
Semi-Automated Identification of Ontological Labels in the Biomedical
Literature with goldi

Christopher B. Cole* 1,2,3,4, Sejal Patel2,3, Jo Knight2,3,4,5,6

1 Department of Biomedical Sciences, University of Ottawa, Ottawa, Ontario, Canada
2 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON,
Canada
3 Institute of Medical Science, University of Toronto, Toronto, ON, Canada
4 Lancaster Medical School and Data Science Institute, Lancaster University, Lancaster, UK
5 Department of Psychiatry, University of Toronto, Toronto, ON, Canada
6 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada

* CCole019@uOttawa.ca

Abstract

Recent growth in both the scale and the scope of large publicly available ontologies has spurred the development
of computational methodologies which can leverage structured information to answer important questions.
However, ontological labels, or “terms” have thus far proved difficult to use in practice; text mining, one crucial
aspect of electronically understanding and parsing the biomedical literature, has historically had difficulty
identifying “terms” in literature. In this article, we present goldi, an open source R package whose goal it is to
identify terms of variable length in free form text. It is available at https://github.com/Chris1221/goldi. The
algorithm works through identifying words or synonyms of words present in individual terms and comparing the
number of present words to an acceptance function for decision making. In this article we present the theoretical
rationale behind the algorithm, as well as practical advice for its usage applied to Gene Ontology term
identification and quantification. We additionally detail the options available and describe their respective
computational efficiencies.

Introduction 1

Large Ontologies (LO) classify information and entities into meaningful and occasionally hierarchical 2

categories. [1] The use of these ontologies has been a hot topic in recent research; these databases may be 3

leveraged to answer pressing questions in various fields. Gene Ontology (GO), a platform which allows 4

researchers to describe gene function, among other things, through a structured and hierarchical vocabulary, is 5

one such ontology which has seen much recent interest. [2] The terms have a complex relational structure, and 6

their specificity generally scales with their length. There has been recent interest in identifying these “terms” or 7

gene functions in the biomedical literature for use in comparative analyses and machine annotation. [3–5] 8

However, the automated discovery and subsequent usage of ontological labels, or “terms” in literature mining, 9

specifically in the biomedical literature, has historically been difficult. [6] Issues in term identification range from 10

field specific jargon to inefficient computational algorithms used to parse data. The presence of this rich and 11

detailed information presents researchers with the opportunity to delve deeply into biological relationships, yet 12

historically Information Extraction (IE) has been a stumbling block in research pipelines. 13

To understand and apply the information present in GO, a researcher may need to identify the terms in 14

literature. For example, researchers may wish find terms which are enriched in a particular field’s literature base 15

when compared to a related field. However, given this problem, a researcher would run into several issues: 16

• Identify co-occurring words which constitute a “term”. 17

• Efficiently computing, summarizing, and reporting associations across a large corpus of literature. 18

1

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/


Table 1. Available options for reading in text to goldi

Argument Description Dependencies

”local” Uses a local character vector for the text document. No external reading is performed, and goldi assumes that the text is in the format which you prefer. None
”txt” Given a supplied file path, base::ReadLines() is used to read in the text and store in memory. None
”R” Given a supplied file path, pdftools::pdf_txt() is used to parse a PDF file and store the text data as a character vector in R. pdftools
”py” Given a supplied file path, pdfminer is used to parse a multi column PDF file and store the text data as a character vector in R. pdftools

• Implementing strict quality control in order to reduce the chances of false identifying terms or missing 19

truly present terms. 20

• Efficiently deal with issues of polysemy, synonymy, and homosemy. 21

In this article we present goldi as an R package capable of addressing these concerns and performing 22

multi-word term identification and quantification in natural language. 23

Design and Implementation 24

A large issue in term recognition thus far, and a large part of our design philosophy in creating goldi, has been 25

the relatively large divide between computational methodologies and expert knowledge which is needed to 26

understand free text. Though this is a significant issue in all fields, it is especially apparent in biology and 27

genetics where non-dictionary terms and acronyms form a large portion of the literature’s content; 28

computational algorithms struggle without a clear cut set of rules in these cases. [4] 29

goldi attempts to address these concerns by utilizing human knowledge and domain specific information to 30

function optimally. As an example, the strength and flexibility of goldi is greatly enhanced by user constructed 31

lists of synonyms. Though this requires a larger time investment up front, the benefits are large. Furthermore, 32

we provide an avenue for users to share their lists of synonyms on our Github project site wiki. 33

goldi works with a list of terms, or labels, which the user must supply. For this publication, we work with all 34

GO molecular function terms. These terms will be identified and quantified in the corpus of literature, which 35

represents the sample space for the problem. goldi will identify terms in the corpus and return their positions 36

along with context. From this the user can easily compute various metrics of interest, including frequency in 37

subsets and weighting importance by inverse frequency. 38

The computational algorithm proceeds according to the following: 39

• Read in text and term list to internal memory. 40

• Perform quality control on text and term list 41

• Construct term document matrices (TDM) for both text and term list. 42

• Integrate given synonyms into the term document matrices. 43

• Match terms from the term list to the text and compare to the acceptance function A(l) given term length. 44

• Return matched terms and their contexts in the article. 45

Going into slightly more detail, we describe each step in turn and explain its rationale. 46

Text from documents is read into the program in one of four ways. Either input is given as a character vector 47

already read into R, or it is given as a file path. goldi performs a best guess approximation of what the user 48

wants if the option is not specified. If the text is given as an already existing text object, this object is used for 49

the rest of the analysis. 50

If given as a file path, the text is read in one of three ways. Either the text is a text document (extension 51

.txt) requiring no parsing, or it is a PDF file which must be scraped. In the former case, base R functions are 52

used to read the text from the document. In the latter case, the user has two options to read the data. The first 53

is pdf_txt() from the pdftools package, which is the faster option. However, this program is incapable of 54

reading PDF files which have multiple columns. In this more complex case, the user may specify that the python 55

program pdfminer is to be used. This program is included in the download of goldi. These options are 56

summarized in Table 1. 57

2

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/


Once the text has been read into internal memory, slight modifications are performed to prepare it for further 58

analysis. First, vestiges from page breaks are removed and paragraphs are split into individual element sentences 59

by terminal punctuation marks. Second, quality control is implemented on the text in order to standardize input 60

and improve the accuracy of the program. These include the following commonly used steps: 61

• Case standardization 62

• Punctuation elimination (with exception cases) 63

• Numerical elimination (with exception cases) 64

• Removing of Stop Words (for a given language, or standard English by default) 65

• Consistent word stemming 66

• Whitespace elimination and consideration 67

Quality control of text input is accomplished through the tm package. [7] This step is necessary to distinguish 68

various forms of words and to standardize input. 69

Once the quality control has been performed on the text source, a term document matrix (TDM) is created. 70

This matrix has columns for each sentence i and rows for each word j present in the whole document. Entries in 71

the matrix are the number of times word j occurs in sentence i. A similar transformation is applied to both the 72

term list and the any synonyms which are presented to goldi. This is in order to standardize the quality control 73

procedures to facilitate comparisons. 74

goldi loops through each term in the term list, identifying how many of the words present in the term are 75

also present in each sentence of the text document. If enough of the term’s words or synonyms are found in any 76

of the sentences of the document, the term is declared to be present. The necessary number of words which must 77

be present is a function of term length n, and given by a modifiable acceptance function A(n). 78

A(n) =


n, 1 < n ≤ 4

n− 1, 5 < n ≤ 8

n− 2, 9 < n ≤ 10

10, n > 10

If the number of words from the term present in a particular sentence equal or exceed A(n), an association is 79

declared. 80

The acceptance threshold can be fed to goldi as a vector of length m where m is the maximal term length 81

that should be identified. The above acceptance function would be given in the vector 82

c(1,2,3,4,4,5,6,7,7,8,10) for terms of up to 11 words in length. 83

Once these matches have been identified, the positions of the phrases used to identify them are recorded, and 84

presented back to the user along with the number of times the term was identified in the article, if at all. 85

goldi follows O(2N ) time, which may be mitigated by grouping terms into small chunks and processing in 86

parallel. 87

Users may refer to both the supplemental material of this publication and the vignette for information on 88

installation and execution of unit tests. We also present a simplified analysis in the vignettes which may be 89

useful for beginners to natural language processing. goldi is written in R and C++ integrated through Rcpp and 90

RcppArmadillo. goldi imports several libraries including tm, dplyr, SnowballC, foreach, mcSnow and 91

others. [8–15] In the supplemental material we give known stable versions of these packages. 92

goldi contains one overarching function goldi::goldi() which takes two mandatory arguments, doc and 93

terms, containing, as mentioned above, either an R object or the path to a .pdf or .txt file and a newline 94

delimited list of terms to be identified. A brief example is given below in Usage Instructions and a more complete 95

run-through with examples and explanation is given in the “Basic Usage” vignette, also supplemental methods. 96

goldi is designed to be used in batch operations, however for smaller scale or pilot testing, an interaction 97

version may be used, in which the program guides the user through the logic and process of designing their terms 98

and synonyms. This may be performed by giving ‘‘interactive’’ to any of lims, syn, which will call 99

goldi::make.lims, goldi::make.syn. 100

Optionally, a log file may be written to the path specified to the log log = ‘‘path’’, or if log = TRUE then 101

goldi will write to goldi.txt in the current working directory. Logging is done through futile.logger. [9] 102

3

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/


Quality Assurance 103

goldi implements several layers of quality control. Unit testing is conducted on essential functions through the 104

testthat package and test coverage estimated through covr. Additionally, continuous integration is tested for 105

each new release by Travis CI on OSX and linux, and through Appveyor for windows. 106

Results 107

We present the results of an example analysis, outlined in the supplied supplemental material and package 108

vignettes, attempting to show terms which are over represented in a target group of Pubmed abstracts. For this 109

section, we attempt to identify molecular function terms over represented in a query of 111 abstracts published 110

between 2014 and 2015 identified with the search phrase “anaphylaxis genetics”. We use 1000 control abstracts 111

identified through the phrase “immunology genetics” published between 2014 and 2015. 112

We use an analogue of the gene over expression analysis implemented by GOrilla to assess significant 113

enrichment. Given N total abstracts and B of these annotated to a given GO term, the probability that b of the 114

n abstracts in the target set are annotated to the same GO term is given by the tail of the Hypergeometric 115

distribution: 116

Prob(X > b) = HGT (b;N ;B,n)

=

min(B,n)∑
i=b

(
n
i

)(
N−n
B−i

)(
N
B

)
After fetching the articles with the RISmed package, we pull all molecular function terms currently in use in 117

Gene Ontology (as of the date of publication). 118

After annotating each abstract with molecular function terms, we identify nine over expressed terms in the 119

target set, as shown in Table 2. We provide a convenience function (goldi::enrichment) which recreates this 120

analysis for the user given goldi input, though we also work through the code in the supplied vignettes. 121

Term Enrichment P

protein C (activated) activity 66.55000 1.256675e-20
CD27 receptor activity 66.00000 2.614405e-21
CD40 receptor activity 66.00000 2.614405e-21
receptor activator activity 66.00000 2.614405e-21
receptor activity 66.00000 2.614405e-21
IgE binding 65.34000 8.639239e-20
kinase activator activity 65.34000 8.639239e-20
kinase activity 65.34000 8.639239e-20
B cell receptor activity 62.22857 5.109998e-14
T cell receptor activity 62.22857 5.109998e-14

Table 2. Terms enriched in abstracts matching “anaphylaxis genetics” Pubmed abstracts from 2014 to 2015
compared against “immunology genetics“ abstracts from the same period. Given N abstracts total and B
identifications of the term, let n be the number of abstracts in the target set and b be the number of

identifications in the target set. Following this, enrichment is defined as
B
N
B
N

while the P value is calculated

through the hypergeometric tail HGT (b;N ;B;n). P values adjusted through FDR correction to 5% false
discovery rate. Only terms with more than five occurrences in the target set were analysed to reduce spurious
associations.

The analysis took approximately three hours on a computer cluster, though all calculations were performed in 122

serial. 123

Availability and Future Directions 124

goldi is open source and released under an MIT license on Github at https://github.com/Chris1221/goldi. 125

4

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/


Additional documentation may be found in the wiki articles and vignettes of the package. 126

Typical and expected use of goldi is in the mining of biomedical literature, specifically through Gene 127

Ontology terms. However, we see potential for this software outside of biology in fields such as the humanities 128

and social media text mining. We believe that the identification of key terms is a fairly general process which 129

may be applied in many areas, many of which we are unaware. Additionally, the code contained in this package 130

may be included in different applications and software to incorporate the method into new areas. 131

Conclusion 132

Here we present goldi, an R package to assist in the rapid identification and quantification of multi word terms 133

in the literature. We have presented a use case scenario and hope that users will contribute their own research to 134

our project page. We have released our software under an MIT license at 135

https://github.com/Chris1221/goldi and we hope that it assists researchers from different domains to 136

better understand and harness the information present in the biomedical literature. 137

References

1. Hu W, Qu Y, Cheng G. Matching large ontologies: A divide-and-conquer approach. Data & Knowledge
Engineering. 2008;67(1):140–160. doi:10.1016/j.datak.2008.06.003.

2. Consortium TGO, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene Ontology: tool for
the unification of biology. Nature genetics. 2000;25(1):25–29. doi:10.1038/75556.

3. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of
enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10(1):1–7.
doi:10.1186/1471-2105-10-48.

4. Comeau DC, Doǧan RI, Ciccarese P, Cohen KB, Krallinger M, Leitner F, et al. BioC: A minimalist
approach to interoperability for biomedical text processing. Database. 2013;2013:1–15.
doi:10.1093/database/bat064.

5. Gobeill J, Pasche E, Vishnyakova D, Ruch P. Managing the data deluge: data-driven GO category
assignment improves while complexity of functional annotation increases. Database. 2013;2013.
doi:10.1093/database/bat041.

6. Mao Y, Van Auken K, Li D, Arighi CN, McQuilton P, Hayman GT, et al. Overview of the gene ontology
task at BioCreative IV. Database : the journal of biological databases and curation. 2014;2014(0):bau086–.
doi:10.1093/database/bau086.

7. Feinerer I, Hornik K, Meyer D. Text Mining Infrastructure in R. Journal of Statistical Software.
2008;25(5):1–54.

8. Wickham H, Francois R. dplyr: A Grammar of Data Manipulation; 2015. Available from:
http://cran.r-project.org/package=dplyr.

9. Rowe BLY. futile.logger: A Logging Utility for R; 2015. Available from:
https://cran.r-project.org/package=futile.logger.

10. R Core Team. R: A Language and Environment for Statistical Computing; 2015. Available from:
https://www.r-project.org/.

11. Eddelbuettel D, Francois R. Rcpp: Seamless R and C++ Integration. Journal of Statistical Software.
2011;40(1):1–18. doi:10.18637/jss.v040.i08.

12. Eddelbuettel D. Seamless R and C++ Integration with Rcpp. 1st ed. Springer-Verlag New York; 2013.
Available from: http://www.springer.com/gb/book/9781461468677.

13. Dowle M, Srinivasan A, Short T, with contributions from R Saporta SL, Antonyan E. data.table:
Extension of Data.frame; 2015. Available from: https://cran.r-project.org/package=data.table.

5

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

http://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=futile.logger
https://www.r-project.org/
http://www.springer.com/gb/book/9781461468677
https://cran.r-project.org/package=data.table
https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/


14. Analytics R, Weston S. foreach: Provides Foreach Looping Construct for R; 2015. Available from:
https://cran.r-project.org/package=foreach.

15. Eddelbuettel D, Sanderson C. RcppArmadillo: Accelerating R with high-performance C++ linear algebra.
Computational Statistics and Data Analysis. 2014;71:1054–1063.

6

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073460doi: bioRxiv preprint 

https://cran.r-project.org/package=foreach
https://doi.org/10.1101/073460
http://creativecommons.org/licenses/by-nd/4.0/

