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Abstract1

1. In this paper, through an extension of the N-mixture family of models,2

we achieve a significant improvement of the statistical properties of the rare3

species abundance estimators when sample sizes are low, yet of typical size4

in neotropical bird studies. The proposed method harnesses information from5

other species in the targeted ecological community to correct each species’ esti-6

mator. We provide guidance to determine the sample size required to estimate7

accurately the abundance of rare neotropical bird species.8

2. We evaluate the proposed methods using an assumption of 50m fixed9

radius point count and perform simulations comprising a broad range of sample10

sizes, true abundances and detectability values. The extension of the N-mixture11

model is achieved by assuming that the detection probabilities of a set of species12

are all drawn at random from a beta distribution. This hierarchical model13

avoids having to specify one detection probability parameter per species in the14

targeted community. Parameter estimation is done via Maximum Likelihood15

using data cloning.16

1
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3. We compared our methodology with standard N-mixture models, which17

we show here are severely biased and highly variable when the true abundances18

of species in the community are less than seven individuals per 100ha. For19

more common species, the number of point counts and replicates needed to20

reduce the bias of N-mixture model estimators estimation is high. The beta21

N-mixture model proposed here outperforms the traditional N-mixture model22

thus allowing the estimation of organisms at lower densities and control of the23

bias in the estimation.24

4. We illustrate how our methodology can be used to determine the sample25

size required to estimate the abundance of organisms. We also give practical26

advice for researchers seeking to propose reliable sampling designs for single27

species’ studies. When the interest is full communities, our model and esti-28

mation methodology can be seen as a practical solution to estimate organism29

densities from rapid inventories datasets. The statistical inferences with this30

model can also inform differences in ecology and behavior of species when they31

violate the assumption of a single distribution of detectabilities.32

Keywords: Point Counts, Sample size estimation, Tropical Bird Species, Hierarchi-33

cal models, Data cloning.34

1 Introduction35

One of the most common complications that ecologists face when estimating abun-36

dances of mobile organisms is that individuals and species differ in their detection37

probability. Such differences results in the under or overestimation of real abundance38

when the detection probability is ignored (MacKenzie et al., 2002; Martin et al.,39

2005; Royle & Dorazio, 2008). To date, quantitative ecologists have proposed many40

statistical methods to estimate the detection probabilities and correct the observed41

individual counts to estimate either density or abundance (Denes et al., 2015).42
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N-mixture models are a family of hierarchical models in which the counts of43

species y are binomially distributed with N being the total number of individuals44

available for detection and p the probability of detecting an individual of that species45

(Royle, 2004). Because N is not known, it is considered to be a latent variable46

that is a product of some discrete distribution, such as the Poisson probability law.47

Inferences about the abundance of the species of interest therefore rely on estimating48

the detection probability and the underlying parameter of the distribution giving49

rise to N (Royle, 2004). Although their use has been widely advocated, very few50

examples exist of the use of N-mixture models for estimation of the abundance of51

neotropical bird species. Most of the density estimation for bird populations in the52

Neotropics comes from sampling of 100-ha plots using intensive field methods such53

as spot mapping or repeated mist-netting (Terborgh et al., 1990; Thiollay, 1994;54

Robinson et al., 2000; Blake, 2007). A probable reason for the sparse use of N-55

mixture models to estimate densities of neotropical birds is the well documented56

species abundance distributions of tropical organisms, which have a long tail to the57

right with very few abundant species and many rare ones (Hubbell, 2001). This is58

reflected in Parker III et al. (1996) database, in which they consider a bird to be59

common in the Neotropics if its population abundance is higher than 15 ind/10060

ha. This high proportion of rare species in the overall community makes it difficult61

to obtain enough detections during field censuses for appropriate estimation of both62

abundance and detection probability for many, if not the majority of neotropical bird63

species.64

To ensure independence of point counts used to estimate the abundance of65

neotropical bird species, ornithologists have suggested that points must be at least66

200 m apart and the radius of the point count cannot be larger than 50 m (Ralph et al.,67

1993, 1995; Matsuoka et al., 2014). If the goal is to estimate the abundance of all68

species on a 100 ha plot (minimum area suggested to correctly describe a lowland local69

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


4

bird community in the neotropics; Terborgh et al., 1990), considering the restrictions70

described above, the maximum number of points that fit in a 100 ha plot is 36 points71

of 0.78 ha each, based on a radius of 50m. Because of the excess of rarity in tropical72

birds, the majority of species will have abundances below 15 ind/100 ha. Assuming73

that individuals are homogeneously distributed across the plot, and hence their counts74

Poisson distributed (Pielou, 1969), the expected number of individuals in each point75

count is λ ≈ 0.12 individuals
point count

. This value of λ is well below the λ = 2 used to evaluate76

the performance of the N-mixture model (Royle, 2004). Below this value, it is not77

known how the model estimators perform, even though λ < 2 may be a very common78

scenario in neotropical bird communities. In addition, several neotropical species are79

known to be secretive and therefore have low detection probabilities, which imposes80

even stronger challenges for estimating their abundance. Our first objective in this81

study was to determine the minimum sample size required to reliably estimate the82

abundance of neotropical bird species using N-mixture models, given a desired level83

of precision (say, 10%). We believe that this objective will be particularly useful for84

population ecologists whose goal is to obtain a rough estimate of the density of a85

species without having to use one of the most field-intensive bird counting methods86

known as spot-mapping (e.g. Terborgh et al., 1990).87

A secondary goal of this paper is to develop a method to estimate the abun-88

dance of all of the species present in a community, in order to infer mechanisms89

driving species abundance distributions, which is an important issue in the current90

debates over the Unified theory (Hubbell, 2001; McGill et al., 2007). While perform-91

ing point counts, an observer can easily count all of the individual birds in the area92

for a particular amount of time irrespective of the identity of the species. Thus, the93

actual data will have information about all of the species present in the area and an94

approximation of their abundance. Because of their behavior, foraging strategy and95

evolutionary relationships, some, if not most of the species in the community can96
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have very similar detection probabilities. Such similarities in detectabilities justify97

our approach of using the counts of the species in the targeted community to increase98

the information available on abundance corrected by detection probability. Thus, we99

expanded the N-mixture models to a scenario in which we used information from100

multiple species to estimate the parameters of a detection probability distribution101

of a set of species, and used such probability distribution to estimate the expected102

abundance per unit area of each of the species in the set.103

1.1 The Model104

In the following section, after summarizing the widely used N-mixture models, we105

develop a parsimonious, multi-species model extension that allows a more accurate106

estimation of the abundance of rare species. The essential contribution of our ap-107

proach is the use of information from the counts of ecologically similar species to108

improve the estimation of both detectability and abundance.109

Using an N-mixture model, we usually let yij be the number of individuals110

for a given species in the i − th sampling unit (a point count) and j − th replicate111

of the sampling unit (or visit to the point count). Let p be the individual detection112

probability for that species. Finally, let ni be the fixed number of individuals available113

for detection in the i− th sampling unit. If we assume that the counts are binomially114

distributed, the likelihood of the counts for a given species is115

L(yij;ni, p) =
r∏
i=1

t∏
j=i

(
ni
yij

)
pyij(1− p)ni−yij .

for i = 1, 2, 3 . . . r and j = 1, 2, 3 . . . t, where r is the total number of point counts116

sampled and t is the number of times each point count was visited (Royle, 2004).117

The N-mixture model assumes that the number of individuals available for118

detection is in fact unknown and random. Thus, such a number is considered to be119
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a latent variable, modeled with a Poisson process with mean λ (the mean number of120

individuals per sampling unit). From here on, we write Ni ∼ Pois (λ), where we have121

used the convention that lowercase letters such as ni denote a particular realization122

of the (capitalized) random variable Ni. To compute the likelihood function, one123

then has to integrate (sum, in this case) the binomial likelihood over all the possible124

realizations of the Poisson process,125

L(yij;λ, p) =
r∏
i=1

∞∑
Ni=max(yi)

t∏
j=1

(
Ni

yij

)
pyij(1− p)Ni−yij e

−λλNi

Ni!
, (1)

where yi = {yi1, yi2, . . . , yit}. If the objective is to estimate the abundance of S126

species, the overall likelihood is simply written as the product of all the individual127

species’ likelihoods,i.e.,128

L(ysij;λ, p) =
S∏
s=1

r∏
i=1

∞∑
Nsi=max(ysi)

t∏
j=1

(
Nsi

ysij

)
pysijs (1− ps)Nsi−ysij e

−λsλNsi
s

Nsi!
, (2)

where ysij is a three dimensional array of dimensions r × t × S, and both λ =129

{λ1, . . . , λS} and p = {p1, . . . , pS} are vectors of length S. Writing the likelihood130

in this way directly implies that in order to estimate the abundance of all the species131

present in a community, one would need to estimate 2×S parameters (S mean num-132

ber of individuals λs plus S detection probabilities ps). To avoid the proliferation of133

parameters one could assume that all the ps come from a single probability model134

that describes the community-wide distribution of detection probabilities. These135

community-wide detection probabilities, for example, can be modeled with a beta136

distribution in which we let Ps ∼ Beta(α, β). The probability density function of the137

random detection probabilities is then g(ps;α, β) = Γ(α+β)
Γ(α)Γ(β)

pα−1
s (1− ps)β−1.138

The overall likelihood function now integrates over all the realizations of the community-139

wide detection probabilities Ps:140
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L(ysij;λ, α, β) =

∫ 1

0

S∏
s=1

r∏
i=1

∞∑
Nsi=max(ysi)

t∏
j=1

(
Nsi

ysij

)
pysijs (1− ps)Nsi−ysij e

−λsλNsi
s

Nsi!

× Γ(α + β)

Γ(α)Γ(β)
pα−1
s (1− ps)β−1dps.

(3)

The difference of the former and the latter forms of the N-mixture model is that in141

the latter you need S+2 parameters to estimate the abundance of the full community142

instead of 2×S. In large communities, this might be a significant decrease of param-143

eters. The usefulness of specifying the likelihood is that in the case in which many144

species are rare, we can use the information on the abundant species to estimate the145

detection probability, leaving the actual counts to estimate only the abundance of the146

species. Note that by integrating the beta process at the outmost layer of the model,147

we are following the sampling structure. When this approach is used and the integral148

is tractable, the resulting distribution is a multivariate distribution with a specific149

covariance structure (Sibuya et al., 1964). Thus, we expect our approach to result150

in a multivariate distribution of counts with a covariance structure arising naturally151

from the sampling design and the assumed underlying beta process of detectabiities.152

1.2 Maximum Likelihood Estimation153

One drawback of the beta-N-mixture model is its computational complexity, which154

imposes a substantial numerical challenge for Maximum Likelihood (ML) estimation.155

To date, many numerical approximations for obtaining the Maximum Likelihood Es-156

timates (MLEs) for hierarchical models have been proposed (de Valpine, 2012). Of157

these, the so-called “Data Cloning” methodology has proven to be a reliable approach158
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to not only obtain the MLEs for these types of models, but also for hypothesis testing159

and model selection, as well as unequivocally measuring the estimability of parameters160

(Lele et al., 2010; Ponciano et al., 2009). The method proposed by Lele et al. (2007,161

2010) uses the Bayesian computational approach coupled with Monte Carlo Markov162

Chain (MCMC) to compute Maximum Likelihood Estimates (MLE) of parameters of163

hierarchical models and their asymptotic variance estimates (Lele et al., 2007). The164

advantage of using the data cloning protocol is that there is no need to find the exact165

or numerical solution to the likelihood function of the hierarchical model in order to166

find the MLE. Instead, one only needs to compute means and variances of certain167

posterior distributions.168

Data Cloning proceeds by performing a typical Bayesian analysis on a dataset169

that consists of k copies of the originally observed data set. In other words, to170

implement this method, one has to write the likelihood function of the data as if171

by pure happenstance, one had observed k identical copies of the data set at hand.172

Then, Lele et al. (2007, 2010) show that as k grows large, the mean of the resulting173

posterior distribution converges to the MLE. In addition, for continuous parameters174

as λ, α, and β, the variance covariance matrix of the posterior distribution converges175

to 1
k

times the inverse of the observed Fisher’s information matrix. In this way, the176

variance estimated by the posterior distribution can be used to calculate Wald-type177

confidence intervals of the parameters (Lele et al., 2007, 2010). The advantage of data178

cloning over traditional Bayesian algorithms is that while in Bayesian algorithms the179

prior distribution might have some influence over the posterior distribution, in data180

cloning the choice of the prior distribution does not determine the resulting estimates181

because these are the MLEs. In our case, the hierarchical model is of the form182
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Y ∼ Binomial (N,P) = f(y|N = n,P = p) (Observation model),

N ∼ Pois (λ) = g(N;λ) (Process model),

P ∼ Beta (α, β) = h(P;α, β) (Process model).

N and P are unobserved quantities or latent variables which are products of a stochas-183

tic process given by the Poisson and Beta distributions respectively. Furthermore, the184

parameters left to be estimated (i.e., λ, α, β) are seen as random variables themselves185

that have a posterior distribution π(λ, α, β|Y). A typical Bayesian approach would186

sample from the following posterior distribution:187

π(λ, α, β,N,P|Y) ∝ [f(y|N = n,P = p)g(N;λ)h(P;α, β)] π(λ, α, β),

where π(λ, α, β) is the joint prior of the model parameters. This approach would188

yield many samples of the vector (λ, α, β,N,P) and in order to sample from the189

marginal posterior π(λ, α, β|Y) one only needs to look at the samples of the subset of190

parameters (λ, α, β). The data cloning approach proceeds similarly, except one needs191

to sample from the following posterior distribution:192

π(λ, α, β,N,P|Y)(k) ∝ [f(y|N = n,P = p)g(N;λ)h(P;α, β)]k π(λ, α, β).

The notation (k) on the left side of this equation does not denote an exponent and193

is only there to denote the number of times the data set was “cloned”. On the194

right hand side, however, k is an exponent of the likelihood function. The MLEs of195

λ, α, β are then simply obtained as the empirical average of the posterior distribution196
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π(λ, α, β|Y)(k) and the variance of the estimates are given by 1
k

times the variance197

of this posterior distribution. For a detailed example that illustrates the calculations198

with posterior and cloned posterior distributions that are analytical and tractable,199

and where the MLEs can be easily computed, we refer the reader to Ponciano et al.200

(2012).201

1.3 Scenarios In Which ps Seem To Be Correlated Among202

Neotropical Bird Species203

Several scenarios can arise in which ps seem to be correlated among species. It is204

widely known that the probability of detecting diurnal species such as birds that de-205

fend territories by singing is highest at or right after dawn and decreases with time206

of day (Blake, 1992). Also, different types of forests have differences in structural207

characteristics that allow or hinder the detection of all of the individuals available.208

Thus, species sharing a microhabitat or even inhabiting a particular ecosystem should209

have similar detection probabilities. Operationally, this would amount to specifying210

a detection probability distribution that depends on variables such as time of the day,211

or forest structure indices or characteristics. Another natural phenomenon dictating212

the form of the detection probabilities is the ubiquitous foraging behavior and phe-213

nomenon in the Neotropics known as “mixed-species flocking” (Munn & Terborgh,214

1979). These flocks are formed by individuals of different species that forage in groups,215

with each species segregating into their own forest micro-habitat yet moving together216

through the jungle. Thus the overall detection of the species in the flock appears as217

correlated because once you detect one species, you are likely to detect the rest of218

the species within the flock. Finally, several foraging behaviors and vocal activity219

patterns make species particularly easy or difficult to detect. Species that forage220

using a sit and wait behavior are usually much more difficult to detect than species221

that forage by gleaning on leaves actively searching for food, although there are some222
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species whose high vocalization rates make them easier to detect irrespective of their223

foraging guild. Thus, sit and wait foragers may be either easy or very difficult to224

detect (e.g. Monasa vs. Malacoptila, puffbirds).225

2 Methods226

2.1 Sample Size Estimation for Neotropical Birds227

To determine the minimum sample size required for accurate estimation of the abun-228

dance of neotropical species, we used a series of simulations in which we varied the229

number of points (r), visits to points (t), mean number of individuals in each point230

(λ) and detection probability (p). We varied r between 5 and 50, t between 2 and 20,231

λ = 1, 2, 3, 4, 5, 7, 10, 15, 25, 40, 55, 65, 75, 85, 100 and p between 0.1 and 0.9. For each232

combination of parameters, we simulated 170 data sets and estimated λ and p using233

equation 1 for each of the 170 datasets and each of the parameter combinations. In234

each simulation, we computed the relative bias of the abundance estimate by using,235

bias = λ̂−λ
λ

, where λ̂ is the MLE for a particular data set and λ is the true value236

of the parameter used to simulate the data. Finally, we retained the mean bias for237

each combination of the model parameters. We could not retain the full distribution238

of the bias because of the large number of simulations performed (10,935,000). We239

considered an acceptable bias to be lower than 0.1, which is a 10% difference between240

the estimate and the true population density. All of the simulations were performed241

using R statistical software v.3.0.2 (R Core Team, 2013) and maximum likelihood242

estimation by maximizing the likelihood of eq (1) using the optim function with the243

Nelder-Mead algorithm. The R code used for simulations and maximum likelihood244

estimation is presented in the Appendix B.245
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2.2 The Beta N-mixture Model246

Because 100-ha plots have become the standard for estimating abundances of neotrop-247

ical birds (Terborgh et al., 1990), we developed our example of the use of the beta248

N-mixture model using a sampling scenario in 100-ha plot. Assuming that a conser-249

vative distance between point counts required for the points to be independent is 200250

m we selected the maximum number of points that fit in a square 100 ha plot given251

this requirement. For this example we used 36 point counts and 5 visits, which is252

reasonable enough to still be part of a rapid inventory but also has enough informa-253

tion to estimate the abundances of rare species. We simulated 1000 data sets that254

consisted of 15 species with the same λ values described in the previous simulation255

and three sets of parameters of the beta distribution. The sets of parameters where256

α = 10, 27, 30 and β = 30, 27, 10, which account for scenarios of low, mid and high257

detection probability with the same variance (E[p] = 0.25, 0.5, 0.75;Var[p] = 0.004).258

For each of the simulated data sets we estimated λ and p under the N-mixture259

model and λ, α and β under the beta N-mixture model. Then, we computed the260

bias in λ in the same way as presented above. We performed maximum likelihood261

estimation of the parameters under the N-mixture model by optimizing equation262

1, with the optim function in R using the Nelder-Mead algorithm. To estimate263

the parameters under the Beta N-mixture model, we also used maximum Likelihood264

estimation but using Data Cloning (Lele et al., 2007). We used the rjags (Plummer,265

2014) interface for R to build the models and run the analysis with 2 chains, with266

20000 iterations in each chain and retained the parameter values every 100 generations267

after a burn-in period of 1000 generations.268

2.3 Example Using Real Data269

Finally, we used a data set that consisted of 94 point counts, located in three dry270

forest patches in Colombia. Each point count was replicated three times from Jan-271
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uary 2013 to July 2014. From this data set, we selected the understory insectivore272

species that forage over foliage (Karr et al., 1990; Parker III et al., 1996) to meet the273

requirement of the Beta N-mixture model of correlated detection probabilities among274

species. In total, we estimated the abundance of 26 species using both the N-mixture275

and Beta N-mixture models and compared their fit using AIC following the protocol276

presented in Ponciano et al. (2009). We are aware that it is likely that the closed277

population assumption for this data set does not necessarily hold, but it is unlikely278

that populations of species have changed drastically from one year to another during279

these years. The point counts were performed in three different forest patches in280

the upper Magdalena valley in Central Colombia. To maximize the sample size for281

abundance estimation, we lumped the point counts into a single data set, such that282

the inferences of species abundances are made for the entire region instead of the283

particular patch. The three forest patches were separated by less than 150 km and284

were located within the Magdalena valley dry forest ecoregion (Olson et al., 2001).285

Because they are in the same ecoregion, the structural variables of the forest are286

similar and thus it is unlikely that the detection probabilities vary among patches as287

well as the abundance of species, allowing us to lump the data together. Maximum288

likelihood estimation for the N-mixture and beta-mixture models where performed in289

the same way as described in the previous section. The R code and jags models used290

for model selection using AIC are presented in the Appendix B291

3 Results292

3.1 Sample Size Estimation for Neotropical Birds293

We found that the required minimum sample size needed to accurately estimate the294

abundance of neotropical bird species decreased with increasing both λ and p (Figure295

1). For the sample sizes evaluated, there is no combination of point counts and296
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replicates that allows the estimation of abundances with less than 7 individuals/100ha297

using N-mixture models (Figure A1). In the 7 ind/100 ha threshold, the effort required298

is very high. For example, for species with a probability of detection of 0.5 the required299

sample size to obtain a bias lower than 0.1 is around 50 points and more than 6300

replicates of each point count or around 40 point counts with more than 10 replicates301

(Figure 1,A1). As λ increases the sample size required to estimate appropriately the302

abundance of species decreases.303

3.2 The Beta N-mixture Model304

The Beta n-mixture model performed better than the regular N-mixture model for305

the data simulated. In both cases, as λ increased, the median of the distribution of306

λ̂ converged to the true value of λ (Figure 2). Such results allow us to conclude that307

using the regular N-mixture model, the minimum abundance that the model is able308

to estimate is around 10 individuals/100 ha, with a sample size of 36 point counts309

replicated each five times (Figure 2). The use of multi-species information to estimate310

the abundance of single species had mainly two results: 1) it decreased the variance311

in the distribution of λ̂ and 2) it improved the ability of the model to estimate lower312

densities with similar sample sizes. Using the beta N-mixture model, the minimum313

λ that the model is able to estimate is around 4 individuals/100 ha and possibly 3314

individuals/100 ha.315

Even though the λ̂ distribution has high variance, many outliers and, it tends to316

overestimate the density of rare species (Figure 2, A3, A2), it maintains the structure317

of the species abundance distribution (Figure 3). This is especially true when the318

mean detection probability is at least 0.5 (Figure 3). This is not true for the N-319

mixture model, which predicts many more mid-range species and overestimates by320

far the abundance of abundant species (Figure 3).321

The beta N-mixture model also performs well in estimating the distribution322
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of the community’s detection probability (Figure 4). The distribution of E[p] for the323

simulations is almost centered in the true value of p. There is a slight underestimation324

of p when p = 0.25 (Figure 4). However, the model overestimates Var[p], but it325

estimates the variance to be similar across the different types of simulations, which326

reflects the reality with which the data were simulated (Figure 4).327

3.3 Example Using Real Data328

We present the estimates of λ̂ for both models in Table 1, as well as p̂ for each species329

estimated using the N-mixture model. For the beta N-mixture case, the model es-330

timates that the mean detection probability of an insectivorous bird in the upper331

Magdalena Valley was of E[p] = 0.2 with V ar[p] = 0.009 (α = 3.15,β = 12.7). As-332

suming model 1 to be the N-mixture and model 2 to be the beta N-mixture, following333

Ponciano et al. (2009), the difference in AIC between the model was extremely high334

giving very strong support in favor of the beta model (∆AIC = 14725.04).335

4 Discussion336

We found that N-mixture models require high sample sizes in both the number of337

point counts and the number of replicates of each point to estimate accurately the338

abundance of tropical birds. An interesting result is that the models are unable to339

accurately estimate rare species with less than 7 ind/ha and a low detection probabil-340

ity (< 0.5), at least with samples of 50 points and 20 replicates. Our model, uses the341

information collected for a set of species to estimate the abundance of rare species.342

The beta model is particularly useful for rare species that are detected few times. In343

this case, even with high sample sizes, the N-mixture model estimates a very high λ344

and very low p (our study and Sólymos & Lele, 2016) and in some cases resulting in345

non-identifiablity of λ and p (Sólymos & Lele, 2016). This problem is solved with the346
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beta model, in which the detection probability of a rare species can be thought of as347

coming from the same probability distribution than its ecologically similar species. In348

this way, each species has its own detection probability but is linked through an un-349

derlying process that can vary from one set of species to another or from one habitat350

to another.351

N-mixture models can be used if the sampled area is increased to raise λ to352

around 2 individuals per unit area. Because this simulation was performed for tropical353

forests, we simulated point counts with a 50-m radius. This distance has been pro-354

posed to meet the assumption that the detection probability is homogeneous across355

the whole sampling area and to increase the detection probability of species within it .356

Other methods have relaxed this assumption (e.g. distance sampling Buckland et al.,357

1993), and recent studies have even suggested methods to perform estimation in a358

multi-species fashion (Dorazio & Royle, 2005; Dorazio et al., 2015; Sollmann et al.,359

2016; Yamaura et al., 2011). Our objective, however, was to evaluate the N-mixture360

model for fixed-radius point counts as applied to neotropical forests, a method that361

is very commonly used (e.g. Blake, 1992). One solution to get accurate estimates by362

increasing the area is to discourage the use of point counts in favor of fixed width line363

transects. Nonetheless, increasing the area would require a decrease in the number of364

sampling units because the objective is to sample a bird community in a 100-ha plot.365

This might not be the most favorable solution since our simulations suggest that the366

increase in sampling units decreases the bias faster than the increase in replication of367

the sampling units (Yamaura et al., 2016; Figure 1; Figure A1). Alternatively, novel368

statistical methods allow accurate estimation of abundance using point counts with369

no replication (Sólymos et al., 2012; Sólymos & Lele, 2016). In this case, the repli-370

cation for detectability estimation is replaced with covariances in the detection and371

abundance process. Even though abundance and detection covariates are commonly372

accounted for in most point count studies, at small scales (e.g. 100 ha plots), abun-373
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dance covariates might be difficult identify because of habitat homogeneity. Such374

approaches might be more useful in large scale studies investigating the variation in375

abundance of species across the landscape.376

If the objective of the study is to estimate the abundance of a single species377

correcting for its detection probability, then our simulations are a guide to the sam-378

pling effort required. Published databases (e.g. Parker III et al., 1996; Karr et al.,379

1990), include estimates of abundance of many neotropical species, which could pro-380

vide general guidelines to researchers in the field about the approximate λ they are381

dealing with and thus the approximate sample sizes needed to correctly estimate the382

abundance using N-mixture models. For rare species, the solution can be two fold:383

increase the sample size to a very high number of points and many replicates (>50384

point counts and >20 replicates) or to keep the sampling design of a 36 points and 5385

replicates and use our proposed model of the multi-species sampling. We are aware386

that in the case of estimating the abundance of rare species, the maximum acceptable387

bias that we selected of 10% might be too conservative. In such cases, the acceptable388

bias can be increased to 100 or 200% with little risk. Even though we selected the389

10% bias across abundances for simplicity, we present depict full results in appendix390

A so that researchers are able to make decisions about the sample size required with391

the desirable amount of bias in the estimates.392

We show that by using the information of other more abundant species, the393

model is able to predict correctly the abundance of rare species with λ = 4 and394

better approximate the abundance of species with λ < 4. By restricting the detection395

probability of target species to arise from the same distribution than the one of other396

species, the beta N-mixture model allocates into estimation of λ the same amount of397

information with considerably less parameters (Figure A2). While in the N-mixture398

model, allowing p to vary freely for every species can result in strong estimability399

problems between p and λ (i.e. models with high p and λ have similar likelihood to400

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


18

models with low p and high λ), our beta model appears to be much more reliable and401

accurate (mean detection probability of 0.2 and 2.5% and 97.5% quantiles of 0.04 and402

0.41 respectively). Such correction, allows the estimate of λ, even for rare species,403

to be much closer to the true value (Figure 2; Figure A3 and A4). Even when the404

mean detection probability is low (p ∼ 0.25), the beta model tends to over estimate405

the abundance of the entire set of species, but maintains the structure of the species406

abundance distribution (Figure 3 and Figure A3).407

Our model is different from other approaches to multi-species abundance and408

occurrence estimation (Dorazio & Royle, 2005; Yamaura et al., 2011; Dorazio et al.,409

2015; Sollmann et al., 2016) because we do not assume that detection probabilities of410

species are unrelated quantities. The assumption of a common detection probability411

allow us to make inferences about the abundance of rare species that are usually412

discarded when estimating the composition of communities. Yamaura et al. (2011)413

made similar assumptions in which species respond as a community to changes in414

environmental covariates. However, we assume that the detections of species are the415

product of a stochastic process, instead of deterministically predicting the detection416

probability for each species as a function of some other covariates. An important417

consideration of our approach is that the grouping of species used to estimate the418

distribution of detection probabilities has to be carefully justified and informed by419

their ecology and vocal behavior. In our (field) experience makes little sense to assume420

that species that are extremely different in their ecologies have detection probabilities421

drawn from the same probability distribution.422

Martin et al. (2011) and Dorazio et al. (2013) used a similar approach to ours,423

but for single-species abundance estimation. In their models, they assumed correlated424

behavior among the individuals of the same species and variation across sites, adding425

an additional layer of hierarchy to the traditional N-mixture models (Royle, 2004). In426

their model, the binomial distribution is substituted by a beta binomial that assumes427

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


19

that the probability of detecting one individual is slightly different from another, but428

the result of the same stochastic process. Similarly, in this study we assumed that429

species have their own detection probability which for species with similar ecologies430

is drawn from the same probability distribution. However, following the sampling431

structure of the point counts, our model averages out all the possible realizations of432

the beta process after taking into account the poisson sampling layer, and thus the433

likelihood function becomes an intractable integral. After integration, the likelihood434

matches a multivariate distribution (Sibuya et al., 1964) whose covariance structure435

arises naturally from the sampling scheme. Fortunately, the Data Cloning algorithm436

allows us to make Maximum likelihood inferences without having to solve this integral.437

Because our model is essentially identical to any N-mixture model, it has the438

advantage that it can be adapted to any underlying distribution of abundances. Sim-439

ilarly, the Poisson distribution used to model the mean number of individuals can440

be replaced by any other distribution that relaxes the homogeneity assumption (e.g.441

Negative Binomial or Zero Inflated Poisson). In addition, ecological inferences can be442

made by incorporating covariates of the abundance process in the model as previously443

suggested with N-mixture models (Joseph et al., 2009). The detection process can444

also depend on variables influencing the overall detectability of species by making445

the parameters of the beta distribution a function of the covariates. For example,446

one can assume that the detection probability distribution is a function of variables447

such as the ecological guild a bird belongs to or to the microhabitat used for foraging448

and nesting. Model selection comparing models with and without abundance and449

detection covariates can be useful for inferring ecological mechanisms underlying the450

abundance of species (Joseph et al., 2009). In the beta N-mixture model, the assump-451

tion of the correlated behavior can be tested by comparing it to a regular N-mixture452

model, and because the main difference is in the assumptions underlying detection453

probability, it allows us to make inferences about ecological similarity among species454
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in the same guild, habitat or functional group.455

The estimates of the abundance of the understory insectivores of the upper456

Magdalena Valley show that the difference between the N-mixture and beta-mixture457

models relies on the estimation of the abundance of rare species. For example, for458

species with less than five detections, the N-mixture model estimates the abundance459

to be extremely high (Table 1). Instead, by assuming the detection probability is460

correlated with the other species in the set, our approach lowers the estimation of461

the abundance to values closer to densities reported for the same species or similar462

in other regions (e.g., Karr et al., 1990; Parker III et al., 1996). It is worth noting463

that the abundance of more common species with higher numbers of detections in464

our dataset might be a little bit higher than in other published data sets. There are465

three possible reasons for this. First, when the mean detection probability of the466

species is low, our simulations showed that the beta-mixture model overestimated467

the true abundance of species (Figure A3). The second reason is more ecological:468

the data presented here comes from the dry forests of the Magdalena valley. Even469

though this ecosystem is a less species rich than wet forest ecosystems, the biomass of470

the community does not change (Gomez et al. unpublished data). This means that471

the populations of most species tend might be higher than in wet forests from which472

most of the abundance data for neotropical birds have been collected (Terborgh et al.,473

1990; Thiollay, 1994; Robinson et al., 2000; Blake, 2007). Third, it is also possible474

that rare species do not have to sing much to defend their territories because they475

have few neighbors. Common species, on the other hand, face a constant threat of476

territorial intrusion and may have to sing more.477

Overall, our study can be used as a baseline to determine the number of point478

counts required to estimate the density of neotropical bird species using N-mixture479

models. We showed that for many species in neotropical communities, the sample480

size needed to correctly estimate their density is high and thus we advocate for more481
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field intensive methods such as spot mapping. Probably, in the neotropics, the needed482

spatial resolution will be larger areas than the standard 100-ha plot because of the483

very large number of species with fewer than 2 territories/100ha. Distance sampling484

could also be used as an alternative method, but it has been previously shown that485

it requires a high number of detections to appropriately estimate the abundance of486

species (Matsuoka et al., 2014). Such high number of detections might be impossible487

to achieve, particularly for rare species. We conclude that our method might be a488

good alternative when sample sizes are low, but information for many other species is489

available. We expect that for large communities implementing our model using data490

cloning would be a computer intensive task. Also, in large neotropical communities,491

the assumption of detectabilities arising from the same probability distribution might492

not hold for many species. Here, we showed an example in which we estimated the493

abundance of 26 species of insectivorous birds in the Magdalena Valley, allowing us494

to demonstrate that for a community of this size, the maximum likelihood estima-495

tion with this size of community is feasible. Such approach represents a significant496

practical improvement for neotropical bird studies. We also note that the larger the497

community, the easier it will be for the model to estimate the abundance of rare498

species (Sollmann et al., 2016), but there is a tradeoff with the computational power499

needed for ML estimation.500

Estimation of animal abundances is the ecologists’ starting point to confront501

novel theoretical models and hypotheses with evidence in nature, and this scientists’502

field has long understood the importance of such task (e.g., Seber, 1986). It is in that503

sense that we hope that our work is seen as a practical, and easy to use extension of504

the N-mixture models. Our work shows that the approach that we propose can serve505

as a platform to design community ecology studies that require, as a starting point,506

the joint estimation of abundances while taking into account differences in detection507

probabilities among species.508

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


22

5 Acknowledgements509

We would like to thank the farm owners Cesar Garcia, Hacienda los Limones and510

Constanza Mendoza for allowing us to perform bird counts in their properties. Gordon511

Burleigh, Bette Loiselle, David Steadman and Philip Shirk provided useful comments512

for the development of the model and improvement of the manuscript.513

References514

Blake, J.G. (1992) Temporal variation in point counts of birds in a lowland wet forest515

in costa rica. The Condor, pp. 265–275.516

Blake, J.G. (2007) Neotropical forest bird communities: a comparison of species rich-517

ness and composition at local and regional scales. The Condor, 109, 237–255.518

Buckland, S.T., Anderson, D.R., Burnham, K.P. & Laake, J.L. (1993) Distance Sam-519

pling: estimating abundance of biological populations. Chapman and Hall, London.520

de Valpine, P. (2012) Frequentist analysis of hierarchical models for population dy-521

namics and demographic data. Journal of Ornithology, 152, 393–408.522

Denes, F.V., Silveira, L.F. & Beissinger, S.R. (2015) Estimating abundance of un-523

marked animal populations: accounting for imperfect detection and other sources524

of zero inflation. Methods in Ecology and Evolution, 6, 543–556.525

Dorazio, R.M., Connor, E.F. & Askins, R.A. (2015) Estimating the effects of habitat526

and biological interactions in an avian community. PloS one, 10, e0135987.527

Dorazio, R.M., Martin, J. & Edwards, H.H. (2013) Estimating abundance while ac-528

counting for rarity, correlated behavior, and other sources of variation in counts.529

Ecology, 94, 1472–1478.530

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


23

Dorazio, R.M. & Royle, J.A. (2005) Estimating size and composition of biological531

communities by modeling the occurrence of species. Journal of the American Sta-532

tistical Association, 100, 389–398.533

Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography, vol-534

ume 32. Princeton University Press, Princeton, NY.535

Joseph, L.N., Elkin, C., Martin, T.G. & Possingham, H.P. (2009) Modeling abun-536

dance using n-mixture models: the importance of considering ecological mecha-537

nisms. Ecological Applications, 19, 631–642.538

Karr, J.R., Robinson, S.K., Blake, J.G., Bierregaard Jr, R.O. & Gentry, A. (1990)539

Birds of four neotropical forests. A.H. Gentry, ed., Four neotropical rainforests, pp.540

237–269. Yale University Press New Haven, Connecticut.541

Lele, S.R., Dennis, B. & Lutscher, F. (2007) Data cloning: easy maximum likelihood542

estimation for complex ecological models using bayesian markov chain monte carlo543

methods. Ecology letters, 10, 551–563.544

Lele, S.R., Nadeem, K. & Schmuland, B. (2010) Estimability and likelihood inference545

for generalized linear mixed models using data cloning. Journal of the American546

Statistical Association, 105, 1617–1625.547

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J. & Lang-548

timm, C.A. (2002) Estimating site occupancy rates when detection probabilities are549

less than one. Ecology, 83, 2248–2255.550

Martin, J., Royle, J.A., Mackenzie, D.I., Edwards, H.H., Kery, M. & Gardner, B.551

(2011) Accounting for non-independent detection when estimating abundance of552

organisms with a bayesian approach. Methods in Ecology and Evolution, 2, 595–553

601.554

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


24

Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy,555

S.J., Tyre, A.J. & Possingham, H.P. (2005) Zero tolerance ecology: improving556

ecological inference by modeling the source of zero observations. Ecology letters, 8,557

1235–1246.558

Matsuoka, S.M., Mahon, C.L., Handel, C.M., Sólymos, P., Bayne, E.M., Fontaine,559
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6 Tables628

N-mixture Beta
Species Detections p λ λ lower upper
Atalotriccus pilaris 83 0.315 119.7 119.8 67.9 171.7
Basileuterus rufifrons 104 0.219 215.4 214.9 104.3 325.5
Campylorhynchus griseus 7 0.311 10.2 10.5 0 22.2
Cantorchilus leucotis 3 0.0004 3832.3 32.5 0 193.0
Cnemotriccus fuscatus 31 0.174 80.9 78.7 8.5 149.0
Contopus cinereus 2 0.004 211.4 14.4 0 69.9
Cymbilaimus lineatus 4 0.0005 3663.8 41.1 0 181.2
Dromococcyx phasianellus 1 0.0005 905.9 6.3 0 39.9
Elaenia flavogaster 67 0.126 241.3 231.4 62.1 400.6
Euscarthmus meloryphus 26 0.265 44.6 44.3 14.9 73.8
Formicivora grisea 172 0.280 279.3 279.5 168.7 390.3
Hemitriccus margaritaceiventer 106 0.408 118.1 118.4 81.8 155.0
Henicorhina leucosticta 28 0.124 102.3 95.5 0 201.3
Hylophilus flavipes 144 0.064 1023.2 829.2 0 2086.4
Leptopogon amaurocephalus 23 0.194 53.8 53.0 9.5 96.6
Myrmeciza longipes 64 0.257 113.4 113.0 55.8 170.2
Myrmotherula pacifica 1 0.001 905.9 5.9 0 32.1
Pheugopedius fasciatoventris 83 0.230 164.0 163.1 77.2 249.0
Poecilotriccus sylvia 69 0.239 131.0 130.0 52.6 207.3
Ramphocaenus melanurus 5 0.206 11.0 11.0 0 29.0
Synallaxis albescens 1 0.0005 905.9 6.4 0 48.7
Thamnophilus atrinucha 93 0.255 165.9 165.5 92.4 238.6
Thamnophilus doliatus 192 0.246 354.5 353.8 186.3 521.2
Todirostrum cinereum 51 0.255 91.1 90.3 44.2 136.4
Tolmomyias sulphurescens 80 0.216 168.4 166.5 75.4 257.7
Troglodytes aedon 26 0.322 36.7 37.2 13.5 60.8

Table 1: Estimates for understory insectivorous birds in the dry forest of the Mag-
dalena Valley Colombia. Estimates are in individuals/100 ha
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Figure 1: Mean bias in mean number of individuals per 100 ha λ for a range of point
counts, number of replicates, and true parameter values to for mid low and high
abundances and detection probabilities (λ = 7, 25, 65, 100 and p = 0.2, 0.5, 0.8). The
grayscale in each panel represent the bias from low (light gray) to high (black). The
color scale is presented in the right. We selected a threshold for acceptable bias in
estimation of abundance of 0.1 which isocline is presented as a black line in each of
the panels. The results for the entire set of simulations are presented in a similar
figure in appendix A
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Figure 2: Bias in the estimated value of λ for both the N-mixture and beta N-mixture
model for 1000 simulations of data under three different scenarios of low, mid and
high detection probabilities and 36 point counts replicated each five times.
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Figure 3: True (black) and each of the estimated species abundance (gray) distribu-
tions from the 1000 simulations of data under three different scenarios of low, mid
and high detection probabilities.
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Figure 4: Distribution of Expected (E[p]) and variance (Var[p]) in detection probabil-
ity across the 1000 simulations performed under scenarios of low, mid and high E[p]
and the same variance Var[p].
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A Supplementary Figures630
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Figure A1: Mean bias in mean number of individuals per 100 ha λ for range of point
counts, number of replicates, and true parameter values to for low, mid and high
abundances and detection probabilities (λ = 7, 25, 65, 100 and p = 0.2, 0.5, 0.8). The
grayscale in each panel represent the bias from low (light gray) to high (black). The
color scale is presented in the right. We selected a threshold for acceptable bias in
estimation of abundance of 0.1, which is the isocline presented as a black line in each
of the panels.
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Figure A2: Histogram of estimated detection probabilities based on the N-mixture
model estimates of 26 understory insectivorous birds of the dry forest of the Mag-
dalena Valley Colombia. The distribution of the detection probabilites estimated by
the beta model is also shown (black dotted line) based on the parameters estimated
as α = 3.15 and β = 12.7
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Figure A3: Barplot showing the distribution of λ̂ using N-mixture and beta N-mixture
models, showing the location of the true value of λ. The outliers for the N-mixture
and beta N-mixture models have been omitted for clarity.
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Figure A4: Relationship between the mean value of λ̂ from the 1000 simulations and
the true value of λ. For reference, we show the one-to-one relationship line (gray
dotted line).
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B R Code631

Appendix B contains the source codes necessary for estimating abundance using the632

Beta N-mixture model. It is based on bugs specification of the model, R functions for633

abundance estimation using N-mixture model and the R code necessary to reproduce634

the example using real data. The data have been saved in a separate file named635

UIFcounts.RData.636
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