more likely to be from lncRNAs and alternative exon

usage events. This complements and confirms research indicating that these two groups are less likely to

be co-transcriptionally spliced and/or less efficiently by comparing subcellular fractions (Pandya-Jones et

al., 2013; Tilgner et al., 2012). Clearly, the slowly excised introns we detected would include some detained

and/or retained introns (Boutz et al., 2015; Braunschweig et al., 2014). We and Braunschweig et al. (2014)

both identify high GC-content, intron position, weak splice-site strength and increased polymerase occupancy,

and we additionally show the importance of splicing enhancer density (higher for fast group) and silencer

density (higher for slow group). Integration of NET-seq data show that slow introns tend to have more

unphosphorylated RNA pol II which cumulatively with the above differences would reduce co-transcriptional

recruitment of splicing factors. These results will aid future experimental dissection of the order and impact

of these features on lncRNA splicing and function.

Our study substantiates a growing sentiment in the lncRNA field aptly pointed out by Quinn and Chang
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(2015): that we need to “recognize that [lncRNAs] exist on multidimensional spectra of biogenesis, form

and function.” Inspired by half-a-century old research tritium labeling and sedimentation to investigate

cellular RNA leading to the discovery of heterogeneous nuclear RNA (hnRNA) (Soeiro et al., 1966), we used

a combination of genomic technologies and computational modeling to quantify numerous aspects of RNA

metabolism and classify hnRNAs by their life history. Gene position/orientation independent attempts to

classify RNAs, specifically lncRNAs, largely depend on evolutionary sequence conservation and/or comparison

of chromatin modifications. Both of these approaches have yielded important insights however their utility is

compromised by the overlapping and complex gene models, which our integrative approach proposed here

can handle due to strand-specific nature of our assays. Furthermore, methods to address the evolutionary

conservation and selection of RNA structural elements will be important for the inference of lncRNA-mediated

regulatory mechanisms in spite of the computational observation that lncRNAs are folded than mRNAs

(Yang and Zhang, 2014).

While this work focuses on a single human cell line we provide evidence that the observations are gener-

alizable; there will undoubtedly be context-specific differences in behavior that will be the focus of future

work. Moreover, quantifying these behavior at the transcript-level will be very important. Our behavioral

classification of RNAs 1) provides a starting point for collecting genetic evidence for the function of lncRNAs

(Sauvageau et al., 2013), and 2) enables potential inference of regulatory mechanisms for a specific RNA to

other RNAs with similar behavior.
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