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Abstract

Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for
magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within
millimetres from the scalp into an array that adapts to the invidual head size and shape, thereby
reducing the distance from cortical sources to the sensors. Here, we quantified the improvement
in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-
the-art SQUID array (102 magnetometers and 204 planar gradiometers).

We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential
(tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built
forward models based on magnetic resonance images of 10 adult heads; we employed a three-
compartment boundary element model and distributed current dipoles evenly across the cortical
mantle.

Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher
signal power, while the correlations between the field patterns of source dipoles were reduced by
factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across
nOPM, tOPM and SQUID gradiometers. The information capacities of the OPM arrays were
clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays
were similar while the minimum-norm-based point-spread functions were on average 2.4 and
2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively.

The results indicate that on-scalp MEG arrays offer clear benefits over a traditional SQUID
array in several aspects of performance.

Keywords: magnetoencephalography, lead field, superconducting quantum interference device,
optically-pumped magnetometer, atomic magnetometer, sensor array

1. Introduction

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that detects the
magnetic fields of electrically active neuron populations in the human brain (Hamaléinen et al.,
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1993). Due to the weakness of these fields, highly sensitive detectors (magnetometers) are
needed. Until recently, superconducting quantum interference devices (SQUIDs) have been the
only sensors with adequate sensitivity to enable practical mapping of the cerebral neuromagnetic
fields. However, SQUIDs require a cryogenic environment, and liquid helium (boiling point
4.2 K) is typically used for reaching sufficiently low temperatures. The necessity of cryogenics
imposes several problems: First, cryogenics make MEG systems bulky. Second, the necessary
thermal isolation between the sensors and the subject sets a lower limit, typically about 2 cm,
on the distance from the sensors to the scalp of the subject. Last, a SQUID-based sensor array
is not adjustable to individual head size and shape, which further increases the average distance
between sensors and scalp. Alternative sensors such as optically-pumped, or atomic, magne-
tometers (OPMs) (Budker and Kimball, [2013}; |Budker and Romalis} [2007) and high-7; SQUIDs
(Oisjoen et al., 2012) have recently reached sensitivities required for detecting neuromagnetic
fields.

Particularly OPMs operating in the spin-exchange relaxation-free (SERF) regime (Allred
et al.l 2002) could become a feasible, non-cryogenic alternative to SQUIDs for neuromagnetic
measurements as the dimensions and sensitivies of the SERF-OPMs are approaching those of
SQUIDs (~cm?” and ~3 fT/+/Hz). Johnson and colleagues (2010) reported that they achieved a
sensitivity better than 5 fT/+/Hz with their SERF-OPM with a footprint of 6x6 cm?. A smaller
chip-scale microfabricated OPM developed by Mhaskar and colleagues (2012) has a volume of
about (1 cm)3 and sensitivity better than 20 T/ v/Hz. |Shah and Wakai|(2013) have demonstrated
an OPM with a volume of 2x2x5 c¢m? and sensitivity of 10 fT/+/Hz during a field study and 6
fT/ +/Hz in the laboratory; the theoretical photon-shot-noise-limited sensitivity of that OPM was
1 fT/v/Hz.

The sensitivies of the OPMs should thus allow the measurement of weak neuromagnetic
fields, while their dimensions enable multichannel whole-head-covering measurements. OPMs
could also be placed within few millimetres from scalp, permitting EEG-cap-like MEG arrays.
Here, we compare the performance of such on-scalp MEG sensor arrays against conventional
SQUID arrays.

We simulate the performance of hypothetical on-scalp OPM arrays of sensors that measure
the normal and tangential components of the neuromagnetic field. We compare the performance
of such arrays to a state-of-the-art SQUID-based 306-channel MEG array. In our simulations,
we use realistic geometries derived from magnetic resonance images of ten adult subjects and
calculate magnetic fields using the boundary element method. Our aim is to examine the possible
benefits that result from recording MEG closer to the brain and to investigate differences in the
measurements of normal and tangential components of the magnetic field. We use both novel
and well-established metrics derived from forward models and point-spread functions of the
minimum-norm estimates. The metrics quantify signal power, information, similarity of the field
patterns of the sources, overlap of the sensor lead-fields, localization accuracy and resolution.
Besides measures of performance evaluation, such metrics can be used to guide the design of
MEG sensor arrays. In addition, we quantify the differences in the measurements of normal
and tangential field components by analyzing the contributions they receive from primary and
secondary currents.

2. Theory

In this section, we shortly review the key physics and introduce the concepts used in the
forward and inverse modeling employed in this study.
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2.1. Physics

When bioelectromagnetic fields are modeled in the macroscopic scale, the time-dependent
terms in Maxwell’s equations can be omitted (Plonsey and Heppner, [1967). The total current
density in the head is divided into two parts; J = J, + Jv, where J;, is the primary current den-
sity representing the neuronal source activity while Jvy is the volume current density, which is
driven by the electric field caused by J,, and is present everywhere in the conductor. The electric
potential ¢ is then given by V- (cV¢) =V -J,,, where & is conductivity, and the magnetic field
can be obtained by integrating the total current using Biot—Savart law. When the conducting
region is modeled to consist of piecewise homogeneous regions, the magnetic field is given by
the Geselowitz formula; (Geselowitz, [1970)

B(r) = Bpy(r)+By(r) (1)
_ Mo [ L) x(r—r)
N H/ r—r'[3 v
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where B, (r) and B, (r) are the magnetic fields due to primary and volume currents, L is the
permeablhty of free space, and G and ¢, are the conductivities inside and outside the kth sur-
face S¥, respectively. The magnetlc field can thus be obtained by first solving for the potential
on conductivity boundaries and then integrating. Boundary element method (BEM) is a conve-
nient choice for computing the potential and magnetic field in a piecewise homogeneous volume
conductor (e.g. [Stenroos et al.[(2007)).

2.2. Forward model

The primary current distribution is typically discretized into a set of current dipoles (Himalai-
nen et al., [1993). The output of a sensor is obtained by integrating the magnetic field due to
primary-current dipoles through the sensitive volume of the sensor; the sensitive volume is dis-
cretized into a set of integration points and the integral is approximated by a weighted sum of the
magnetic field components at these points.

With these models, the magnetic-field amplitudes at the N, sensors b € ZNex1 are related to
the N, amplitudes of the current dipoles j € 2™*! by a linear mapping

b =1L1j, 3)

where L € %Ne>*Ns is the lead-field matrix. The ith column of the lead-field matrix (t;) represents
the magnetic field pattern (topography) of the ith unit dipole (source); the jth row (I;) represents
the sensitivity pattern of sensor j to the current dipoles, i.e., the lead field of sensor j. According
to the Geselowitz formula presented earlier, the lead-field matrix can be considered a sum of two

matrices:
L=P+V, @)

where P and V represent the contributions of the primary and volume currents, respectively.
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2.3. Minimum-norm estimate

Minimum-/,-norm estimator (Dale and Sereno, |1993; [Hamaildinen and Ilmoniemi, |1994)) can
be used to estimate underlying sources from measured data. The source estimate, which satisfies
the regularized minimum-/-norm condition and takes into account the spatiotemporal properties
of the noise, is

j=LT(LLT + 1>C)"'b=Gb, 5)

where A? is the regularization parameter, C is the noise covariance matrix and G is the minimum-
norm estimator. The regularization parameter has been suggested to be chosen as (Lin et al.|
2006alb)
iTT
N.SNR’
where N, is the number of sensors, SNR is the estimated signal-to-noise ratio, tr(-) is trace of a
matrix and L is the whitened lead-field matrix: L = C~1/2L.

3. Methods

Here, we present the methods and models that were used in the simulations and review the
measures that we used to quantify the performance of the arrays. First, we constructed the
anatomical models from the magnetic resonance images (MRIs), modeled the sensors and sensor
arrays, and then computed the lead-field matrices. Prior to the actual simulations, we quantified
whether the lead-field matrices of the OPM arrays are more sensitive to the skull-conductivity
value and to the densities of BEM surface tessellations than the SQUID arrays. Subsequently, we
built the lead-field matrices and minimum-norm estimators for the computation of performance
metrics.

3.1. Anatomical models

T1-weighted MRIs were obtained from ten healthy adults (seven males, three females) using
a 3-T scanner and a 3D MP-RAGE sequence. FreeSurfer software (Dale et al., |1999; [Fischl
et al.,|1999a; [Fischll 2012) was used to segment the cortical mantles from individual MRIs. The
primary current distributions were assumed to lie on the cortical surfaces and were discretized to
sets of dipoles oriented normal to the local cortical surface (10 242 dipoles per hemisphere). For
each subject, we used the watershed algorithm (Ségonne et al.,2004) implemented in FreeSurfer
and MNE software (Gramfort et al., [2014) to segment the brain, skull and scalp compartments.
We triangulated and decimated these surfaces to obtain three meshes (2 562 vertices per mesh)
for the BEM. To estimate errors due to the coarser meshes, we constructed an additional model
for one subject with surfaces comprising 10 242 vertices.

To obtain group-level metrics, the spherical morphing procedure in Freesurfer (Fischl et al.|
1999b) was used to map the values from individual subjects to their average brain, where the
values were subsequently averaged.

3.2. Sensor models

The sensor output was computed by integrating over a set of points within the sensing volume
(OPMs) or pick-up coil plane (SQUIDs). The descriptions of the sensor geometries are presented
in Table[I] The OPM sensor was a cube with a sidelength of 5 mm, and the integration points
were distributed uniformly within that volume. The SQUID sensors were modeled as in the
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MNE software (Table[I} (Gramfort et al.[2014). The OPMs were assumed to have a noise level of
6 fT/+/Hz while the noise levels of SQUID magnetometers and gradiometers were 3 fT/ v/ Hz
and 3 fT/(cm +/Hz), respectively.

Table 1: Sensor models used in this study. N is the number of integration points r, w is the weight of each point and o is
the noise level.

Sensor type N r(x,y,z) [mm] w c

OPM 8 (£1.25,+1.25,1.25) 1/8 6 T/ v/Hz
(+£1.25, +£1.25, 3.75) 1/8

SQUID gradiometer 2 (£8.4, 0, 0.3) +1/16.8 mm 3 fT/(cm vHz)

SQUID magnetometer 4  (£6.45, £6.45,0.3) 1/4 3fT/+/Hz

3.3. Sensor arrays

The SQUID sensor arrays of the Elekta Neuromag® MEG system (102 magnetometers; 204
planar gradiometers; Elekta Oy, Helsinki, Finland) were positioned around the subjects’ heads
as in a real MEG measurement. For each subject, the position was optimized for good coverage
of the entire cortex as well as for symmetry along the left-right axis. Thereafter, the sensor
positions were verified to be at least 2 cm (approximate thickness of the MEG dewar) from the
scalp. The SQUID array for each subject is shown in Fig. [l We considered three variants of
this array: planar gradiometers only (gSQUID), magnetometers only (mSQUID), and the full
306-channel array (aSQUID) with both sensor types.

The OPM locations (shown in Fig. [I)) were derived from the SQUID arrays by projecting
the sensor locations to the scalp. The distance of the closest face of the OPM sensor cube to
scalp was set to 1 mm. For these positions, we defined three different OPM arrays: one with 102
sensors measuring the normal component of the magnetic field with respect to the local surface of
the scalp (nOPM), other with 204 sensors measuring the two orthogonal tangential components
(tOPM) and a combination of the aforementioned arrays, with 306 sensors measuring all field
components (aOPM).

3.4. Forward models

For each subject, the lead-field matrix L. was computed using a linear Galerkin BEM formu-
lated with Isolated Source Approach (ISA) (Stenroos and Sarvas| [2012). The conductivities of
the brain, skull and scalp compartments of the BEM model were set to [1 1/25 1]1x0.33 S/m. To
assess the sensitivity of the calculated lead-field matrices to skull conductivity, in one subject we
compared the computed topographies against those obtained with skull conductivity values of
0.33/50 and 0.33/80 S/m.

3.5. Minimum-norm estimator

We estimated the SNR in the regularization parameter of Eq. (6) with the average SNR of
the cortical sources; we defined the SNR of source i as

T
SNR; = —tr(t;t)), (7
N,

where ¢? is the source variance and f; = (C~!/2L); is the whitened topography of the ith source.
‘We took into account only sensor noise which was assumed to be uncorrelated across the sensors;
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Figure 1: The constructed SQUID (left) and OPM (right) sensor positions. Top: Frontal and lateral views of the sensor
locations for one subject. Other rows: Lateral views for the rest of the subjects.
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thus, we used a diagonal noise covariance matrix C, whose diagonal elements were the noise
variances sz of the sensors. With a diagonal C, Eq. (7) simplifies into (Goldenholz et al.,2009)
N, 42
¢\ i

SNR; = Ly &k 8
1 NCk;]('sz ( )

We set the source variance g so that the average SNR across the sources was 1 for the SQUID
magnetometers and calculated the average SNRs and regularization parameters for the other
arrays using that particular source variance.

3.6. Metrics

We analyzed the modeling errors with specific error measures. We computed topography
power of the arrays and analyzed the contributions of the primary and volume currents to the
signals. We then assessed the correlations between source topographies and examined the lead
fields of the sensors by comparing the fields-of-view (FOVs) of the sensors and calculating cor-
relations among the lead fields. To complete forward model -based metrics and quantify the
performance of the array with a single number, we calculated the total information conveyed by
the array (Kemppainen and I[Imoniemil |1989). Last, we investigated the PSFs of the arrays in the
minimum-norm estimation. We calculated all metrics individually for each subject, morphed the
results to the average brain and averaged.

Error measures. To assess the numerical errors, we investigated the differences between the ob-
tained topographies using metrics sensitive to differences in amplitudes and shapes of topogra-
phies. Relative error (RE) is such a measure, and for the ith source it is given by

||tref _ t;est”
RE; = ———"— ©)
[
where ! and t!° are the test and reference topographies of the ith source and || - || is the /,-norm.

Correlation coefficient (CC) is sensitive only to differences in the field shape and is expressed

for the ith source as ¢ .
ref __ zre test __ gtest

cC (10)

i= ||t§ef—ffef|| ) e st
where - is the dot product and t; denotes the mean of t;.

Relative sensitivity. To compare the overall signal power of the arrays, we defined relative sen-

sitivity
o _ I o
S
where ||t¢||* and ||t?||? are the topography power of the source i in arrays a and b, respectively.

The relative sensitivity is related to the ratio of SNRs between arrays: if we assume that all
sensors in the array have equal sensor noise variance 62, Eq. simplifies to

112 2
SNR; = ti||”- 12
=yl (12
Consequently, the ratio of SNRs of arrays a and b for source i is
SNRia _ NewOy /1> NewSj cab
SNRip  Nea0g [[2]> NeaOq
7
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Primary- and volume-current contributions. We studied also the contributions of the primary
and volume currents to the total magnetic field across the different sensor arrays. We defined TP
as the ratio of the norms of the topographies of the total and primary current as

il it
1~ - )
[ [Ipil

(14)

where p;, v; and t; denote the ith columns of the corresponding matrices P,V and L. Considering
the values of TP, three different scenarios arise:

e TP < I: Volume-current field decreases the overall amplitude of the primary-current field.

e TP =~ 1: Volume currents do not noticeably decrease or increase the overall amplitude of
the primary-current field.

e TP > 1: Volume-current field increases the overall amplitude of the primary-current field.

We also quantified the relative overall magnitude of the topographies of the primary and
volume currents for the different sensor arrays by calculating the ratio of the norms of these field
components
el

lvill

PV; 15)
In addition to these amplitude-based measures, we investigated the differences in the field shapes
of primary and volume currents by computing the correlation coefficient (Eq. (I0)) between their
topographies; we denote these values of correlation coefficient as CCpy.

Topography overlap. We calculated the correlation between the topography of the reference
source and the topographies of all other sources in the source space using Eq. (I0). By labeling
those sources with considerable correlations (absolute value of CC > 0.9), we estimated the peak
position error (PPE) and cortical area (CA) of the reference source. PPE is the distance of the
reference source to the center-of-mass of the highly-correlated sources. Smaller values of PPE
mean that the correlated sources are scattered closer to the reference source. CA is the relative
cortical area of the highly-correlated sources and quantifies the spread of the sources that exhibit
similar topographies. PPE and CA are expressed as

o LilCGil
PPE = L 16
e o
CA = )Y A, (17

where the sums are taken across the labeled sources, CC; is the correlation coefficient between
the topographies of the reference source and source i, 7; and 7¢ are the locations of source i
and the reference source, respectively, and A; is the relative cortical area associated with source
i. PPE and CA have been previously used to assess differences in minimum-norm estimation
(Stenroos and Haukl, [2013)).
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Sensor lead fields. We quantified the effect of sensor orientation and distance from the scalp
on its FOV; for each sensor, we calculated the relative cortical area (Eq. ) for which the
lead-field amplitude of the sensor was more than half of the maximum amplitude. This metric
quantifies the effective field of view (eFOV) of the sensor as it measures the area spanned by
the sources that are most visible to the given sensor. In addition, to investigate dependencies
in the FOVs of the sensors in the array, we calculated correlations between the lead fields of
the sensors using Eq. (I0). Then we computed the number of sensors whose lead fields had
substantial correlations (absolute value of CC > 0.8) with the lead field of the reference sensor.
This number can be considered as a rough measure of independent information in the sensor’s
signal: the smaller the number is, the more unique the lead field of the sensor is and thus the
more independent information the sensor measures.

Total information. Previously, the performance of various MEG arrays has been assessed by
computing the total information I, conveyed by the array (Kemppainen and [Imoniemi, [1989;
Nenonen et al.| 2004} [Schneiderman, 2014). I quantifies all of the aspects of the forward-
model-based metrics, e.g., sensor distances to the sources, sensor configuration, sensor type,
SNR and dependencies of the sensor lead fields, with a single number. We also used this metric
to evaluate the performance of the arrays.

We assume that the signal and the noise of a channel are independent and normally dis-
tributed; according to Shannon’s theory of communication the information per sample of ith
channel is then I; = 1 log, (SNR; + 1), where SNR; is the power signal-to-noise ratio of the chan-
nel (Shannon and Weaver, |1949). We further assume that the source time-series are uncorrelated
and that their amplitudes follow Gaussian distribution: j; ~ .#'(0,4%), where ¢* assumes the
same value as in Sec. in addition, we only take into account the sensor noise. The SNR of
channel i is SNR; = ¢?|[I;||?, where T; is the ith row of the whitened lead-field matrix L. With the
assumption of a diagonal noise covariance matrix, SNR simplifies into SNR; = ¢*||I;||*> /7.

To obtain the total information conveyed by the array by summing the contributions of indi-
vidual channels, the sensor lead fields must be orthogonalized via an eigenvalue decomposition.
First, we generate the matrix

M=LL", (18)

and compute its eigenvalue decomposition M = USU”, where the columns of U are the eigenvec-
tors of M and S is a diagonal matrix with eigenvalues A; of M in the diagonal. The orthogonalized
lead fields are then T, = (U”L); while the orthogonalized SNRs are SNR/ = ¢?||(UTL);||>. The
total information per sample of a multichannel system is then given by

1
i=1

Point-spread functions. To evaluate the differences between the arrays in linear distributed-
source estimation, we used metrics derived from the resolution matrix (Hauk et al., 2011} [Liu
et al.| 2002; [Molins et al., 2008} |de Peralta Menendez et al.| (1997} |Stenroos and Haukl, [2013)).
Resolution matrix K gives the relation between the estimated and modeled current distributions
as follows:

j=Gb =GLj =Kj. (20)
The columns of K are PSFs and they describe how a point source is distorted by the imaging
system. By replacing CC in Egs. (T6) and (T7) by PSF and picking the indices for which |PSF;| >

9


https://doi.org/10.1101/073585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/073585; this version posted September 5, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.5 x PSFp,x, we can quantify the accuracy of a sensor array in minimum-norm estimation with
PPE and CA; PPE quantifies the localization accuracy while CA estimates the spread of the PSF.

4. Results

4.1. Verifications

For one subject, the average relative errors (REs) between the topographies of the sources
computed with coarser and denser BEM meshes are 0.27%, 0.33% and 0.18% for nOPM, tOPM
and mSQUID, respectively, while the 95th percentiles are 0.71%, 0.87% and 0.54%. The his-
tograms of the values of correlation coefficient (CC) are strongly peaked at 1 for nOPM, tOPM
and mSQUID as the 2.5th percentiles were over 0.999 for all the arrays.

The percentiles for one subject’s REs and CCs for different skull conductivities (using the
topography with conductivity of 0.33/25 S/m as the reference) are shown in Table 2] The his-
tograms of RE and CC between nOPM, tOPM and mSQUID are highly similar.

Table 2: The 2.5th, 25th, 50th, 75th and 97.5th percentiles for the relative errors (REs) and correlation coefficients (CCs)
between the topographies computed with different skull conductivity values for one subject. Topographies with skull
conductivity of 0.33/25 S/m were used as the reference, and the skull conductivity was set to 0.33/K S/m for the test
topographies. The values that are higher than 0.999 are denoted with an asterisk.

K nOPM tOPM mSQUID
RE (%) 50 (040.71.02064) (040.71.12.17.0) (0.30.61.01.96.3)
80 (0.61.0153.094) (0.71.11.63210.2) (05091.42.89.2)
CC 50 (0.999, *,%,%,%) (0.998, *,%,%,%) (0.999, *,%,%,%)
80 (0.997, *,%,%,%) (0.996, *,%,%,%) (0.997, *,%,%,%)

4.2. Forward metrics

The relative sensitivities for different combinations of nOPM, tOPM and
mSQUID arrays are illustrated in Fig. [2] On average, the topography powers of the nOPM and
tOPM are 7.5 and 5.3 times higher than the topography power of mSQUID. The topography
powers of the OPM arrays vs. mSQUID are still higher for the superficial sources (~9.4 for
nOPM and ~7.1 for tOPM) and decrease for deeper sources (~6.5 for nOPM and ~4.5 for
tOPM). The topography power of the nOPM array is on average 1.5 times higher than that of
tOPM, and it is higher for almost every point of the source space.

The comparisons of the primary- and volume-current components of the topographies are
displayed in Fig. [3] The overall amplitudes of the volume current topographies are of the
same magnitude as those of the primary currents for tOPM as the values of PV are concentrated
around one. The field due to volume currents substantially suppresses the overall amplitude of
the primary-current topography in tangential measurements since TP < 1 for tOPM (mean 0.28,
range 0.05-0.46). For nOPM and mSQUID, the overall magnitude of the primary current to-
pography is much higher than that of volume currents, as the majority of PV > 1. Additionally,
volume currents do not result in a major decrease in the overall amplitude of primary current
topography in nOPM and mSQUID arrays as the values of TP are closer to one (mean 0.90 and
0.85 for nOPM and mSQUID, respectively). Volume currents increase the visibility of some deep
sources in particular when measuring with nOPM and mSQUID arrays (regions where TP > 1).
Furthermore, the closer the normal-component measuring sensors are to the sources, the larger
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Figure 2: The relative sensitivities of the different arrays. Only the left hemisphere is shown but the histograms include
values for both hemispheres.

the overall magnitude of the primary-current topography is relative to the volume-current topog-
raphy since the mean and range of PV are 3.41 and 0.71-6.41 for nOPM and 2.67 and 0.62—4.81
for mSQUID. As the majority of the CCpy values are well below zero, the volume-current to-
pographies tend to have the opposite shape to the primary-current topographies. For tOPM, the
correlation coefficients are very close to —1, i.e., exactly opposite topographical shape of the
volume currents compared to the primary currents. The average CCpy for nOPM, tOPM and
mSQUID is —0.44, —0.95 and —0.53 while the ranges are —0.94-0.23, —1.0—(-0.89) and —0.97-
0.17, respectively.

Fig. @ shows the peak position error (PPE) and cortical area (CA), which were based on cor-
relations between the source topographies. CA is clearly smaller for nOPM, tOPM and gSQUID
than for mSQUID, indicating that the topographies of the sources show less overlap in OPM and
SQUID-gradiometer arrays. PPE is also smaller for the nOPM, tOPM and gSQUID suggesting
that the similar-topography sources are closer to the actual source for these arrays. The measures
are similar between nOPM, tOPM and gSQUID. The averages for PPE are 0.51, 0.45, 0.79 and
0.52 cm and for CA they are 0.26%, 0.19%, 0.66% and 0.26% for nOPM, tOPM, mSQUID and
gSQUID, respectively.

The computed eFOVs of the sensors are illustrated in Fig. [5] as histograms into which the
values from all subjects were pooled. The same figure also shows the number of sensors with
substantial lead-field correlations (absolute value of CC > 0.8) with the reference sensor. When
the magnetometers are brought closer to the scalp, their FOV shrinks as the values of eFOV are,
on average, smaller for nOPM and tOPM than for mSQUID. Additionally, the eFOV's in tOPM
are more focal than those in nOPM. The SQUID gradiometers also show smaller FOVs than the
SQUID magnetometers. The eFOVs of gSQUID are similar to those of nOPM and tOPM. The
mean values of eFOVs are 0.69%, 0.25%, 3.02% and 0.53% for nOPM, tOPM, mSQUID and
gSQUID, respectively. As the plots on the right side of the Fig. []illustrate, the numbers of
lead-field-correlated (CC > 0.8) sensors are evidently smaller in the on-scalp OPM arrays. By
pooling the data across the subjects, we found that the median values of the lead-field-correlated
sensors are 0, 1, 4 and 2 for the nOPM, tOPM, mSQUID and gSQUID, respectively

The total information capacities of the arrays are presented in Fig. [6] Across the subjects,
mSQUID and gSQUID convey similar amount of information: the averages are 413 and 383 bits
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Figure 4: Peak position error (PPE) and cortical area (CA) computed from the correlation coefficients between the
topographies. Only the left hemisphere is shown but the histograms include values for both hemispheres.

per sample, respectively. Combining mSQUID and gSQUID to aSQUID increases the average
information to 506 bits per sample. Both of the OPM arrays (nOPM and tOPM) provide more
information than the aSQUID. tOPM yields more information than nOPM. The combination
array aOPM carries even more information than its sub-arrays nOPM and tOPM. The averages
of the total information across the subjects are 656, 939 and 1307 bits per sample for nOPM,
tOPM and aOPM, respectively.

4.3. Point-spread functions

The results for the PSF-based metrics are displayed in Fig. |Z| for nOPM, tOPM, aOPM,
mSQUID and aSQUID arrays. Cortical maps and histograms of PPE between the different ar-
rays exhibit similarities; yet, differences are evident in CA. Comparison between the normal-
component-measuring arrays indicates that PSFs are less spread in nOPM: CA is larger for every
source for mSQUID; the averages of CA are 0.67% and 1.57% for nOPM and mSQUID, respec-
tively. The spread of the PSF does not necessarily correlate with the localization accuracy as the
PPE of nOPM is larger for 60% of the sources. The averages of PPE are 1.30 and 1.27 cm for
nOPM and mSQUID, respectively. For the most superficial sources the PPE is smaller in nOPM:
averages of the PPE for the most superficial sources of left hemisphere are 0.48 cm for nOPM
and 0.56 cm for mSQUID.

The results between nOPM and tOPM are similar; averages of PPE and CA for tOPM are 1.31
cm and 0.64% while average PPE is 0.46 cm for superficial sources. For aOPM, the localization
accuracy is slightly enhanced compared to the individual arrays, especially for the superficial
sources. Averages of PPE and CA for aOPM are 1.26 cm and 0.57% for all sources while for the
superficial sources the average PPE is 0.40 cm.
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Figure 7: Peak position error (PPE) and cortical area (CA) computed from the point spread functions. Only the left
hemisphere is shown but the histograms include data for both hemispheres.

Comparison of the OPM arrays to the 306-channel SQUID system shows that there is a sub-
stantial decrease of the PSF spread for all OPM arrays while the localization performance (PPE)
is similar. Nonetheless, for superficial sources the localization accuracy of aOPM is better than
that of aSQUID; for superficial sources the average PPE of aSQUID is 0.53 cm. The averages of
PPE and CA of aSQUID are 1.26 cm and 1.45%.

5. Discussion

The aim of this study was to assess the possible benefits of on-scalp MEG arrays that can be
constructed using novel magnetic field sensors, e.g., optically-pumped magnetometers or high-T;
SQUIDs. The assessment was done by comparing MEG sensor arrays (mSQUID: 102 magne-
tometers; gSQUID: 204 planar gradiometers; aSQUID: combination of mSQUID and gSQUID)
with hypothetical OPM arrays that measured normal (nOPM; 102 sensors), tangential (tOPM;
204 sensors) or all components (aOPM; 306 sensors) of the magnetic field. In the comparison,
we used metrics derived from both forward and inverse models that quantified signal power,
information, similarity of source topographies, overlap of the sensor lead fields, localization
accuracy and resolution. Although we refer to the on-scalp sensors as OPMs, the results are
applicable to any kind of sensor with similar characteristics.

Recently, Boto and colleagues (2016) reported a simulation study where they investigated
the performance of on-scalp MEG sensor arrays. In the simulations, they employed a SQUID
sensor configuration of the 275-channel CTF MEG system and determined the OPM sensor
positions by projecting the SQUID locations to 4 mm from scalp. In that study, the authors
focused on the spatial resolution and reconstruction accuracy in beamforming whereas we based
our resolution analysis on the topography correlations (and thereby only on the physics) without
making reference to any particular inversion method. In the following, we compare our results
to theirs whenever possible.
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5.1. Sensitivity

Among the nOPM, tOPM, and mSQUID arrays, nOPM had the strongest overall topography
power despite that the number of sensors in tOPM was double and the topography powers were
not normalized by the sensor count. Assuming noise levels of 6 and 3 fT/ v/Hz for OPM and
SQUID magnetometers, respectively, the relative sensitivities transform into overall SNR gain
of 1.9 for nOPM compared to mSQUID, while this figure is 0.7 for tOPM. For sources in the
superficial parts of the brain, the average SNR of nOPM and tOPM are 2.4 and 0.9 times that of
mSQUID. On the other hand, for equal overall SNR between the OPM and mSQUID arrays, the
sensor noise levels should be 8.2 and 4.9 fT/ v/Hz for nOPM and tOPM, respectively.

In their sensitivity analysis, Boto and colleagues (2016) assumed that OPMs and SQUIDs
have an equal noise level of 10 fT/ v/Hz; they reported fivefold improvement in average (ampli-
tude) SNR of the OPM array compared to the SQUID array. The corresponding average (power)
SNR gain we attained was 7.5 (relative sensitivity between nOPM and mSQUID). A few factors
may explain these differences: first, Boto and colleagues had more sensors (275 vs. 102) as well
as different sensor models and distances from the scalp. Second, they used the multiple local
spheres head model (Huang et al., [1999) in the forward computation which is less realistic than
the three-shell BEM we employed (Stenroos et al.,2014).

Our results suggest that in tOPM measurements, the field due to volume currents screens the
field of the primary current much more than in the normal-component measurements. While the
volume-current field is present also in the normal component, its effect is much more drastic
in measurements of the tangential component. Thus, measuring and modeling tangential field
components is likely more sensitive to errors and simplifications in volume conductor models.
In addition, since the relative primary-current contribution further increases when the normal-
component-measuring sensors are brought closer to the scalp, these sensors appear the optimal
choice for on-scalp measurements.

5.2. Correlation metrics

The measures based on correlations between the source topographies showed that the OPM
arrays offer clear benefits over SQUID magnetometers when it comes to the topography overlap:
the OPM arrays exhibit less-correlated topographies, and the correlated sources are closer to the
actual sources which generate the topographies. In addition, these measures were slightly smaller
(better) for the tOPM than for the nOPM, which can be due to the larger number of sensors in
tOPM; more sensors allow more possibilities for the topographies to deviate from each other.
The measures were smaller for gSQUID compared to mSQUID, showing the benefit of the focal
sensitivity of planar gradiometers. In addition, the measures were similar between gSQUID and
OPM arrays. Future studies could investigate whether the topography correlations can be further
reduced by gradiometrization of OPMs.

The on-scalp OPMs showed more focal fields-of-view than the traditional SQUID magne-
tometers. Furthermore, the tangential vs. normal OPMs have more focal lead fields. The planar
gradiometers also have smaller FOVs than the magnetometers at the same distance from the
scalp; values of eFOV for gSQUID are of the same order as for the OPMs. As the OPMs have
small FOVs, the OPM arrays could be constructed such that the FOVs of the individual sensors
would overlap as little as possible while maximizing the number of sensors on the scalp. Such
an array could minimize “field spread” (the interdependencies of sensor signals) which would
be particularly beneficial for functional connectivity analysis in the sensor space (see [Schoftfe-
len and Gross| (2009)). Additionally, minimizing the lead-field overlap would also improve the
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interpretability of sensor-level data. The benefits of lead-field-overlap minimization to source-
localization performance are not that evident and could be studied further. The OPM arrays had
less lead-field-correlated sensors than gSQUID and mSQUID. Further, the numbers of lead-field-
correlated sensors in nOPM and tOPM were similar, though it should be taken into account that
the tOPM array comprises twice the number of sensors.

5.3. Total information and point spread

According to our results, the information capacities of the OPM arrays are clearly higher
than that of the state-of-the-art SQUID array. In addition, the tOPM array with 204 sensors
conveys more information than the nOPM array with 102 sensors, which can be attributed to
the larger number of sensors in tOPM; we verified that the measurement of only one tangential
component (longitudinal or latitudinal) at 102 locations does not yield more information than the
measurement of the normal component.

Furthermore, our results clearly indicate that the normal and tangential components carry
independent information as the information capacity of the aOPM is higher than the information
capacities of its sub-arrays nOPM and tOPM, addressing the question of redundancy of these
measurements (de Munck and Daffertshofer, 2012). Similar observations have been made for
cardiomagnetic fields (Arturi et al.,[2004).

Our total information analysis also provides a useful simulation benchmark. To facilitate the
comparison of different sensor arrays, the source amplitudes can be set such that the average
SNR across the sources for the SQUID magnetometers of the Elekta MEG system is one. Then,
the SQUID magnetometers can be taken as a reference and metrics computed for other arrays
using the same source amplitudes.

The results from the PSF analysis showed that localization accuracies of the OPM and
SQUID arrays in minimum-norm estimation are similar. However, the OPM arrays provided
substantially more focal point-spread functions and thus should offer higher spatial resolution.

5.4. Models and field computation

When magnetic fields are evaluated at points close to the BEM surfaces, the coarseness of
the meshes could affect the results. However, our verification suggest that meshes with 2 562
vertices (average sidelength of 7 mm) with a linear Galerkin BEM are sufficient for the OPM
arrays. Additionally, the sensitivities of the topographies to the densities of the BEM surface
tesselations are of the same order of magnitude for OPM and SQUID arrays.

In this study, we used anatomical models produced by the standard pipeline of the MNE soft-
ware that employs the watershed algorithm for surface segmentation. In future studies, simula-
tions could be extended to benefit from more accurate tissue-boundary reconstructions (Stenroos
and Nummenmaa, 2016} |Vorwerk et al.,[2014).

The value of skull conductivity affects the solutions as it determines the amount of volume
current ’allowed’ to flow in the skull and scalp compartments. We used the value 0.33/25 S/m
and tested the sensitivity of the computed topographies to skull conductivity by comparing them
to topographies with skull conductivity values of 0.33/50 and 0.33/80 S/m. We found that the
shapes and amplitudes of the topographies were generally robust against this conductivity. Yet,
skull conductivity may affect the amplitudes of some low-SNR sources (deep sources) at the
sensors. In summary, we conclude that three-shell forward models for the OPM arrays are not
more sensitive to skull conductivity errors than those for SQUID arrays.

We also briefly compared topographies obtained with linear collocation (LC) and linear
Galerkin (LG) BEM. The average REs between topographies computed using LC and LG BEM
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were 0.4% and 3.8% for nOPM and tOPM, respectively. Thus, field computation for normal-
component-measuring OPMs could be done with freely available BEM solvers (such as one pro-
vided by [Stenroos et al.| (2014))), while OPMs that measure tangential components may require
more accurate BEM solvers.

The sensing volume of an OPM sensor was modeled as a (5-mm)? cube with eight integration
points while the SQUID models were based on those in the MNE software. We assumed a noise
level of 6 fT/ \/E for the OPM sensor based on the work by |Shah and Wakai| (2013) who
reported such a field resolution for their sensor in optimal conditions. Their sensor comprised a
(4-mm)? vapor cell, which is roughly equal to the sensitive volume in our OPM model. For the
SQUID magnetometers and gradiometers, we assumed sensor noise levels of 3 fT/ VvHz and 3
fT/cm +/Hz, which are typical values for the Elekta Neuromag® MEG systems.

5.5. Normal vs. tangential sensors

MEG devices have traditionally comprised normal-component-measuring sensors. Switching
to a tangential array would introduce a profound change in the interpretation of the sensor-level
data; e.g. the isocontours would look very different. In addition, compared to normal-component
measurements, the higher sensitivity of tangential measurements to volume currents might ne-
cessitate more accurate head models and numerical methods. For the same reason, individual
differences in the conductivity profile of the head would render comparisons of sensor-level data
between individuals less accurate. Further, to obtain similar SNRs, the requirements for the sen-
sor noise level are more strict for tangential sensors due to their lower topography power. For
these reasons, we consider the normal-component-measuring sensors to be the optimal choice
for MEG.

6. Conclusions

We examined the performance of hypothetical on-scalp MEG arrays compared to a current
state-of-the-art MEG system. The results indicate that on-scalp arrays should offer clear bene-
fits over traditional SQUID arrays in several aspects of performance; signal-to-noise ratio, total
information conveyed by the array, and the achievable spatial resolution should improve sub-
stantially. These measures can be used to guide the design of on-scalp MEG arrays for optimal
performance.
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