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Abstract. Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for9

several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible10

the sequencing of whole genomes of important human pathogens, including the ancient Yersinia pestis11

strains responsible for important outbreaks of the bubonic plague in London in the 14th century and12

in Marseille in the 18th century among others. However, aDNA sequencing data are still characterized13

by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging14

and prevents in many cases a detailed study of genome rearrangements. It has recently been shown15

that comparative sca↵olding approaches can improve the assembly of ancient Yersinia pestis genomes16

at a chromosome level. In the present work, we address the last step of genome assembly, the gap-17

filling stage. We describe an optimization-based method AGapEs (Ancestral Gap Estimation) to fill in18

inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA19

reads. We show how this approach can be used to refine comparative sca↵olding by selecting contig20

adjacencies supported by a mix of unassembled aDNA reads and evolutionary parsimony signal. We21

apply our method to two ancient Yersinia pestis genomes from the London and Marseilles outbreaks22

of the bubonic plague. We obtain highly improved genome assemblies for both the London strain and23

Marseille strain genomes, comprised of respectively five and six sca↵olds, with 95% of the assemblies24

supported by ancient reads. We analyze the genome evolution between both ancient genomes in terms25

of genome rearrangements, and observe a high level of synteny conservation between these two strains.26

1 Introduction27

Yersinia pestis is the pathogen responsible for the bubonic plague, a disease that marked28

human history through several dramatic pandemics, including the Justinian Plague and the29

Black Death. It diverged a few thousands years ago from a relatively non-virulent human30

pathogen, Yersinia pseudotuberculosis. The precise timing of the divergence between these31

two pathogens is still controversial [Rasmussen et al., 2015], but it is widely accepted that32

the emergence of Yersinia pestis as a virulent human pathogen was characterized by the33

acquisition of numerous repeat sequences, especially Insertion Sequences (IS) that triggered34

an extensive chromosomal rearrangement activity [Chain et al., 2004, Darling et al., 2008].35

This has led to consider the Yersinia family as an important model for the study of genomes36

rearrangements during pathogen evolution [McNally et al., 2016].37

Traditionally, the study of genome rearrangements relies on a comparative approach us-38

ing the genomes of related extant organisms. Under appropriate models of evolution, this39
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comparison provides indirect insight into genomic features of ancient species and their evo-40

lution toward extant species, see [Darling et al., 2008] for example for the specific case41

of genome rearrangements in Yersinia. In contrast, sequenced ancient DNA (aDNA) ex-42

tracted from conserved remains can give direct access to the sequence of ancient genomes43

and thus, theoretically, allows to study the evolution from ancestors to descendants directly.44

Following advances in aDNA high-throughput sequencing technologies and protocols [Gasc45

et al., 2016, Orlando et al., 2015, Yoshida et al., 2015, Hagelberg et al., 2015, Hofreiter et al.,46

2015, Pääbo et al., 2004], the genomes of several ancient human, animal and plant pathogens47

have recently been sequenced at the level of complete or almost complete chromosomes, in-48

cluding the agents of potato blight [Martin et al., 2013, Yoshida et al., 2013], brucellosis [Kay49

et al., 2014], tuberculosis [Bos et al., 2014], leprosis [Schuenemann et al., 2013], Helicobacter50

pylori [Maixner et al., 2016], cholera [Devault et al., 2014] and of the bubonic plague [Wagner51

et al., 2014, Bos et al., 2011, Bos et al., 2016], leading to important historical and evolutionary52

discoveries. However, unlike extant DNA high-throughput sequencing that is experiencing a53

breakthrough transition towards long-reads, aDNA sequencing methods generate extremely54

short reads with low and non-uniform coverage [Yoshida et al., 2015]. As a result, aside of55

rare exceptions [Schuenemann et al., 2013], the assembly of aDNA reads generates numerous56

short contigs. For example, the reference-based assembly of the Black Death pandemic agent57

resulted in several thousand contigs [Bos et al., 2011], two thousand of them of length 500bp58

and above. While short aDNA reads can be mapped onto one or several extant reference59

genomes to detect important evolutionary signals such as SNPs and small indels [Schubert60

et al., 2014, Peltzer et al., 2016], highly fragmented assemblies make it challenging to exploit61

aDNA sequencing data to analyze the evolution of pathogen genome organization, including62

important features such as the evolution of repeats and large scale genome rearrangements.63

Without long-read sequencing data, comparative sca↵olding based on the comparison of64

the contigs of a genome of interest with related assembled genomes has proven to be a useful65

approach to improve the assembly of fragmented genomes, especially bacterial genomes [Riss-66

man et al., 2009, Rajaraman et al., 2013, Kolmogorov et al., 2014]. In particular, the FPSAC67

method [Rajaraman et al., 2013] was introduced to improve ancient genome assemblies within68

a phylogenetic context. It was applied to aDNA contigs from the Yersinia pestis strain re-69

sponsible for the medieval London bubonic plague outbreak – that was shown to be ancestral70

to several extant Yersinia pestis strains [Bos et al., 2011] – and resulted in an improvement71

of the initial contig assembly from thousands of contigs to a chromosome-scale sca↵olding.72

Moreover, taking advantage of the high sequence conservation in Yersinia pestis genomes,73

the inter-contigs gaps of the ancient Yersinia pestis strain were filled with putative sequences74

reconstructed from multiple sequence alignments of conserved extant gaps. This gap-filling75

step shed an interesting light on genomic features hidden within the assembly gaps, in partic-76

ular IS and their correlation with rearrangement breakpoints reuse. However, the sca↵olding77

of adjacencies and gap sequences obtained in [Rajaraman et al., 2013], that accounted for78

roughly 20% of the genome size, were inferred through computational methods within a79

parsimony framework. This can be sensitive to convergent evolution that cannot be ruled80

out for genomes with a high rate of genome rearrangements such as Yersinia pestis [Darling81
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et al., 2008]. In the present work, we address this issue by using the large set of aDNA reads82

that are unassembled after the contig assembly stage, to both confirm sca↵olding adjacencies83

and fill-in inter-contigs gaps.84

We introduce the method AGapEs (Ancestral Gap Estimation) which, for a potential85

adjacency between two ancient contigs, attempts to fill the inter-contig gap by selecting86

a set of overlapping aDNA reads that minimizes the edit distance to a template sequence87

obtained from the extant genomes sequences that support the adjacency. We directly in-88

clude annotations of potential Insertion Sequences in the extant genomes in the analysis. In89

particular, when the presence of an IS in the ancient genome is doubtful, due to a mixed90

signal of presence/absence in the supporting extant genomes, a pair of templates can be91

considered, respectively including and excluding the IS. We apply this strategy to two data92

sets of ancient DNA reads for ancestors of the human pathogen Yersinia pestis [Chain et al.,93

2004, McNally et al., 2016]. This bacterium is the causative agent of the bubonic plague and94

responsible for three major epidemics, the last one still on-going. The first aDNA data was95

obtained from London victims of the Black Death pandemic in the 14th century [Bos et al.,96

2011], and the second consists of five samples from victims of Great Plague of Marseille97

around 400 years later [Bos et al., 2016]. For both data sets, we obtain an assembly with98

reduced fragmentation and are able to fill a large number of inter-contig gaps with aDNA99

reads. We identify several genome rearrangements between the ancient strains and extant100

Yersinia pestis genomes, however observe only a single small inversion between both ancient101

strains, suggesting that the genome organization of the agent of the second major plague102

pandemic was highly conserved.103

2 Materials and Methods104

We first describe the input to our analysis, namely ancient sequencing data, ancient and105

extant assemblies and annotations of IS, before outlining the general pipeline we used to106

improve the assembly of the ancient genomes.107

Sequencing data and reference genomes. The first aDNA data set was obtained from a108

London victim of the Black Death pandemic in the 14th century [Bos et al., 2011] (individual109

8291), the second consists of five samples from victims of Great Plague of Marseille around110

400 years later [Bos et al., 2016]. The average read length is 53 bp in the London dataset111

and 75bp in the five Marseille samples (Figure S3). We rely on seven extant Yersinia pestis112

and four Yersinia pseudotuberculosis as reference genomes (see Table S1). The phylogeny of113

the considered strains is depicted in Figure S1 and is taken from [Bos et al., 2016, Bos et al.,114

2011].115

Contig assembly and preprocessing. Bos et al [Bos et al., 2011] describe a reference-based116

assembly of the London strain consisting of 2,134 contigs of length at least 500bp. It was ob-117

tained with the assembler Velvet [Zerbino and Birney, 2008] using the extant strain Yersinia118

pestis CO92 as a reference. In order to assess the influence of the reference sequence in119

the assembly of the ancient genome, we de novo assembled aDNA reads into contigs using120
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Minia [Chikhi and Rizk, 2013] for both aDNA data sets (London outbreak and Marseille121

outbreak). Minia is a conservative assembler based on an e�cient implementation of the de122

Bruijn graph methodology. In general, Minia produces shorter contigs, as it avoids assembly123

decisions in case of ambiguity in the sequence data. We will refer to the assembly by Bos124

et al. as reference-based and the Minia assemblies as de novo assemblies in the following.125

To allow the comparison with extant genomes, contigs above a minimum length threshold126

were aligned with the extant genomes to define families of homologous synteny blocks (called127

markers from now) as described in [Rajaraman et al., 2013]. Marker families were then fil-128

tered to retain only one-to-one orthologous families, i.e. families that contain one and exactly129

one marker in each considered extant and ancient genome.130

Insertion sequence annotation. Insertion Sequences (IS) are strongly related to rearrange-131

ments in Yersinia pestis evolution, and their annotation in the considered extant genomes132

is crucial. In order to annotate IS, we designed our own annotation pipeline. Because IS ele-133

ments in the original Genbank files were rather disparately annotated, we relied on automated134

annotations from the Basys annotation server [Van Domselaar et al., 2005]. Basys identified135

11 families of IS transposase proteins (see Table S2). For each of these families, we produced136

a multiple alignment of their annotated sequences using muscle [Edgar, 2004] which was137

subsequently used to train Hidden Markov Model (HMM) profiles. Using hmmer [Eddy et al.,138

2009], we then annotated those regions as associated to IS elements that showed significant139

correlation to any of the HMM profiles. We eventually combined the Genbank annotations140

with these derived annotations. The number of these IS annotations per reference genome141

ranges from 151 in Yersinia pestis KIM10+ to 293 in Yersinia pestis Antiqua (see Table S1).142

The length of the annotations ranges from 60bp to 2,417bp; some short annotations deviate143

from the expected length for IS, however, in order to avoid filtering any true annotations,144

we include them all as potential IS coordinates in the following analysis.145

Ancestral marker adjacencies. Each marker can be defined by a pair of marker extremities.146

An adjacency consists of two markers extremities that are contiguous along a genome, i.e.147

are not separated by a sequence containing another marker. For extant genomes, extant adja-148

cencies can be observed directly, while for an ancestral genome of interest, we infer potential149

ancestral adjacencies using the Dollo parsimony principle as in [Rajaraman et al., 2013]: two150

ancient marker extremities are potentially adjacent if there exist two extant genomes whose151

evolutionary path contains the most common recent ancestor of the London and Marseille152

strains and where the two corresponding extant marker extremities are contiguous (see Fig-153

ure S5 for an example). Hence every potential ancestral adjacency is supported by a set154

of extant adjacencies. A gap is the sequence between the two marker extremities defining155

an adjacency. Therefore each ancestral gap is likewise supported by a set of extant gap156

sequences.157

We say that two potential ancestral adjacencies are conflicting if they share a common158

marker extremity. An IS-annotated adjacency is supported by at least one extant adja-159

cency whose gap contains an IS annotation. An adjacency that is neither conflicting nor160

IS-annotated is said to be simple.161
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Assembly of ancestral gap sequences from aDNA reads. The main methodological contribu-162

tion we introduce is a template-based method to assess the validity of a potential ancestral163

adjacency. The general principle is to associate to every ancestral gap a template sequence164

obtained from the supporting extant gaps sequences. We can then map aDNA reads onto165

this template and assemble the mapped aDNA reads into a sequence that minimizes the edit166

distance to the template sequence. The rationale for this template-based approach is that,167

due to the low coverage of the aDNA reads and their short length, existing gap-filling meth-168

ods fail to fill a large number of ancestral gaps. For example, the method gap2Seq [Salmela169

et al., 2015], a recent e�cient gap-closing algorithm based on finding a path of given length170

in a de Bruijn graph, is not able to fill roughly half of the ancestral gaps of the Black Death171

data set (see Table S6).172

We describe now the AGapEs algorithm. Assume we are given a template sequence t for a173

gap in an adjacency a = {m1,m2} between two marker extremities. We define R = m1+t+m2174

as the concatenated nucleotide sequence of the oriented markers and the respective template.175

We first align the aDNA reads onto R, using BWA [Li and Durbin, 2009], where we only176

consider mappings whose start and/or end position is in t (i. e. either fully included in t or177

overlapping the junction between a marker and the gap template). Next, we construct a graph178

G(V,E) where vertices are mappings m 2 Mt and there is an edge between two vertices179

(i. e. mappings) if the two mapping coordinates (segments of R) overlap. For each such180

edge/overlap, we define s as the non-overlapping su�x of the mappings with the highest end181

coordinate. We can then associate a weight to each edge given by the edit distance between s182

and the subsequence Rs of R it aligns to. A sequence of overlapping reads that minimizes the183

distance to t can then be found by searching for a shortest path between the vertex labeled184

with the smallest start position (i. e. the first mapping covering the junction between m1 and185

t) and the vertex labeled with the largest start position (i. e. the last mapping covering the186

junction between t and m2). See Figure S8 for an illustration.187

If such a path exists, it can be found with Dijkstra’s algorithm [Dijkstra, 1959] imple-188

mented based on a min-priority queue in O(|E|+|V | log |V |) time. If no such path exists, then189

there are either regions in R that are not covered by any mapped aDNA read or breakpoints190

in the mapping, where two consecutive bases in the sequence are covered, but not both by191

the same read. In these cases, uncovered regions and breakpoints need to be identified in192

the mapping beforehand to identify start and end vertex of the shortest path. We can then193

obtain a partial gap filling, precisely for the regions covered by mapped reads.194

The key element of the approach described above lies in defining the template sequence195

or set of alternative template sequences associated to each ancestral gap. We follow the196

general approach described in [Rajaraman et al., 2013], that computes a multiple sequence197

alignment of the supporting extant sequence gaps and applies the Fitch-Hartigan parsimony198

algorithm [Fitch, 1971] to each alignment column to reconstruct a most parsimonious ances-199

tral sequence. If the multiple sequence alignment of extant gaps shows little variation, as is200

the case for most gaps in our data sets, then a single template sequence can be considered,201

as we expect that minor variations compared to the true ancestral sequence (substitutions,202

small indels) will be corrected during the local assembly process. Alternatively, if larger vari-203
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ations are observed, such as larger indels or a contradicting pattern of presence/absence of204

an IS in the supporting extant gaps, then alternative templates can be considered, under the205

hypothesis that the true variant can be recovered from the mapped aDNA reads.206

Hence in the following analysis, we separate all potential ancestral gaps into groups of207

simple, conflicting and IS-annotated gaps. For simple and conflicting gaps without IS anno-208

tation, we can follow the process described above directly. For IS-annotated gaps, we reduce209

the described large variations in the multiple alignment by further dividing its supporting210

extant gaps into sets of annotated and non-annotated sequences respectively. Building the211

multiple alignment on each of these sets separately allows us to define two alternative tem-212

plates that can be used as a basis to fill the gap. Ideally, di↵erences in read coverage or213

breakpoints naturally identified by AGapEs then point to one of the alternative templates214

for each IS-annotated gap. Further, for each template that is only partly covered by mapped215

reads, we will correct the covered parts according to the read sequence and revert to the216

template sequence otherwise.217

The implementation of AGapEs is available at http://github.com/nluhmann/AGapEs, the218

data underlying the following results can be downloaded from http://paleogenomics.219

irmacs.sfu.ca/DOWNLOADS/AGAPES_data_results.zip.220

3 Results and discussion221

3.1 The London strain222

Contig assembly and segmentation into markers. In order to assess the impact of the ini-223

tial contig assembly on the final result, we considered two contig assemblies of the aDNA224

reads. The reference-based assembly consists of 2,134 contigs of length 500bp and above225

that cover 4,013,159 bp. As expected, the de novo assembly is more fragmented with 4,183226

contigs of length at least 300bp that cover 2,631,422 bp (see Supplementary Material subsec-227

tion A.4).We compared both contig assemblies by aligning them with MUMmer [Kurtz et al.,228

2004]. Unaligned bases mostly belong to regions in the reference-based assembly that have229

not been assembled in the conservative de novo assembly, and only an extremely low amount230

of nucleotide variations can be observed (Table S3), together with no observed genome re-231

arrangement.232

Subsequently, we obtain 2,207 markers that cover 3,463,281 bp in total for the reference-233

based assembly. For the de novo assembly, we obtain 3,691 markers covering 2,215,596 bp234

in total. All markers for the de novo assembly are contained in or overlapping with markers235

from the reference-based assembly.236

Reconstructing potential ancestral adjacencies. For the reference-based assembly, we inferred237

2,208 potential adjacencies: 1,991 are simple, 207 IS-annotated but non-conflicting, and 10238

are conflicting. Among the conflicting adjacencies 8 are also IS-annotated, illustrating that239

most rearrangements in Yersinia pestis that can create ambiguous signal for comparative240

sca↵olding, are associated with IS elements. For the de novo assembly, we obtain 3,691241
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potential ancestral adjacencies: 3,483 are simple, 201 are IS-annotated and non-conflicting,242

and only 7 are conflicting, including 5 IS-annotated adjacencies (see also Table S4).243

For most potential ancestral adjacencies, the lengths of the sequences in extant genomes244

associated with the supporting extant adjacencies are very similar, indicating well conserved245

extant gaps (Figures S7(a) and S7(b)). We have 28 and 21 gaps in the reference-based and de246

novo assembly respectively whose lengths di↵erence falls into the length range of potential247

annotated IS elements, thus raising the question of the presence of an IS within these adja-248

cencies in the ancestral genome. We note a small number of potential ancestral adjacencies249

with strikingly large extant gap length di↵erences (7 and 5 in the respective assemblies).250

All of these gaps accumulate more than one IS annotation in some extant genomes. Most251

problematic are two gaps with length di↵erences of more than 100.000 bp. As these gaps are252

not well conserved in general (apart from the inserted sequences), it is di�cult to obtain a253

good template sequence based on a very fragmented multiple alignment at this point. We254

will get back to these special gaps in the next paragraphs.255

Ancestral gaps filling. We apply AGapEs to all potential ancestral gaps. We assume a gap to256

be filled, if we find a sequence of reads that covers the whole ancestral gap. As we test two257

alternative templates for an IS-annotated gap, we consider it filled if only one alternative258

is covered or if both templates are covered but the IS is only annotated in a single extant259

genome. In the latter case, we expect the non-IS gap version to be ancestral, as the IS260

was most likely obtained along the edge to the annotated extant genome. If otherwise both261

alternative template sequences are covered, we cannot recover the true positive gap at this262

point and mark it as not filled. If a gap template sequence is only partially covered by mapped263

aDNA reads, we correct the covered regions as described above and use the template sequence264

of the uncovered regions to complete filling the gap. Figure 1 summarizes the gap-filling265

results (see also Table S4).266

IS

confl.

simple

IS

confl.

simple

London
de novo

London
reference-

based

Fig. 1. Results of gap filling for both assemblies. Note that if a gap is conflicting and IS-annotated, we assign it to
the conflicting group. We di↵erentiate between gaps of length 0 (i. e. both markers are directly adjacent), completely
and partially filled gaps and not filled gaps.

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073445doi: bioRxiv preprint 

https://doi.org/10.1101/073445
http://creativecommons.org/licenses/by-nc/4.0/


For both assemblies, a high number of gaps is supported by su�cient read coverage that267

enables us to fill the gap with a sequence of overlapping aDNA reads. Especially considering268

partially covered gaps for the de novo assembly improves the length of the genome that is269

supported by reads. Note that we also find covering reads for all gaps of length 0, spanning270

the breakpoint between directly adjacent markers.271

We further computed the edit distance between the reconstructed gap sequence and the272

previous gap template. For IS-annotated gaps, we computed the distance to a template273

sequence based on all extant gap occurrences, i. e. without considering the alternative tem-274

plates as described previously. We identified one case where the parsimonious gap sequence275

based on all extant occurrences of the adjacency excludes the IS. However if aDNA reads are276

mapped separately to alternative templates based on IS and non-IS annotated extant gaps,277

only the IS-annotated gap template is covered.278

For IS-annotated gaps, in both assemblies 95 ancestral gaps contain the IS, while 112279

resp. 106 ancestral gaps are reconstructed without the IS. From these 95 IS gaps, 22 contain280

annotations that are shorter than 400bp, however they all contain additional longer annota-281

tions in the same gap. Analyzing the number of ancestral IS with a Dollo parsimony criterion282

considering only the extant IS annotations, we have 96 ancestral gaps that contain an IS,283

indicating a large agreement between the IS that are conserved by the parsimony criterion284

and the IS supported by aDNA reads.285

Conflicting adjacencies. Conflicting adjacencies are related by the marker extremities they286

share, defining clusters of related conflicting adjacencies. For the reference-based assembly,287

we identified three such clusters (see Figure S10). Two of them consist of three adjacen-288

cies that are all annotated with IS elements, while the other consists of four adjacencies,289

including two IS-annotated adjacencies. In total, only two of these conflicting adjacencies290

are supported by aDNA reads. All other adjacencies contain uncovered regions indicating291

potential breakpoints. So in order to propose a conflict-free sca↵olding, we chose to remove292

all unsupported conflicting adjacencies. Note that filling these gaps only partially does not293

provide much information, as uncovered regions can be either breakpoints or not sequenced294

regions of the ancestral genome. For the de novo assembly, there are only two clusters of295

conflicting adjacencies that match with the clusters observed in the reference-based assem-296

bly according to the coordinates of the supporting extant gaps. As the same adjacencies297

are covered by aDNA reads, we resolve the sca↵olding conflicts identically to the reference-298

based assembly by keeping the two supported adjacencies and removing all other conflicting299

adjacencies. See Figure S11 for the read coverage of discarded adjacencies.300

For the reference-based assembly, the set of ancestral adjacencies can then be ordered301

into seven Contiguous Ancestral Regions (CARs), while we obtain five CARs for the de novo302

assembly. We convert the reconstructed sequences of markers back to genome sequences by303

filling the gaps with the read sequences if possible and resorting to the template sequence304

otherwise.305

As mentioned earlier, we observe two gaps with highly di↵ering extant gap lengths and306

very little conservation in both reconstructions. While the extant gap coordinates are similar307

for both gaps, the multiple alignment is in both cases very fragmented and hence the resulting308
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template sequences are not similar, even though they are based on mainly the same extant309

gap sequences. The mapping of reads onto these templates is poor: in the de novo assembly,310

the gap contains 211 uncovered regions of 9319 bp in total. See Figure S12 for an overview311

over the read coverage for this gap in the de novo assembly. As the reconstructed sequences312

have a high edit distance after partial gap filling, so we cannot reconstruct a coinciding313

sequence in both reconstructions, we remove these gap sequences completely at this point to314

avoid dubious and non-robust reconstructed ancestral sequences.315

Comparing the two improved assemblies. We compared the two sets of CARs obtained from316

both initial assemblies by aligning the resulting genome sequences using MUMmer [Kurtz317

et al., 2004]. As seen in Figure 2, we observe no rearrangements between both resulting sets318

of CARs, showing that, in terms of large-scale genome organization, the final result does not319

depend on the initial contig assembly.320

Fig. 2. Comparison between the de novo assembly (left) and the reference-based assembly (right) for the London
data set. The inner links connect corresponding CARs in the reconstructions. The grey lines indicate substitutions
and InDels observed. The positions in both assemblies covered by markers are indicated in blue. All gaps that have
IS annotation in the extant genomes are shown in orange. In addition, gaps that are only partially filled or have very
unconserved extant gap lengths are indicated in red. Finally, the most outer ring shows the average read coverage in
windows of length 200bp in log-scale. Figure done with Circos [Krzywinski et al., 2009].
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In addition, we aligned all reads again to the final assembly to assess the amount of321

uncovered regions in the reconstructed sequences. In total, only 85,578bp in the reference-322

based assembly and 88,529bp in the de novo assembly are not covered by any read; however323

most uncovered regions are rather short (see Figures 2 and S15). Based on this mapping, we324

ran the assembly polishing tool Pilon [Walker et al., 2014] on the final assembly. It identified325

several positions where the assembled base (also present in the template) is the minority in326

comparison to all reads mapping at this position. As Pilon is not taking the respective bases327

of the extant genomes into account, it runs the risk of correcting the assembly according to328

sequencing errors in the reads. In fact, the most frequent proposed substitutions correspond329

to the common damage pattern of cytosine deamination observed in aDNA [Pääbo et al.,330

2004]. As a consequence, we only keep small indel corrections by Pilon but reject all single-331

base corrections.332

We achieve a high similarity between both sets of CARs. While the improved de novo333

assembly contains a larger amount of filled gap sequences, we align nearly all of both se-334

quences and observe only a low number of SNPs and insertions and deletions between both335

assemblies (see Figure 2). The observed di↵erences are often located in gaps with low read336

coverage regions. If short regions in the gaps are only covered by a single read, in order to337

find a shortest path in the mappings, this read has to be included at all costs and can cause338

corrections to the template that are not supported by any other read. Further re-sequencing339

of these regions could clear which variant is present in the ancient genome.340

In the improved reference-based assembly, 78.74% of the resulting sequence is defined by341

markers and hence directly adopted from the initial assembly, while for the improved de novo342

assembly only 49.88% of the improved assembly is based on marker sequences and a larger343

part is based on the filled gap sequences. Together with the gaps that have been filled by344

read sequences, we can say that for the reference-based assembly in total 94.46% and for the345

de novo assembly in total 95.25% are reconstructed using only the available aDNA reads.346

3.2 The Marseille strain347

This data set consists of five samples as described in [Bos et al., 2016] that we assembled348

separately with Minia [Chikhi and Rizk, 2013] and parameter k=21 (unlike for the Black349

Death data set, there was no available reference-based assembly). We first compared the350

quality of the resulting assemblies by mapping contigs with a minimal length to the genome351

of the extant strain Yersinia pestis CO92 and summing the total length of the mappings as352

seen in Figure 3. While restricting the minimal contig length, two of the samples cover an353

extensively larger part of the reference and thus indicate a better sequencing quality. Figure 4354

shows that if we restrict the minimal contig length, only a small part of the reference genomes355

are covered by contigs from all five samples.356

We use the assembly of sample OBS116 with a minimal contig length of 500bp to segment357

the extant genomes into markers. The assembly consists of 3,089 contigs with a total length358

of 3,636,663bp. The segmentation results in 2,859 markers with a total length of 3,143,627bp359

and we analyze 2,859 potential adjacencies: 27 of these gaps have a length of 0, leaving 2,832360
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gaps to fill. Based on the observations above, we joined all sample reads sets for filling the361

gaps in the reconstruction to achieve a better coverage.362

We can see in Figure 5 that with the combined set of reads, we can fill nearly all simple363

gaps by read sequences. In addition, we obtain a higher number of IS-annotated gaps that are364

filled in comparison to the London data set. For the IS-annotated gaps, 95 are reconstructed365

containing the IS, 21 contain IS annotations shorter than 400bp. Hence we identified the366

same number of potential ancestral IS as for the London strain.367

IS

confl.

simple
Marseille

Fig. 5. Result of gap filling for de novo assembly. Note that if a gap is conflicting and IS-annotated, we assign it to
the conflicting group. We di↵erentiate between gaps of length 0 (i. e. both markers are directly adjacent), completely
and partially filled gaps and not filled gaps.
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We identified two conflicting components in this set of potential adjacencies (see Fig-368

ure S13). Both of them align in terms of gap lengths and extant occurrences with the two369

components shared by the assemblies for the London strain. In the first component, again370

only one conflicting adjacency is covered by reads. However, this is a di↵erent adjacency371

in comparison to both reconstructions for the London strain, while on the other hand we372

have no read support for the gap that is covered in the London data set. This could indicate373

a potential point of genome rearrangement (see discussion in next section). In the second374

component, all involved adjacencies are covered by reads from the five samples. In order to375

obtain a set of high confidence ancestral CARs, we removed all conflicting adjacencies in this376

component from the set of potential adjacencies. The coverage of all discarded adjacencies377

is shown in Figure S14.378

This results into 6 CARs for the ancestral genome. Again, we used BWA [Li and Durbin,379

2009] to align reads from all five samples again to the assembly to assess the amount of380

uncovered regions in the reconstructed sequences. In total, only 54,672bp in this mapping381

are not covered by any read and the length of the uncovered regions is rather short (see382

Figure S15).383

3.3 Comparison of the London and Marseille strains genomes384

As the Marseille Yersinia pestis strain is assumed to be a direct descendant of the London385

Black Death strain [Bos et al., 2016], we aligned the obtained CARs in both reconstructions386

to identify genome rearrangements. As shown in Figure 6, apart from one larger deletion387

and one larger insertion in the Marseille strain related to the removed gap sequence in the388

London strain and a small inversion of length 4138bp marked in black, the reconstructed389

CARs show no larger rearrangements between both genomes (grey links).390

The di↵erence in conflicting adjacencies kept is a possible indication for a rearrangement391

that however cannot be explicitly identified at this point. It causes the split pattern observed392

between CAR3 and CAR1 in the London strain and CAR2 and CAR5 in the Marseille strain.393

Given that the available read data does not allow us to further order the resulting CARs394

into a single sca↵old, additional potential rearrangements could be assumed to be outside of395

the reconstructed CARs. In contrast, Figure 6 depicts several inversions and translocations396

between both ancient sets of CARs and the extant Yersinia pestis CO92 (red and blue links397

respectively).398

3.4 Discussion399

In this paper, we present a method to fill the gaps between contigs assembled from aDNA400

reads that combines comparative sca↵olding using related extant genomes and direct aDNA401

sequencing data, and we apply it to two ancient Yersinia pestis strains isolated from the402

remains of victims of the second plague pandemic.403

The comparison of the two assemblies for the London strain illustrates that relying on404

a shorter initial de novo contig assembly does not impact significantly the final result. The405

results we obtain with the Marseille data set illustrates that if a good coverage of reads406
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Fig. 6. Comparison between the de novo assembly of the London strain (blue) and the Marseille strain (red) with the
reference Yersinia pestis CO92. The inner links connect corresponding CARs in the reconstructions and the reference.
Note that there is only a small inversion marked in black among the grey links. The positions in both reconstructions
covered by markers are indicated in green. All gaps that have IS annotations in the extant genomes are shown in
orange. For CO92, all IS annotations are shown as well. In addition, gaps that are only partially filled or have very
unconserved extant gap lengths are indicated in red. Finally, the most outer ring shows the average read coverage in
windows of length 200bp in log scale. Figure done with Circos [Krzywinski et al., 2009].

over the whole genome can be provided (as through multiple sequencing experiments for407

multiple samples), even a cautious initial contig assembly can be improved in such a way408

that most gaps are filled using unassembled aDNA reads. With both data sets, we obtain409

largely improved genome assemblies, with a reduced fragmentation (from thousand of contigs410

to a handful of CARs) and a very small fraction of the final assembly that is not supported411

by aDNA reads.412

Applied to the same data set for the London strain, the method FPSAC [Rajaraman et al.,413

2013] was able to obtain a single sca↵old based on parsimonious optimization. Comparing414

our resulting assembly to this single sca↵old, we can identify two breakpoints between both415

assemblies, hence both methods do not entirely support the same sca↵old structure for the416

London strain. These disagreements should be seen as weak points in our assembly, as they417

are not reconstructed by di↵erent sca↵olding objectives and would need to be confirmed418

more confidently by additional sequencing data.419

13

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073445doi: bioRxiv preprint 

https://doi.org/10.1101/073445
http://creativecommons.org/licenses/by-nc/4.0/


We see a clear connection between conflicts in the set of potential adjacencies and the420

presence of IS elements in the corresponding gaps. Solving these conflicts based on aDNA421

read data provides a useful way to identify ancestral adjacencies in a conflicting component422

if the quality of the aDNA data is su�cient. The mapping of aDNA reads has shown to be423

mostly di�cult at repetitive regions like Insertion Sequences, where the presence of the IS424

in the ancestral gap cannot be clearly detected by the aDNA sequencing data.425

Interestingly, the improved assemblies of the London and Marseille strains show no ex-426

plicit large genome rearrangements except for a small inversion. Even if potential genome427

rearrangement might not be observed due to the fragmentation of the assemblies into CARs,428

the synteny conservation between two strains separated by roughly 400 years of evolution429

is striking compared to the level of syntenic divergence with extant strains. This might be430

explained by the fact that both the London and Marseille strains belong to a relatively431

localized, although long-lasting, pandemic [Bos et al., 2016]. Also of interest is the obser-432

vation that conflicting adjacencies in the Marseille data set were covered by aDNA reads,433

thus making it di�cult to infer robust sca↵olding adjacencies; this raises the question of the434

presence of several strains in the Marseille pandemic that might have di↵ered by one or a435

few inversions.436

Answering these questions with confidence would require additional targeted sequencing437

of a few regions of the genomes of the London and Marseille strains, or the sequencing438

of additional strains of the second plague pandemic, such as the Yersinia pestis genome439

sequenced from plague victims in Ellwangen [Spyrou et al., 2016] which is assumed to be an440

ancestor of the Marseille strains.441
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