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Abstract 

 

The study of spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) 
signal has recently been extended from the brain to the spinal cord. Two ultra-high 
field functional magnetic resonance imaging (fMRI) studies in humans have provided 
evidence for reproducible resting-state connectivity between the dorsal horns as well 
as between the ventral horns, and a study in non-human primates has shown that 
these resting-state signals are impacted by spinal cord injury. As these studies were 
carried out at ultra-high field strengths using region-of-interest (ROI) based analyses, 
we investigated whether such resting-state signals could also be observed at the 
clinically more prevalent field strength of 3T. In a reanalysis of a sample of 20 
healthy human participants who underwent a resting-state fMRI acquisition of the 
cervical spinal cord, we were able to observe significant dorsal horn connectivity as 
well as ventral horn connectivity, but no consistent effects for connectivity between 
dorsal and ventral horns, thus replicating the human 7T results. These effects were 
not only observable when averaging along the acquired length of the spinal cord, but 
also when we examined each of the acquired spinal segments separately, which 
showed similar patterns of connectivity. Finally, we investigated the robustness of 
these resting-state signals against variations in the analysis pipeline by varying the 
type of ROI creation, temporal filtering, nuisance regression and connectivity metric. 
We observed that – apart from the effects of band-pass filtering – ventral horn 
connectivity showed excellent robustness, whereas dorsal horn connectivity showed 
moderate robustness. Together, our results provide evidence that spinal cord 
resting-state connectivity is a robust and spatially consistent phenomenon that could 
be a valuable tool for investigating the effects of pathology, disease progression, and 
treatment response in neurological conditions with a spinal component, such as 
spinal cord injury. 
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Introduction 

 

The temporal and spatial organization of intrinsic brain activity is currently a subject 
of intense research. Functional magnetic resonance imaging (fMRI) studies have 
shown that spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) 
signal are organized into distinct and reproducible resting-state networks, such as 
the sensorimotor, default-mode, or executive-control networks (Buckner et al., 2013; 
Fox and Raichle, 2007; Power et al., 2014). With the neurophysiological origin of 
these resting-state signals becoming more evident (Leopold and Maier, 2012; 
Schölvinck et al., 2013) and their clinical relevance more appreciated (Fox and 
Greicius, 2010; Zhang and Raichle, 2010), they are increasingly used to probe the 
integrity and properties of neural circuits in health and disease.  

These organized resting-state fluctuations are not an exclusively cortical 
phenomenon, but have also been observed in subcortical regions as low as the pons 
and medulla (Beissner et al., 2014; Bianciardi et al., 2016), raising the question 
whether they constitute a functional signature of the entire central nervous system 
and might thus be detectable in the spinal cord as well. However, answering this 
question is a difficult endeavour, because it is challenging to obtain reliable fMRI 
data from the spinal cord due to a number of issues (Giove et al., 2004; Stroman et 
al., 2014; Summers et al., 2010), the most prominent of which are: 1) the spinal cord 
has a very small cross-sectional area (Fradet et al., 2014; Ko et al., 2004), 2) the 
detrimental influence of physiological noise from cardiac and respiratory sources is 
much more prominent in the spinal cord than in the brain (Piché et al., 2009; Verma 
and Cohen-Adad, 2014), and 3) signal loss and image distortion periodically occur 
along the spinal cord due to the different magnetic susceptibility of vertebrae and 
connective tissue (Cooke et al., 2004; Finsterbusch et al., 2012).  

Despite these obstacles, a few groups have started investigating spinal cord resting-
state functional connectivity. Wei and colleagues (2010), for instance explored 
resting-state signals in the human spinal cord by using independent component 
analysis (ICA), and reported that the networks detected at the single-subject level 
were dominated by signal in the frequency range of the respiratory cycle – thus 
hindering an unequivocal interpretation with regard to a neuronal origin. Building on 
this initial finding, two other exploratory ICA-based studies used comprehensive 
denoising strategies and group-level analyses to demonstrate spatially distinct and 
reproducible spinal cord resting-state signals that are likely to be of neuronal origin 
(Kong et al., 2014; San Emeterio Nateras et al., 2016). Barry and colleagues used 
ultra high field imaging at 7T in combination with a hypothesis-driven region-of-
interest (ROI) approach to demonstrate robust and reproducible resting-state 
functional connectivity in the human spinal cord (Barry et al., 2014, 2016). They 
observed significant time-course correlations between the ventral horns as well as 
between the dorsal horns at the group level, but not between ventral and dorsal 
horns. The clinical significance of such resting-state connectivity was recently 
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demonstrated in a non-human primate model of spinal cord injury, where a spatially-
specific influence of lesions on spinal cord functional connectivity was observed 
(Chen et al., 2015).  

These studies hint at the translational potential of using spinal cord resting-state 
fMRI signals in clinical situations that involve spinal pathology and where a non-
invasive metric of disease progression and treatment response would be welcome; 
examples include multiple sclerosis, spinal cord compression, spinal cord injury, and 
chronic pain (Wheeler-Kingshott et al., 2014). However, if resting-state connectivity 
of the human spinal cord is indeed to be used as a potential biomarker for disease 
progression or treatment effects, some conditions need to be satisfied. First, we 
need to be able to successfully acquire these signals at the clinically relevant field 
strength of 3T, because 7T scanners are currently only available in a small minority 
of research-focussed departments (less than 50 worldwide; Balchandani and 
Naidich, 2015). Second, we need to demonstrate that the technique is able to show 
robust results when obtaining data from distinct spinal segments, because spinal 
pathologies can be very localised (for example in spinal cord compression; Nouri et 
al., 2015). Finally, we need to show that the results we obtain are robust against 
variations in the data analysis pipeline, thus ensuring their inferential reproducibility 
(Goodman et al., 2016). We consider these three conditions as preliminary but 
important steps with respect to feasibility, which need to occur before setting sight on 
longer term goals, such as carrying out longitudinal studies on the stability of spinal 
cord resting-state connectivity and formal sensitivity/specificity analyses in patient 
cohorts. 

Here, we evaluated to what extent spinal cord resting-state connectivity can satisfy 
the above-mentioned conditions by reanalysing a previously published data-set that 
was acquired at a field strength of 3T and used ICA to explore spinal cord resting-
state signals (Kong et al., 2014). First, we used this data-set to test whether we 
could replicate the previously obtained 7T results (significant connectivity between 
ventral horns and between dorsal horns after averaging over several segments; 
Barry et al., 2014). Next, we tested whether these results also held for distinct spinal 
segments – an approach that has only now become possible with the development 
of a probabilistic atlas of spinal cord segments in a standard space (Cadotte et al., 
2015; De Leener et al., 2016). Third, we assessed whether the obtained results were 
stable across variations of our data analysis pipeline, by varying the type of 1) ROI 
creation, 2) temporal filtering, 3) nuisance regression, and 4) connectivity metric. 
Together, these tests should allow us to determine whether resting-state connectivity 
in the human spinal cord might be a useful tool in both basic neuroscience and 
clinical investigations. 
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Methods 

 

Participants: This study is based on a re-analysis of the data presented in Kong et 
al. (2014) and thus contains data from the same 20 healthy male participants (age: 
26.5 ±3.9 years). The Ethics Committee of the Medical Board in Hamburg, Germany, 
approved the study and all participants gave written informed consent.  

 

Data acquisition: Magnetic resonance imaging (MRI) data were acquired in an 
eyes-open state on a 3T system (Magnetom Trio, Siemens, Erlangen, Germany). 
fMRI data were collected as the last session in a larger spinal fMRI experiment 
consisting of two sensory and two motor sessions using a recently developed slice-
specific z-shim protocol (Finsterbusch et al., 2012). During all sessions a white 
crosshair was shown on the screen, which turned red every 15s; participants were 
asked to stay as still as possible and movements were limited by using a vacuum 
cushion. Participants were imaged with a 12-channel head coil combined with a 4-
channel neck coil (both receive-only), with the cervical spinal cord centred in the 
neck coil and positioned at isocenter in the magnet. Functional images were 
acquired using a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence 
(repetition time 1890ms, echo time 44ms, flip angle: 80°, field of view: 128x128mm², 
matrix: 128x128, GRAPPA with a PAT-factor of 2). We acquired 16 transversal slices 
using a slice thickness of 5mm in order to achieve an adequate signal-to-noise ratio 
despite our high in-plane resolution (1x1mm²). The resulting target volume covered 
the spinal cord from the 4th cervical vertebra to the 1st thoracic vertebra – based on 
probabilistic maps of spinal levels, this volume includes segments C6, C7, C8, and 
T1 (Cadotte et al., 2015). To minimize sensitivity to flow effects, first-order flow 
compensation in the slice direction of both the slice-selection and the z-shim gradient 
pulse and spatially-selective saturation pulse superior and inferior to the target 
volume were used and the images obtained with the individual coil channels were 
combined with a sum-of-squares algorithm. Furthermore, additional saturation pulses 
were applied posterior and anterior to the target region, i.e. in the phase-encoding 
direction, in order to avoid pulsatile blood flow artefacts. Periodic signal dropout due 
to magnetic field inhomogeneity induced by the alternation of vertebrae and 
connective tissue was minimized by using slice-specific z-shimming, which has been 
shown to lead to a reduction in signal intensity variation along the cord of ~80% 
(Finsterbusch et al., 2012). The adjustments prior to the functional acquisitions (i.e. 
shimming) were performed on a manually defined volume of about 35x30x70mm³ 
covering the target region in the spinal cord. Only the neck-coil was used for 
acquisition of fMRI data and a total of 250 volumes were acquired for each 
participant (7.5-minute scanning time). Please note that three initial volumes 
(occurring before the 250 volumes used for analysis) were used to achieve steady-
state conditions and to acquire reference data for GRAPPA; these volumes were 
thus not included in the resting-state data analysis. For the employed repetition time 
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and flip angle this means that all included signals were within less than 0.005% and 
0.2% of the steady-state signal for tissue and cerebrospinal fluid, respectively, which 
is one to three orders of magnitude lower than the noise level. To monitor cardiac 
and respiratory signals during fMRI data acquisition, participants wore a pulse 
oximeter and respiratory belt, and physiological data were recorded together with the 
trigger pulses preceding the acquisition of each volume. 

We also acquired high-resolution (1x1x1mm³) T1-weighted anatomical images using 
a 3D-MPRAGE sequence (sagittal slice orientation, repetition time 2.3s, echo time 
3.5ms, flip angle 9°, inversion time 1.1s, field-of-view 192x240x256mm³). The field of 
view for this acquisition covered an area that spanned at least from the midbrain to 
the second thoracic vertebra in every participant; both the neck coil and the head coil 
were used for this acquisition.  

 

Data processing: Data were processed using tools from FSL (FMRIB Software 
Library; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; Jenkinson et al., 2012). First, each slice 
was motion corrected for x- and y-translations using FLIRT (FMRIB’s Linear Image 
Registration Tool; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT; Jenkinson et al., 2002); 
translations in the z-direction and rotations were assumed to be minimal, which was 
confirmed by visual inspection (focussed on the intervertebral disks for translations in 
the z-direction and on the spinal cord for rotations) following motion correction. Note 
that slice-wise motion correction can outperform volume-wise approaches, because 
spinal cord displacement varies along the rostro-caudal axis of the spinal cord 
according to the cardiac  (Figley and Stroman, 2007) and respiratory cycle (Verma 
and Cohen-Adad, 2014).  

Next, we used FEAT (FMRI Expert Analysis Tool; 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT) to carry out physiological noise regression 
and high pass filtering (using a cut-off of 100s) – these two steps were performed 
simultaneously in order to avoid spectral misspecification (Hallquist et al., 2013). The 
influence of physiological noise of cardiac and respiratory nature is particularly 
pronounced in the spinal cord and we thus used PNM (Physiological Noise 
Modelling; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM; Brooks et al., 2008) in the context 
of FEAT to remove these noise sources. PNM is based on the RETROICOR 
approach (Glover et al., 2000) and removes physiological confounds from motion-
corrected data using slice-specific regressors based on the calculated phase for 
each slice relative to the cardiac and respiratory cycles (see also Kong et al., 2012). 
In the physiological noise model we used here, cardiac, respiratory and interaction 
effects were modelled using Fourier series, resulting in a total of 32 regressors. 
Additional nuisance regressors consisted of a) low frequency cerebrospinal fluid 
(CSF) signal (extracted from voxels whose variance lay in the top 10 percentile 
within a region including both the spinal cord and CSF space), b) heart rate (value of 
the smoothed beats per minute (BPM) trace at the acquisition time for each slice), c) 
motion correction parameters (x and y translation), and d) a regressor that modelled 
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the colour-change of the cross-hair that was presented on the screen. The obtained 
residuals from each fMRI scan (i.e. physiological noise corrected and high-pass 
filtered data) were used for further analysis.  

Finally, we brought the residuals of the functional data into a common anatomical 
space. The registration of functional images to the structural volume was initialised 
using the scanner sqform transformation. Due to EPI distortion in the fMRI data, 
there remained residual mismatch between the structural and functional data in 
some slices following the initial transformation. We therefore applied an additional 
slice-wise registration procedure (x and y translations) on these data (based on 
hand-drawn spinal cord masks), which minimised the mismatch, and brought fMRI 
data into good alignment with each participant’s structural volume. We then identified 
a participant with minimal anterior-posterior and left-right curvature of the spine, 
which became the experimental template. Subsequently, each participant’s structural 
image was registered to this template using a two-step procedure: we first used 
FLIRT (FMRIB’s Linear Image Registration Tool; 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT; Jenkinson and Smith, 2001) with default 
options and angular search range set to 0 degrees and then employed the resulting 
transformation matrix as a starting point for FNIRT (FMRIB’s Non-Linear Image 
Registration Tool; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT; Andersson et al., 2010); 
important details include: 40 iterations, changing warp resolution from 10mm to 
1mm, bias field modelling resolution of 20mm and weighting lambda of 100, 
weighting mask covering spinal cord and disks/vertebrae. The sqform, XY translation 
and non-linear warping transformations were then applied to the residuals of the 
functional data to bring them into a common anatomical space (resampled at 
1x1x1mm).	

 

Data analysis – Aim 1: In order to test our first aim – whether we could replicate the 
results of the recent ROI-based 7T resting-state reports (Barry et al., 2016, 2014) at 
our field strength of 3T – we needed to create masks for each of the four grey matter 
horns (along the length of the spinal cord, with our field of view covering segments 
C6 to T1). These masks were based on a probabilistic grey matter atlas (Taso et al., 
2014) that is integrated with the MNI-Poly-AMU template of the spinal cord (Fonov et 
al., 2014) and is available within SCT (Spinal Cord Toolbox; 
https://sourceforge.net/projects/spinalcordtoolbox; De Leener et al., 2016). We 
obtained these four masks by 1) thresholding the probabilistic grey matter atlas at 
50%, 2) splitting the supra-threshold image into 4 different images (one for each 
horn), 3)  making sure that there was at least a one-voxel gap between dorsal and 
ventral horns, and 4) making sure that the minimal distance between the ventral 
horns was equal to the minimal distance between the dorsal horns (which resulted in 
discarding grey matter voxels that belonged to the central grey matter) so that a 
different distance would not bias the correlation; all steps were done separately for 
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each slice and at the end all slices were merged together. For time-course extraction 
and statistical analysis, please see below.  

 

Data analysis – Aim 2: In order to test our second aim – whether spinal cord 
resting-state connectivity could be observed at single segments at our field strength 
of 3T – we created masks for each horn that did not span the whole extent of the 
cord, but were instead limited to single spinal cord segments (C6, C7, C8, and T1 in 
our case). These masks were created by intersecting the previously obtained horn-
specific masks with probabilistic masks defining spinal cord segments (Cadotte et 
al., 2015), which are also integrated with the MNI-Poly-AMU template and available 
within SCT. We thresholded the probabilistic spinal segment masks at 50% and 
minimally edited them manually (removing any overlap between neighbouring 
segments).  

In addition to creating the masks needed to assess Aim 1 (whole-cord correlations) 
and Aim 2 (single-segment correlations), we also needed to obtain a mapping 
between our common anatomical space (in which our normalized structural and 
functional images reside) and the space in which the probabilistic spinal cord atlases 
reside and where the masks were defined. In order to do so, we first averaged our 
individual normalized structural images and then applied a non-rigid registration 
procedure to the resulting average normalized structural image, using the MNI-Poly-
AMU template as a target. This was done using procedures implemented in SCT (for 
details, see De Leener et al., 2014; Fonov et al., 2014) and resulted in deformation 
fields describing the mapping between the two spaces, allowing us to bring the 
masks into our common anatomical space.  

For both Aim 1 and Aim 2 (where all the following steps were carried out per spinal 
segment), we used the following procedures to estimate resting-state connectivity. 
We 1) obtained the average time-course from each of the four horn masks in each 
participant, 2) calculated Pearson’s correlation coefficients between the time-courses 
for all four horn masks in each participant, 3) averaged the correlation coefficients 
from left-dorsal-with-left-ventral and right-dorsal-with-right-ventral correlations (to 
create an index for within-hemicord dorsal-ventral correlations) as well as left-dorsal-
with-right-ventral and right-dorsal-with-left-ventral correlations (to create an index for 
between-hemicord dorsal-ventral correlations) in each participant, and 4) used non-
parametric permutation tests for group-level inference. With regard to this last point, 
we assessed whether the average across subjects of each of the four horn-to-horn 
correlations (1: dorsal-dorsal, 2: ventral-ventral, 3: within-hemicord dorsal-ventral, 4: 
between-hemicord dorsal-ventral) was different than zero using permutation testing 
as implemented in PALM (Permutation Analysis of Linear Models, 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM; Winkler et al., 2014); we used 10000 sign-
flips for each test and report two-tailed family-wise-error (FWE) corrected p-values 
(adjusted for the four tests performed). To give an insight into the inter-individual 
variability of the four horn-to-horn correlations, we also report the percentage of 
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participants who show each effect. For the whole-cord analysis (Aim 1) we also 
compared the strength of the different horn-to-horn correlations (1: dorsal-dorsal vs 
ventral-ventral, 2: dorsal-dorsal vs within-hemicord dorsal-ventral, 3: dorsal-dorsal vs 
between-hemicord dorsal-ventral, 4: ventral-ventral vs within-hemicord dorsal-
ventral, 5: ventral-ventral vs between-hemicord dorsal-ventral, 6: within-hemicord 
dorsal-ventral vs between-hemicord dorsal-ventral) using the permutation testing 
analogue of a paired t-test implemented in PALM; we used 10000 permutations and 
again report two-tailed FWE-corrected p-values (adjusted for the six tests 
performed). Please note that we report group-averaged correlation coefficients, 
which tend to exhibit a small conservative bias, i.e. will slightly underestimate the 
true correlation (compared to averaging Fisher-z transformed correlation coefficients 
and then back-transforming the average to Pearson’s r, which will slightly 
overestimate the true correlation; Clayton and Dunlap, 1987; Corey et al., 1998). 

 

Data analysis – Aim 3: In order to test our third aim – which was to assess how 
robust the observed resting-state connectivity would be against variations in the 
analysis pipeline, i.e. how reproducible / robust the results would be – we varied the 
type of 1) ROI creation, 2) temporal filtering, 3) nuisance regression, and 4) 
connectivity metric.  

- ROI creation: We not only used the above-described probabilistic masks for 
each horn (which we will refer to as PROB [for probabilistic]), but also created 
masks that consisted of just one voxel for each horn (per slice), located at the 
x-y centre of gravity of each horn (which we will refer to as COG [for centre of 
gravity]); please note that while the x-y centre of gravity was calculated per 
slice, we then combined these voxels across all slices to create the COG 
masks. These masks were created to assess the effects that differences in 
ROI creation can have on connectivity estimates (Marrelec and Fransson, 
2011; Smith et al., 2011) and to ameliorate several issues that could 
potentially complicate interpreting the data when using the PROB masks: 1) 
different number of voxels in ventral horns vs dorsal horns (with COG, we just 
have one voxel per slice per horn), 2) influence of residual CSF fluctuations 
(with COG, the masks are further away from the subarachnoid space), 3) 
influence of signal from large veins at the edge of the cord (Cohen-Adad et 
al., 2010; with COG, the masks are further away from the cord edge), and 4) 
signal overlap between dorsal horns and ventral horns (due to the point-
spread-function of the BOLD response and there only being a one-voxel gap 
between dorsal horn and ventral horn masks; with COG, the dorsal and 
ventral horn masks are more strongly separated from each other).  

- Temporal filtering: Resting-state data have traditionally been band-pass 
filtered due to the assumption that connectivity is driven by low-frequency 
fluctuations. However, this has recently been challenged with the discovery 
that high frequencies also contain meaningful signal (Chen and Glover, 2015; 
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Niazy et al., 2011). At 7T, Barry and colleagues (Barry et al., 2016) showed 
that this also holds true for the spinal cord when they noticed that frequencies 
above 0.08Hz carried meaningful signal, as for example evidenced by higher 
reproducibility of spinal cord resting-state correlations across sessions. We 
therefore evaluated the effects of using only a high-pass filter (with a cut-off of 
100s, i.e. 0.01Hz; which we will refer to as HP) or using a band-pass filter with 
a pass-band between 0.01 and 0.08Hz (similar to Barry et al., 2014; which we 
will refer to as BP). Note that when only using a high-pass filter, we can obtain 
signals up to the Nyquist frequency of 0.26Hz.  

- Nuisance regression: We investigated several different slice-wise nuisance 
regression options in addition to the previously applied slice-wise PNM (see 
section “Data processing”). First, we investigated the effect of regressing out 
the average white matter (WM) signal per slice, which could help to mitigate 
residual physiological noise effects as well as time-dependent partial volume 
effects at the grey matter to white matter boundary due to residual motion 
(Barry et al., 2014). The white matter signal time-course was obtained from 
the probabilistic white matter mask (thresholded at 10%) – to minimize partial 
volume effects with grey matter, we subtracted a dilated version of the 
probabilistic grey matter mask (thresholded at 50%) from this mask. Second, 
we investigated the effect of regressing out residual cerebrospinal fluid (CSF) 
signals – in our original PNM, we used one regressor per slice to capture CSF 
signals, but this might not be sufficient due to CSF flow not being 
homogenous within the subarachnoid space (CSF flow occurs in different 
channels with different time-profiles; Schroth and Klose, 1992a; Henry-
Feugeas et al., 2000). We therefore carried out a principal component 
analysis (PCA) on voxel-wise CSF time-courses (which we obtained from the 
CSF mask that is part of the MNI-Poly-AMU template) and used the first four 
principal components per slice as regressors (since there are four different 
CSF channels); together these 4 components explained almost 50% of the 
variance. Third, we investigated the effect of regressing out non-spinal (NS) 
signals, i.e. signals that are clearly non-neuronal in origin (e.g. signals in 
connective tissue or muscles, remaining vascular signals, wide-spread 
intensity fluctuations due to swallowing, image artefacts, etc.) but might 
impact on spinal cord BOLD fluctuations. We therefore carried out a PCA on 
voxel-wise NS time-courses (which we obtained by 1) combining the MNI-
Poly-AMU cord mask and CSF mask, 2) dilating the resulting mask and 3) 
logically inverting the resulting mask) and used the first ten principal 
components per slice as regressors (each of which explained at least 1% of 
the variance). This resulted in a total of 8 possible nuisance regression 
combinations (1: none, 2: WM, 3: WM+CSF, 4: WM+NS, 5: WM+CSF+NS, 6: 
CSF, 7: CSF+NS, 8: NS).  

- Connectivity metric: We not only used Pearson’s correlation coefficient as 
described above (which we will refer to as FULL, for full correlation, and which 
was used by Barry et al., 2014), but also used partial correlation and a 
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regularized version of partial correlation. Partial correlation (which we will refer 
to as PARTIAL and which was used by Barry et al., 2016) estimates the 
correlation between two ROIs while controlling for the influence of the time-
courses in the remaining two ROIs that do not enter the correlation, i.e. when 
assessing dorsal-dorsal connectivity this controls for any contributions from 
the ventral ROIs. This is an attractive approach that is not only able to 
distinguish between direct and indirect connections (Marrelec et al., 2006), but 
should also remove any remaining global signal fluctuations that are shared 
between the ROIs (e.g. residual movement or physiological noise effects). 
Regularized partial correlation (which we will refer to as REGPARTIAL) 
imposes a sparseness constraint on the partial correlation matrix and can be 
beneficial in situations where there are high noise levels, resting-state data 
have a short duration, or networks have a large number of ROIs. We used the 
FSLNETS (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) implementation of 
regularized partial correlation (which is based on L1-norm regularization, see 
http://www.cs.ubc.ca/~schmidtm/Software/L1precision.html) with a 
regularisation-controlling parameter l of 5 (Smith et al., 2011). 

Combining the different factors of ROI creation (two), temporal filtering (two), 
nuisance regression (eight), and connectivity metric (three) resulted in a total of 96 
analyses; for brevity, we only report the results from the whole-cord analyses. In 
order to gauge the robustness of each of the four horn-to-horn correlations (1: 
dorsal-dorsal, 2: ventral-ventral, 3: within-hemicord dorsal-ventral, 4: between-
hemicord dorsal-ventral) against variations in data analysis, we first investigated 
whether the sign of the correlation changed with analysis choice, i.e. for each horn-
to-horn correlation we report the number of positive correlations among all 96 
performed analyses. After observing that only two of the four horn-to-horn 
correlations were robust against variations in data analysis, we then assessed how 
the significance of these correlations (again we use FWE-corrected two-tailed p-
values as detailed above) was influenced by variations in data analysis, i.e. we 
report the number of significant correlations among all 96 performed analyses. 
Supplementing these descriptive reports of the binned data (i.e. positive / negative, 
significant / not significant), we used a four-way repeated measures analysis of 
variance (ANOVA; factors ROI creation [2 levels], temporal filtering [2 levels], 
nuisance regression [8 levels], and connectivity metric [3 levels]) for each of the four 
horn-to-horn correlation coefficients to investigate the impact of each factor.  

Finally, we carried out two complementary analyses that made use of all the 96 
different analyses in order to provide evidence for the existence of horn-to-horn 
connectivity that is identifiable at 3T. In a first analysis we averaged the correlation 
coefficients across the 96 analyses within each subject and horn-to-horn correlation 
and then carried out the same permutation test as mentioned above on these 
averages (again reporting two-tailed FWE-corrected p-values). In a second analysis 
we used the recently developed modification of non-parametric combination testing 
(NPC; Winkler et al., 2016) in order to perform joint inference across all 96 analyses 
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using the Fisher combining function. As in the first analysis we report FWE-corrected 
p-values. Note that these two tests are not equivalent: the null hypothesis for the first 
test is that the average effect is zero, whereas the null hypothesis for the second test 
is that all the effects are zero. 
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Results 

 

Control analyses: We first investigated whether the temporal signal-to-noise ratio 
(tSNR) would exhibit any systematic differences between the different horns. Group-
averaged tSNR maps and estimates were obtained after motion correction, 
physiological noise modelling, high-pass filtering and registration to standard space; 
note that no smoothing was performed. As can be seen in Figure 1, the group-
averaged tSNR i) was rather homogeneous within each horn (with a slight gradient 
of decreased tSNR towards the dorsal and ventral edges of the horn masks), ii) was 
nearly identical for the different horns within a segment (and showed small variation 
across participants, as evidenced by the small error bars), and iii) was very similar 
for segments C6 to C8, with a slight drop in segment T1.  

---------------------------------------------------------------------------------------------------------------- 

Figure 1. Group-averaged tSNR. On the left 
side, group-averaged voxel-wise maps of the 
tSNR in the different spinal segments are 
displayed (transversal slice at the middle of each 
segment). The background image is the T2-
weighted MNI-Poly-AMU template, the red-to-
yellow coded tSNR is displayed only in voxels 
belonging to the probabilistic grey matter masks, 
and the colour scale is identical for all images. On 
the right, group-averaged segmental tSNR 
estimates are displayed for each horn (averaged 
across all voxels within a horn for each 
participant, i.e. taking into account all slices 
belonging to a segment). Both the maps on the 
left and the averaged estimates on the right are 
based on tSNR after motion correction, 
physiological noise modelling, and high-pass 
filtering (but no smoothing). Error bars represent 
the standard error of the mean. Abbreviations: LD, 
left dorsal horn; LV left ventral horn; RD, right 
dorsal horn; RV, right ventral horn. 

---------------------------------------------------------------------------------------------------------------- 

In all subsequent analyses, we report one value for within-hemicord dorsal-ventral 
correlations (based on averaging correlation coefficients for “left-dorsal-with-left-
ventral” and “right-dorsal-with-right-ventral”) and one value for between-hemicord 
dorsal-ventral correlations (based on averaging correlation coefficients for “left-
dorsal-with-right-ventral” and “right-dorsal-with-left-ventral”). As this rests on the 
assumption that there are no meaningful laterality differences between the to-be-
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averaged correlations, we tested for this using two-tailed non-parametric permutation 
tests. We did not observe any significant laterality differences, neither for the within-
hemicord dorsal-ventral correlations nor for the between-hemicord dorsal-ventral 
correlations. While one test showed a marginally significant result (whole-cord 
between-hemicord dorsal-ventral correlation: p = 0.05), this was far from significance 
when considering correction for multiple comparisons (p = 0.33). Figure 2 shows 
descriptively that there is no systematic laterality effect, with median values 
clustering around zero, both for the whole cord and the different segments.     

 ----------------------------------------------------------------------------------------------------------------

 
Figure 2. Laterality difference in dorsal-ventral correlations. Both for the whole 
cord as well as for each segmental level, we calculated the laterality difference in 
dorsal-ventral horn correlation coefficients. The filled black dot represents the 
median, the edges of the boxes cover represent the 25th and 75th percentiles and 
whiskers encompass approximately 99% of the data; outliers are represented by 
non-filled circles. Abbreviations: W, within-hemicord dorsal-ventral correlations 
(positive difference reflects left-dorsal-with-left-ventral > right-dorsal-with-right-
ventral); B between-hemicord dorsal ventral correlations (positive difference reflects 
right-ventral-with-left-dorsal > right-dorsal-with-left-ventral).  

---------------------------------------------------------------------------------------------------------------- 

 

Aim 1 – whole cord connectivity: Our first aim was to test whether we could 
replicate the results of the recent ROI-based 7T resting-state reports (Barry et al., 
2016, 2014), namely significant time-course correlations between the two dorsal 
horns, as well as between the two ventral horns (but not between dorsal and ventral 
horns) when averaged over the acquired rostro-caudal extent of the spinal cord 
(Figure 3). Indeed, we observed that the dorsal horns exhibited significant functional 
connectivity (r = 0.22, p < 0.001), as did the ventral horns (r = 0.22, p < 0.001), with 
90% of participants showing positive correlations between dorsal horns and 95% of 
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participants showing positive correlations between ventral horns. In contrast to these 
robust findings, dorsal-ventral horn connectivity within a hemi-cord was just 
minimally above zero (r = 0.02, p = 0.93; 50% of participants showed positive 
correlations), whereas dorsal-ventral horn connectivity between hemicords was 
significantly negative (r = -0.08, p = 0.03; 30% of participants showed positive 
correlations; but see results described under Aim 3).  

---------------------------------------------------------------------------------------------------------------- 
 

Figure 3. Connectivity averaged along the cord. 
The transversal slice is taken from the T2-weighted 
MNI-Poly-AMU template at the middle of segment 
C6, with the four horn masks overlaid in white and 
coloured arrows indicating the four different types of 
horn-to-horn connectivity we investigated (dorsal-
dorsal connectivity is depicted in red, ventral-ventral 
connectivity in green, within-hemicord dorsal-ventral 
connectivity in blue, and between-hemicord dorsal-
ventral connectivity in yellow). The bar-plot displays 
the group averaged correlation (+/- the standard 
error of the mean) for each of the four horn-to-horn 
correlations and the circles indicate participant-
specific correlations.  

 

 

 

 

 

 

---------------------------------------------------------------------------------------------------------------- 

As an aside, we also compared the four different horn-to-horn correlations to each 
other. We observed that dorsal horn connectivity and ventral horn connectivity were 
both significantly stronger than a) within-hemicord dorsal-ventral horn connectivity 
(dorsal: p = 0.02, ventral: p = 0.02) and b) between-hemicord dorsal-ventral horn 
connectivity (dorsal: p < 0.001, ventral: p < 0.001); furthermore, the within-hemicord 
dorsal-ventral horn connectivity was significantly stronger than the between-
hemicord dorsal-ventral horn connectivity (p = 0.001; but see results described under 
Aim 3).  

 

Aim 2 – segment-specific connectivity: Our second aim was to test whether 
resting-state connectivity could also be observed at the level of single spinal 
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segments (Figure 4). Based on probabilistically defined spinal segments (Cadotte et 
al., 2015), it is evident that our acquired field of view contains the sixth, seventh and 
eighth cervical segments as well as the first thoracic segment (C6, C7, C8, T1).  

---------------------------------------------------------------------------------------------------------------- 

Figure 4: Segment-specific 
connectivity. The image on the left is a 
midline sagittal slice through the T2-
weighted MNI-Poly-AMU template, with 
the thresholded probabilistic segments 
overlaid as outlines. The four 
transversal slices in the middle are 
taken from the centre of each of the 
segments, with the four horn masks 
overlaid in white. The violin plots on the 
right demonstrate the correlation 
between the four horn masks within 
each segment as smoothed histograms 
of the distributions (the mean is 
indicated by the grey plus; color-coding 
as in Figure 3).  

---------------------------------------------------------------------------------------------------------------- 

Table 1: Segment-
specific connecti-
vity. Shown are the 
results for each of the 
four spinal levels (C6, 
C7, C8, and T1) and 
each of the four 
correlations (between 
dorsal horns, 
between ventral 
horns, between 
dorsal and ventral 
horn within 
hemicords, between 
dorsal and ventral 
horn between 

hemicords), with r representing the average Pearson correlation, p representing the 
two-tailed family-wise-error corrected p-value from a permutation test, and % 
representing the percentage of participants showing a positive correlation. 

---------------------------------------------------------------------------------------------------------------- 

 C6 C7 C8 T1 
Dorsal-dorsal     

r 0.19 0.16 0.13 0.11 
p < 0.001 0.001 < 0.001 0.005 

% 85 80 95 85 
Ventral-ventral     

r 0.26 0.17 0.10 0.12 
p < 0.001 0.001 0.01 0.001 

% 95 85 75 80 
Within-hemicord     

r 0.05 0.08 0.06 0.12 
p 0.35 0.03 0.11 < 0.001 

% 70 75 75 95 
Between-hemicord     

r -0.02 0.01 -0.03 0.01 
p 0.87 1 0.70 0.81 

% 35 40 45 55 
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As can be seen in Table 1, the connectivity between dorsal horns as well as between 
ventral horns was highly significant at every single level, with a minimum of 80% of 
participants showing positive correlations between dorsal horns and a minimum of 
75% of participants showing positive correlations between ventral horns at each 
spinal level (see also Figure 4). Connectivity between dorsal and ventral horns on 
the other hand was much more variable, with only some segments (C7 and T1) 
showing significant results for within-hemicord dorsal-ventral connectivity and none 
of the segments showing significant results for between-hemicord dorsal-ventral 
connectivity (Table 1 & Figure 4). These results thus corroborate the whole-cord 
connectivity results and show that this technique is indeed able to pick up 
relationships at the level of single spinal segments.  

In a post-hoc analysis, we investigated whether dorsal and ventral horns in the 
different spinal segments would show a similar connectivity pattern. To this end, we 
correlated the connectivity pattern of each segment (i.e. the four obtained intra-
segmental correlations) with every other segment within each participant and then 
averaged the results with respect to inter-segmental distance within each participant. 
This resulted in 20 (i.e. number of participants) correlations for i) one-segment 
distance, ii) two-segment distance, and iii) three segment distance. We then used 
two-tailed non-parametric permutation testing to investigate whether these 
correlations would be significantly positive or negative and indeed observed that they 
were all significantly positive, though becoming slightly weaker with distance (Figure 
5): the correlation for one-segment distance was strongest (r = 0.40, t = 5.5, pcorrected 
< 0.001), followed by two-segment distance (r = 0.37, t = 4.8, pcorrected < 0.001) and 
three-segment distance (r = 0.22, t = 2.8, pcorrected = 0.03). This demonstrates that 
different spinal segments show similar ‘connectivity fingerprints’. 

---------------------------------------------------------------------------------------------------------------- 

 
Figure 5. Similarity in segmental connectivity patterns. The box-plots show how 
strongly the connectivity pattern (i.e. the four intra-segmental correlations) of each 
segment correlate with the connectivity pattern in every other segment, dependent 
on the distance between segments (one-segment distance: C6-C7, C7-C8, C8-T1; 
two-segment distance: C6-C8, C7-T1; three-segment distance: C6-T1). The filled 
black dot represents the group median, the edges of the boxes cover represent the 
25th and 75th percentiles and whiskers encompass approximately 99% of the data. 
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---------------------------------------------------------------------------------------------------------------- 

 

Aim 3 – robustness of connectivity: Our third aim was to assess how robust the 
observed resting-state connectivity would be against variations in the analysis 
pipeline, i.e. how reproducible the results would be across analyses. To this end, we 
carried out a total of 96 analyses using variations of ROI definition (two options), 
temporal filtering (two options), nuisance regression (eight options), and connectivity 
metric (three options); for brevity this was only done for the whole-cord connectivity.  

First, we observed that the sign of the correlation (i.e. positive or negative 
connectivity) was remarkably robust against variations in the analysis pipeline for the 
dorsal horn correlations (96/96 analyses resulted in a positive group-average 
correlation), as well as for the ventral horn correlations (again, 96/96 analyses 
resulted in a positive group-average correlation). This was not the case for the 
correlations between ventral and dorsal horns, where within-hemicord correlations 
were at chance level (48/96 analyses resulted in a positive group-average 
correlation) and between-hemicord correlations were also rather variable (64/96 
analyses resulted in a positive group-average correlation; Figure 6a). When 
investigating which analysis choices led to this variability, it became clear that for 
within-hemicord connectivity, ROI creation was the driving factor: positive 
connectivity was only observed with the PROB masks and negative connectivity was 
only observed with the COG masks. This suggests that time-course mixing due to 
the close proximity of the dorsal and ventral ROIs when using the PROB masks is 
the sole reason for observing positive correlations for within-hemicord dorsal-ventral 
connectivity, and that these are thus most likely artefactual. For between-hemicord 
dorsal-ventral connectivity, the influence of analysis choice was not so clear-cut and 
the only factor we could identify was the use of NS nuisance regression: negative 
correlations never occurred when this was employed.  

Considering that only connectivity between dorsal horns and connectivity between 
ventral horns seems to be stable across analysis choices, we limited our next 
analysis – where we assessed whether the significance of the correlations is 
influenced by variations in the data analysis pipeline – to these two correlations. For 
the connectivity between dorsal horns, only 24 out of 96 analyses showed a 
significant correlation, whereas for the connectivity between ventral horns, 65 out of 
96 analyses showed a significant correlation (note though that this is a conservative 
estimate, as FWE-correction was based on four tests; Figure 6b). This worryingly low 
level of statistical robustness could be mainly explained by two factors (Figure 6c): 
temporal filtering and nuisance regression. For the ventral horns, 31 out of the 31 
non-significant correlations could be explained by the use of band-pass filtering – 
within these 31 cases, different variations of nuisance regression were found to 
contribute as well, though no nuisance regression approach had as much of an 
impact as band-pass filtering. For the dorsal horns, 43 out of the 72 non-significant 
correlations could be explained by band-pass filtering – in contrast to the ventral 
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horns nuisance regression had an even stronger impact here with a total of 69 of the 
72 non-significant correlations due to variations in this approach, with NS nuisance 
regression having the strongest impact. Figure 6c shows how the levels of each 
factor (ROI creation, temporal filtering, nuisance regression, connectivity metric) are 
distributed over the significant and non-significant dorsal horn and ventral horn 
correlations. 

---------------------------------------------------------------------------------------------------------------- 

Figure 6. Robustness of 
connectivity. a) Depicted are 
the number of analyses (out of a 
total of 96) that show positive 
(white) or negative (black) 
connectivity. Only dorsal-dorsal 
and ventral-ventral connectivity 
is robust against variations in the 
analysis pipeline. Abbreviations: 
D, dorsal-dorsal; V, ventral-
ventral; W, within-hemicord 
dorsal-ventral; B, between-
hemicord dorsal-ventral. b) 
Depicted are the number of 
analyses (out of a total of 96) 
that show significant (light grey) 
or nonsignificant (dark grey) 
connectivity, this time limited to 
dorsal-dorsal and ventral-ventral 
connectivity. Abbreviations: D, 
dorsal-dorsal; V, ventral-ventral. 
c) The radial bar-plots depict 
which analysis choices 
contribute to significant/nonsigni-
ficant connectivity as observed 
in b). The innermost ring shows 
significance/nonsignificance and 
is a grouping factor for the next 
rings: ROI creation, temporal 
filtering, nuisance regression, 
and connectivity metric. 

Abbreviations: PROB, probabilistic masks; COG, centre of gravity masks; HP, high-
pass temporal filtering; BP, band-pass temporal filtering; Regr., nuisance regression; 
WM, white matter; CSF, cerebrospinal fluid; NS, non-spinal; Conn., connectivity 
metric; FULL: full correlation; PARTIAL: partial correlation; REGPARTIAL, 
regularized partial correlation.  
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---------------------------------------------------------------------------------------------------------------- 

When using a repeated-measures ANOVA to investigate the effects of the different 
analysis choices on the correlation coefficients more generally (i.e. without binning 
the data into positive/negative or significant/non-significant), we made three main 
observations (Table 2): 1) nuisance regression had a consistently strong main effect 
on connectivity, 2) the main effects of temporal filtering and correlation metric were 
modest, and 3) ROI creation had a very large main effect on within-hemicord dorsal-
ventral connectivity.   

---------------------------------------------------------------------------------------------------------------- 

Table 2: Effects of variations in data analysis. Shown are the main effects of the 
four-way repeated-measures ANOVA that was carried out for each of the four horn-
to-horn correlations and investigated the impact of different analysis choices. Please 
note that the subscript of each F-value represents the degrees of freedom of the 
corresponding test and that Greenhouse-Geisser correction was applied in case of 
non-sphericity (which can result in non-integer degrees of freedom).  

ROI              
creation 

Temporal     
filtering 

Nuisance 
regression 

Connectivity 
metric 

Dorsal-dorsal 
F1,19 = 3.0 F1,19 = 0.0 F7,133 = 13.7 F1.2,23.3 = 6.8 

p-value = 0.10 p-value = 0.93 p-value < 0.001 p-value = 0.01 
Ventral-ventral 

F1,19 = 4.8 F1,19 = 2.9 F7,133 = 14.5 F1.1,20.6 = 2.3 
p-value = 0.04 p-value = 0.10 p-value < 0.001 p-value = 0.15 

Within-hemicord 
F1,19 = 184.5 F1,19 = 1.6 F7,133 = 1.8 F1.1,20.4 = 3.0 

p-value < 0.001 p-value = 0.22 p-value = 0.10 p-value = 0.10 
Between-hemicord 

F1,19 = 2.3 F1,19 = 0.0 F7,133 = 10.3 F1.0,10.3 = 0.7 
p-value = 0.15 p-value = 0.88 p-value < 0.001 p-value = 0.42 

---------------------------------------------------------------------------------------------------------------- 

Finally, we used two complementary inferential procedures (both of which make use 
of all 96 analyses) to test the robustness of the horn-to-horn connections. First, when 
testing whether the average of all 96 analyses was significant (after FWE-correction 
for four tests), we observed that the dorsal horn as well as the ventral horn 
connections were significant (dorsal-dorsal: p = 0.037, ventral-ventral: p = 0.001), 
whereas the dorsal-ventral connections were not (within-hemicord: p = 0.512, 
between hemicord: p = 1). Second, we used non-parametric combination (NPC) 
testing, and observed significant effects for the dorsal horn correlations (p = 0.013), 
the ventral horn correlations (p < 0.001) and the within-hemicord dorsal-ventral horn 
correlations (p = 0.017), but not for the between-hemicord dorsal-ventral horn 
correlations (p = 0.239). 
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Discussion 

 

In this resting-state fMRI study of the human spinal cord, we observed significant 
functional connectivity between the dorsal horns, as well as between the ventral 
horns, but not between the dorsal and ventral horns – neither within hemicords nor 
between hemicords. These effects were not only evident when considering the whole 
acquired extent of the cord, but also when considering data from single spinal 
segments. Finally, we could show that functional connectivity between the ventral 
horns and between the dorsal horns was mostly robust against variations in the data 
analysis pipeline, highlighting the inferential reproducibility of these effects.  

The motivation for this study arose from results obtained by Barry and colleagues 
(2014, 2016), who – using ultra high field imaging (7T) of the spinal cord – 
demonstrated significant and reproducible resting-state functional connectivity 
between the dorsal horns as well as between the ventral horns. Considering that 
such connectivity measurements could be a useful tool for probing both disease 
progression and treatment response in neurological disorders with a strong spinal 
component, we aimed to test whether we could replicate these findings at the field 
strength of 3T which is much more prevalent in clinical settings. To this end we 
reanalysed a previously published resting-state data-set acquired at 3T (Kong et al., 
2014) – in our previous publication we had used an exploratory ICA-based approach 
that is however not suitable for investigating connectivity between a-priori defined 
ROIs. Here we show that despite many technical differences between the study by 
Barry and colleagues and our study (e.g. field strength, hardware vendor, fMRI 
protocol, temporal degrees of freedom, cervical segments covered, estimation of 
connectivity) we can replicate their main findings at 3T: similar to them, we observed 
significant resting-state functional connectivity between the ventral horns (which are 
important for motor function), as well as between the dorsal horns (which are 
important for sensory function). Both of these findings were robust against inter-
individual differences, with at least 90% of participants showing positive connectivity. 
Also mirroring Barry and colleagues’ findings, when averaging across the whole cord 
we did not observe significant correlations between the dorsal and ventral horns, 
neither when investigating within-hemicord connectivity nor when investigating 
between-hemicord connectivity. Consequently, when comparing connectivity 
strengths, we observed that both dorsal-dorsal and ventral-ventral connectivity was 
significantly stronger than dorsal-ventral connectivity, both within and between 
hemicords. In contrast to Barry et al. (2014) we did not observe a significant 
difference between ventral and dorsal connectivity (see also below). In any case, it is 
reassuring to see that largely similar results were obtained in these studies despite 
many technical differences – suggesting that resting-state spinal cord fMRI signals 
are a robust phenomenon, which bodes well for future multi-centre studies (such as 
currently underway for spinal cord diffusion tensor imaging: Samson et al., 2016). 
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Both Barry and colleagues’ and our findings were obtained when averaging data 
along the rostro-caudal axis of the spinal cord – in both instances data were 
averaged across the whole extent of the field of view. While this approach might help 
in removing noise and detecting functional connectivity patterns, it ignores the 
segmental structure of the spinal cord (Baron, 2015) and does not address whether it 
is possible to detect altered connectivity in localized cord regions as might occur for 
example with spinal cord compression (Nouri et al., 2015). We therefore tested 
whether we could detect resting-state connectivity within single spinal cord 
segments. Investigating this issue at the group level has only become possible very 
recently with the development of probabilistic maps of spinal segments (Cadotte et 
al., 2015) and their integration with a standard space template of the spinal cord 
(Fonov et al., 2014), both openly available with the Spinal Cord Toolbox 
(https://sourceforge.net/projects/spinalcordtoolbox; De Leener et al., 2016). With this 
approach we were able to demonstrate that the overall features of group-level 
resting-state connectivity – significant dorsal horn correlations and ventral horn 
correlations – were also detectable at every spinal level we investigated (sixth 
cervical to first thoracic level), though robustness against inter-individual differences 
was somewhat lower than for the whole-cord analysis. Segment-wise dorsal-ventral 
connectivity was never apparent between-hemicords and only partly within-
hemicords, though this is most likely artefactual (see below). Interestingly, when 
investigating whether the pattern of intra-segmental connectivity remained similar 
across segments, we observed that this was indeed the case, though a trend for 
reduced similarity with increasing distance was apparent as well (suggesting that at 
large intersegmental distances there might indeed be different patterns of intra-
segmental connectivity). At least for the segments we imaged, we can thus conclude 
that dorsal-dorsal and ventral-ventral connectivity seems to be a consistent feature, 
which our resting-state technique has the ability to detect and might thus be 
employed in studies investigating neurological disorders with localized spinal 
pathology.   

Before spinal-cord resting-state signals can be used as potential biomarkers (Chen 
et al., 2015) it is important to assess how robust or reproducible they are (Barry et 
al., 2016). This has come to the forefront more generally in recent years with 
concerns regarding the reproducibility of published research in the biomedical 
literature and beyond (Begley and Ioannidis, 2015; Iqbal et al., 2016). We therefore 
set out to test how reproducible / robust our obtained results are against reasonable 
and common variations in the data-analysis pipeline. Note that we are not using the 
term “reproducibility" as it is used in computational science  (where it refers to 
authors making raw data and analysis code available, so that others can recompute 
the original results; Peng, 2011), but rather in the form of robustness or inferential 
reproducibility (Goodman et al., 2016) – i.e. we aim to demonstrate that the basic 
inferences we draw here (there being strong ventral horn and dorsal horn 
connectivity) are not conditional on a specific analysis path and should thus be 
immune to biased data-analyses (Head et al., 2015; which have been discussed 
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under terms such as “data-torturing” Mills, 1993; “researcher degrees of freedom” 
Simmons et al., 2011; and “p-hacking” Simonsohn et al., 2014); for the sake of 
brevity we limited these analyses to the whole-cord results. 

While there is an enormous flexibility of fMRI data analysis pipelines (Carp, 2012), 
we chose to focus on a few analysis steps that have received attention in resting-
state studies of the brain, namely ROI creation, temporal filtering, nuisance 
regression and connectivity metric (e.g. Pruim et al., 2015; Smith et al., 2011). We 
observed that the sign of the correlation was completely immune to changes in data 
analysis for dorsal horn connectivity as well as for ventral horn connectivity, but not 
for dorsal-ventral horn connectivity: within-hemicord dorsal-ventral connectivity only 
became positive when ROIs were used that were very close to each other, which 
likely led to time-course mixing (due to the spatial point-spread function of the BOLD 
response) and inflated positive correlations. We then focussed on the significance of 
dorsal horn connectivity and ventral horn connectivity and observed that in only 
about 25% of the different permutations of analysis approaches dorsal horn 
connectivity was significant; for the ventral horns this was higher with around 70%. 
When we investigated what was driving this worryingly low robustness, we observed 
that it was partly due to the use of band-pass filtering: when we ignored the analyses 
employing a band-pass filter, ventral horn connectivity was significant in 100% of the 
analyses and dorsal horn connectivity was significant in 40% of the analyses. This is 
interesting in light of recent findings in the spinal cord (Barry et al., 2016) and the 
brain (Pruim et al., 2015), where it was demonstrated that band-pass filtering had a 
negative impact on both the detectability and reproducibility of resting-state 
connectivity. Consistent with this notion, numerous brain imaging studies have 
shown that meaningful signal is also contained in higher frequencies above the 
traditional cut-off of 0.08Hz (Boubela et al., 2013; Chen and Glover, 2015; Gohel and 
Biswal, 2015; Niazy et al., 2011), which might hold true for the spinal cord as well 
(though thorough characterizations using short-TR data are needed). In addition to 
these descriptive results, we used two significance tests based on data-aggregation 
across all 96 analyses and observed significant effects for both dorsal-dorsal and 
ventral-ventral connectivity in both of these tests, supporting the robustness of these 
connections. Further support for the idea that dorsal-dorsal and ventral-ventral 
connectivity is not artificially induced by common noise sources is provided by the 
fact that full correlation and partial correlation analyses showed similar results.  

When investigating the effects of analysis variation more generally using a repeated 
measures ANOVA based on the correlation coefficients, we observed that nuisance 
regression had the most consistent influence, while the influence of connectivity 
metric was rather weak (in line with the above-mentioned findings, temporal filtering 
most strongly affected ventral horn correlations and ROI creation had its strongest 
effect on within-hemicord dorsal-ventral correlations). It will be important to tease 
apart the influence of the various nuisance regression approaches, especially when 
considering that dorsal horn connectivity seems to be quite prone to these analysis-
specific influences. In our opinion the reason for this susceptibility to nuisance 
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regression choice is most likely related to the shape and location of the dorsal horns 
in comparison to the ventral horns: 1) the dorsal horns are more elongated and 
thinner, making them more susceptible to partial volume effects with white matter 
and 2) they border the posterior edge of the cord and could thus be susceptible to 
partial volume effects with CSF. It remains to be seen how one can obtain the best 
balance between preserving “true” signal and removing noise, the latter of which is 
especially important for resting-state data to avoid false positives due to noise-driven 
spurious correlations (Cole et al., 2010; Murphy et al., 2013) and even more so in the 
spinal cord due to its higher level of physiological noise compared to the brain 
(Cohen-Adad et al., 2010; Piché et al., 2009).  

Aside from these technical considerations, an obvious question pertains to the 
neurobiological underpinnings of the observed signals. This has been discussed in 
detail previously (e.g. with regard to possible influences of central pattern generators 
on ventral correlations, input from the peripheral nervous system on dorsal 
correlations, and supra-spinal influences on both of these; see Barry et al., 2014; 
Eippert and Tracey, 2014; Kong et al., 2014) and we will only briefly discuss possible 
underlying factors not mentioned previously. With regard to the dorsal horn 
connectivity, there is some anatomical evidence for primary afferents that also cross 
to the contralateral side (Culberson et al., 1979; Light and Perl, 1979) and 
electrophysiological evidence for an interneuronal network that connects the two 
dorsal horns (Fitzgerald, 1982, 1983). This has been corroborated more recently with 
a number of studies identifying populations of dorsal commissural interneurons 
(Petkó and Antal, 2000; Bannatyne et al., 2006), though these mostly focussed on 
the lumbar spinal cord. With regard to the ventral horns, there is a wealth of literature 
on commissural interneurons (for review, see e.g. Jankowska, 2008). While most of 
these investigations occurred in the upper cervical segments or in the lumbar cord, 
there is also evidence for commissural systems in the lower cervical segments that 
we investigated (Alstermark and Kümmel, 1990; Soteropoulos et al., 2013). One 
should also not discount the effect of respiration on the observed ventral horn 
resting-state connectivity. Respiration is typically treated as a source of physiological 
noise in spinal fMRI, e.g. due to breathing-induced B0 shifts (Verma and Cohen-
Adad, 2014) and breathing-induced modulation of CSF flow (Schroth and Klose, 
1992b). However, the activity of respiratory motoneurons (Lane, 2011; Monteau and 
Hilaire, 1991) in the ventral horns might actually underlie some of the observed 
ventral horn resting-state connectivity. While motoneurons innervating the primary 
expiratory muscles are unlikely to play a role (the abdominal and internal intercostal 
muscles are generally not recruited during quiet breathing and are furthermore 
innervated only from thoracic and lumbar segments), the main inspiratory muscle – 
the diaphragm – is innervated via the phrenic nerve which originates from segments 
C3 to C5 in humans (Hollinshead and Keswani, 1956; Routal and Pal, 1999). In this 
regard it is interesting to note that Barry et al. (2014, 2016) – who acquired data from 
these segments – observed much stronger correlations between the ventral horns 
than the dorsal horns, whereas we – who acquired data from below these segments 
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– did not observe such a pronounced difference. Also, resting-state connectivity 
between ventral horns was almost non-existent in monkeys who were mechanically 
ventilated during anaesthesia (Chen et al., 2015). Such an interpretation could be 
tested by investigating whether ventral horn connectivity changes during breathing 
manipulations. Furthermore, even the ventral horn connectivity we observed could 
be driven by respiratory factors, because respiratory interneurons as well as 
respiratory motoneurons innervating the scalene muscles are present in the lower 
cervical spinal cord (Lane, 2011; Monteau and Hilaire, 1991; see also Wei et al., 
2010). The contribution from these neurons is somewhat unclear however, as the 
function of respiratory interneurons during normal breathing remains to be elucidated 
and the scalenes are generally considered only accessory respiratory muscles (but 
see De Troyer and Estenne, 1984), which also show much lower discharge rates 
than the diaphragm (Saboisky et al., 2007).  

Whatever the neurobiological underpinnings of the observed resting-state signals 
are, it is important to point out several limitations of the present report. First, we need 
to acknowledge that the observed correlations are rather weak (group-average r of 
less than 0.3 in most cases), which could stem from the lower temporal signal-to-
noise ratio (tSNR) of spinal fMRI data due to the inherent limitations in data 
acquisition from this structure. While we employed an fMRI protocol that was 
optimized to minimize CSF inflow effects and susceptibility-induced signal drop-out 
(Finsterbusch et al., 2012), we cannot rule out that these factors still had a 
detrimental effect on ventral and dorsal horn signals. It is also worth mentioning that 
we did not spatially smooth the data: while smoothing will boost the tSNR, it would 
also introduce a large amount of time-course mixing between the ROIs and was thus 
omitted. In the future one might consider using more advanced approaches such as 
smoothing solely along the cord axis (De Leener et al., 2016) or non-local spatial 
filtering (Manjón et al., 2010). It is also possible that our denoising approach was not 
successful in characterising and removing noise sources properly, but we think this 
to be unlikely considering the variety of (mostly validated) methods we have 
employed for noise removal. A final – and neurobiologically more interesting - 
consideration relates to the possibility that the resting-state signal in each horn of a 
segment is not only determined by inputs from other horns of this segment, but might 
be strongly influenced by inter-segmental input (see also Kong et al., 2014) as well 
as input from supraspinal regions and the peripheral nervous system. This relates to 
a second point, namely that we only investigated intra-segmental connectivity in 
detail, but not inter-segmental connectivity, as this would have far exceeded the 
scope of this report. Third, it is currently unclear why we were not able to obtain 
evidence for dorsal-ventral connectivity when considering that both within-hemicord 
and between-hemicord connectivity is essential for some sensorimotor functions 
such as reflexes – while absence of evidence obviously does not imply evidence of 
absence, it might just be the case that spinal cord resting-state fluctuations do not 
cycle through the whole anatomical repertoire of connections and that tonic inhibition 
of such a system might play a role. Fourth, it is important to point out that with the 
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chosen spatial resolution (1x1x5mm), all ROI time-series will be subject to a certain 
amount of time-course mixing between grey matter and white matter due to partial 
volume effects. And fifth, while we investigated the issue of reproducibility or 
robustness against variations in data analysis, it will also be crucially important for 
future studies to investigate the inter-session reliability of spinal cord resting-state 
signals over days, weeks and months, before they might be used in clinical settings 
(Zuo and Xing, 2014). Acquiring several resting-state sessions in the same 
participants over time (for first steps in this direction at 3T, see San Emeterio 
Nateras et al., 2016 and Liu et al., 2016) would also allow to determine which of the 
methods we have employed here is optimal in terms of providing the least variable 
results across sessions. 
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Conclusions 

 

In this study we have replicated previously obtained 7T resting-state results (Barry et 
al., 2014) at the more widely available field strength of 3T. We have furthermore 
shown that ROI-based dorsal horn connectivity as well as ventral horn connectivity 
was highly significant not only when averaged across the length of the cord, but also 
at each of the acquired spinal cord segments, which exhibited similar connectivity 
patterns. Finally, we have investigated the issue of robustness/reproducibility and 
observed that the obtained results are mostly robust against variations in data 
analysis. In our opinion this suggests that functional connectivity might be a 
methodologically robust tool for investigating basic spinal cord research questions, 
such as the correspondence between resting-state and task-based connectivity 
(Cole et al., 2014) in the spinal cord, the integration between spinal and supra-spinal 
processes in health (Büchel et al., 2014) and disease (Freund et al., 2016), or how 
tonic pain protocols (Segerdahl et al., 2015) might lead to a change and possibly 
spread of dorsal horn spontaneous fluctuations. Even more important, this technique 
could complement current approaches for assessing pathology, disease progression, 
and treatment response in neurological disorders with a profound spinal cord 
component, such as spinal cord injury.    
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