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One Sentence Summary 20 

Normally uninterpretable map regions are reliably modelled by deconvoluting superposed crystal 21 

states, even with poor starting models. 22 

Abstract 23 

Macromolecular crystallography is relied on to reveal subtle atomic difference between samples (e.g. 24 

ligand binding); yet their detection and modelling is subjective and ambiguous density is experimentally 25 

common, since molecular states of interest are generally only fractionally present.  The existing 26 

approach relies on careful modelling for maximally accurate maps to make contributions of the minor 27 

fractions visible (1); in practice, this is time-consuming and non-objective (2–4). Instead, our PanDDA 28 

method automatically reveals clear electron density for only the changed state, even from poor models 29 

and inaccurate maps, by subtracting a proportion of the confounding ground state, accurately 30 

estimated by averaging many ground state crystals. Changed states are objectively identifiable from 31 

statistical distributions of density values; arbitrarily large searches are thus automatable. The method 32 

is completely general, implying new best practice for all changed-state studies. Finally, we demonstrate 33 
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the incompleteness of current atomic models, and the need for new multi-crystal deconvolution 34 

paradigms.  35 

Background 36 

Besides its use for resolving the overall 3D structure of bio-molecules, macromolecular X-ray 37 

crystallography (MX) is deployed extensively to observe small changes to known structures, especially 38 

compound binding in ligand-discovery and -development projects. Arriving at the final model once 39 

initial electron density estimates are available (after “phasing”), relies on a long-established and rarely-40 

questioned paradigm: cycling between building atoms into the current density estimate and 41 

computationally optimising the model against the measured data (“refinement”). The latter improves 42 

the calculated phases and yields more detailed density that should reveal additional model omissions 43 

and errors; the process is assumed to converge on a model that fully describes the crystal’s content. 44 

In practice, convergence is never convincingly achieved. Much density both strong and weak 45 

invariably remains unexplained (“noisy”), hence the aphorism that “refinement […] is never finished, 46 

only abandoned” (5), and hence too the “R-factor gap” (6), which has obdurately resisted all 47 

methodology advances. More recent work has shown that conventional single-conformation models 48 

are too simplistic to describe the crystal (7–9); and that electron density features far weaker than the 49 

conventional cut-off reflect model deficiencies rather than measurement error (10, 11). 50 

Evidently then, near convergence, conventionally-calculated (sigmaA-weighted (12)) density derived 51 

from a single dataset is necessary but insufficient to complete the model, as it shows a superposition 52 

of states that is currently impossible to de-convolute algorithmically. Nearly-complete models with 53 

discrete yet uninterpretable superpositions are common in systematic studies of perturbations 54 

involving few atoms, such as ligand binding, photochemical changes or radiation damage. Since even 55 

strong biophysical effects are contingent on crystal packing or integrity, only a subset of the crystal may 56 

transition away from the ground state, often even after extensive optimization of the experiment. 57 

Finally, all current modelling approaches ultimately rely on shape-matching, and density superpositions 58 

are susceptible to interpretation errors and bias (such as the problem of the “Ligand of Desire” (2)). 59 
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Existing methods to auto-generate multi-conformer models (8, 9) are not relevant when changes 60 

are chemical, and moreover have had little take-up, presumably because neither is explicit modelling 61 

involved nor have robust validation criteria emerged to allay long-cultivated fears of over-fitting (13). 62 

Approaches from time-resolved crystallography (14) apply only to specialised experiments. 63 

New Approach 64 

In order to obtain unencumbered views of the changed, non-ground state, and extract the 65 

appropriate signal from conventional single-dataset density, we recast the problem as a multi-dataset, 66 

3D background correction problem. An accurate estimate of the background can be obtained by 67 

averaging near-convergence density, in real space and after local alignment, from dozens (>30) of 68 

independently measured but approximately identical ground state crystals. Subtraction of a suitable 69 

fraction of this background estimate from the near-convergence density of a dataset containing a 70 

putative changed state yields a residual partial-difference map that we call an event map and that is in 71 

general fully interpretable (Figure 1): 72 

[event map] = [observed map] – BDC * [ground state map]. (1) 

 

Figure 1. Schematic in 2D of how 3D background subtraction reveals changed-state density. With pixel 
intensity representing electron density strength, (a) shows the superposition of changed (20%) and ground 
state (80%) densities, while (b) shows the ground state density, estimated from the mean of ground-state 
measurements, and adjusted by applying a weighting (BDC=0.8). (c) The density that remains after 
subtracting background yields the best estimate of the changed state.  

Our new method – Pan-Dataset Density Analysis (PanDDA) – comprises: the characterisation of a set 73 

of related crystallographic datasets of the same crystal form; the identification of (binding) events; and 74 

the subtraction of ground state density to reveal clear density for events.  Identifying the optimal 75 

Background Density Correction factor (BDC) is essential for extracting the best signal, illustrated 76 

schematically in Figure 2. 77 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073411doi: bioRxiv preprint 

https://doi.org/10.1101/073411


4 

The method builds on the principle of isomorphous difference (Fo-Fo) maps (15),  but analyses many 78 

maps simultaneously by (a) locally aligning maps in real space to bypass the requirement of strict 79 

isomorphism, and (b) directly comparing the best estimate of true electron density, namely sigmaA-80 

weighted (2mFo-DFc) maps from late-stage refinement, ensuring maps are correctly scaled.   81 

Using multiple maps allows a Z-score measure to be calculated, reflecting how significantly each 82 

dataset deviates from the ensemble of datasets at each point in space. Z-scores are assembled into 83 

spatial Z-maps, where clusters of large Z-scores are an objective and statistically meaningful measure 84 

for potentially interesting crystallographic signal – events – such as a binding ligand.  Using Z-maps 85 

addresses the common pitfall of over-interpreting density that is in fact ground state density, since in 86 

such cases, Z-scores will be small. Equally importantly, Z-maps also make it possible to identify weak 87 

changed states (e.g. weakly-bound ligands) that do not yield strong difference (mFo-DFc) density. 88 

 

Figure 2. Minor conformations are obscured in conventional maps, but revealed by background correction. 
1D simulations are used to illustrate 3D electron density.  (a) The actual crystal contains 80% major (black) and 
20% minor (orange) states, which are largely dissimilar (correlation: 0.42). (b) Conventional (2mFo-DFc) maps 
(blue) show only the superposition, which resembles the major far more than the minor state (correlations: 0.98 
and 0.59; in practice, the scale is arbitrary). Isomorphous difference (Fo-Fo) maps (green) show the subtraction 
of the full-occupancy major state from the observed dataset, and only resemble the minor state where the major 
state has low density (right side).  (c) “Event maps” (scaled for comparison), generated as in equation (1) for 
different values of BDC, reveal the minor state optimally for one value of BDC (0.8). BDC=0.0 corresponds to the 
observed density, and BDC=1.0 to a Fo-Fo map. 
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Finally, the precise localisation of each change enables reliable background subtraction at that site, 89 

because BDC can be estimated as the value for which the ground state-subtracted map is locally least 90 

correlated to the ground-state map, relative to a normalising global correlation across the unit cell 91 

(Supplementary D). Using the average map both reduces noise of the ground-state estimate and 92 

thereby of the event map, and provides a less-biased estimate of the true ground-state, which a single-93 

dataset map cannot, as it is inherently biased by the model. A correct estimate of BDC results in event 94 

map density for only the changed configuration of the site, including protein backbone and side-chain 95 

conformations induced by the change.  96 

Results 97 

Standard maps,  
standard contour (1σ) 

Standard maps,  
low contour (0.5σ) 

PanDDA maps 

   
(a) (b)  (c) 

Figure 3. PanDDA maps clearly show detail obscured by conventional maps. JMJD2D fragment screening dataset 
x401 at 1.48Å. (a,b) Conventional maps (2mFo-DFc, blue, contour as indicated; mFo-DFc, green/red, ±3σ) are 
dominated by the NOG co-factor analogue bound in the majority fraction of the crystal, whereas (c) the event map 
(blue, 2σ, BDC=0.9) and the Z-map (green/red, ±4) unambiguously reveal both ligand and associated changes in 
protein conformations.  

Crystallographic fragment screening (16, 17) represents an extreme case of changed-state studies, 98 

because it attempts to observe in electron density the rare and often low occupancy binding events 99 

that occur when a relatively large (200-1000) library of weak-binding “fragment” compounds (150-100 

300Da, 100μM-10mM) (18, 19) are added individually or as cocktails to a series of equivalent crystals.  101 

Conventionally, the analysis is challenging as it involves inspecting a lot of 3D space – the whole unit 102 

cell in all datasets – for convincing evidence of bound fragments (“hits”).  In contrast, PanDDA directly 103 

eliminates the thousands of strong electron density blobs with no statistical significance, objectively 104 

identifying only regions that are unique to each dataset; the ground state datasets are provided by the 105 

many hit-free crystals. 106 
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Applied to a series of fragment screens (Table 1), PanDDA yielded markedly more hits than manual 107 

inspection of density, far more quickly and all with high confidence (Figure 3 & Figure 4; Supplementary 108 

Figure S1-Figure S4), in both known binding sites and new allosteric sites (Figure 4d). Several fragments 109 

induced significant reordering of sections of the protein that could only be modelled with PanDDA event 110 

maps (Figure 4a-c, Figure S1a-c), whilst also enabling the identification of mislabelled ligands and the 111 

discovery of experiment errors (Figure S1d-f, Figure S2d-f). Models erroneously built into misleading 112 

conventional density could be discarded with statistical confidence, and the binding of chemically 113 

elaborated hit compounds could be analysed more reliably. Full experimental details and complete 114 

descriptions are provided in Supplementary A. The method also effectively disambiguates density in 115 

conventional ligand-binding studies with ligands co-crystallised and a sub-optimal number of ground-116 

state datasets (Supplementary B).  117 

Table 1. Hit rates from fragment screens before and after use of PanDDA. All fragment screens consisted of 
a single soaked compound per dataset. An identified site comprises more than 2 binding ligands that are not 
heavily interacting with crystal contacts. Number of hits was determined as number of datasets containing 
a bound ligand. Hit rate was calculated as percentage of datasets containing bound ligands. 

Protein JMJD2D BAZ2B SP100 BRD1 

Datasets 226 200 116 292 

Resolution Range (Å) 1.1-2.6 1.5-2.5 1.3-2.7 1.5-3.6 

Identified Hits  (Human / PanDDA) 2 / 24 3 / 9 0 / 2 29 / 40 

Identified Hit Rate (%)  (Human / PanDDA) 0.9 / 10.6 1.5 / 4.5 0 / 1.7 9.9 / 13.7 

Identified Sites  (Human / PanDDA) 1 / 5 1 / 1 0 / 1 1 / 2 
 

 118 

    
(a) (b) (c) (d) 

Figure 4. PanDDA maps reveal complex minor conformations and identify allosteric binders. In JMJD2D 
dataset x402 (1.45Å), (a) conventional maps (contoured as in Figure 3a) show a complex superposition difficult 
to model using the reference conformation (shown), while (b) in PanDDA maps (contoured as in Figure 3c) it 
can be modelled easily. (c) Final models for the unbound (yellow) and bound (magenta) conformations show 
the large conformational change. (d) Fragments are detected to bind all over the surface of JMJD2D, revealing 
potential allosteric sites, including the peptide-binding groove (site A) and the large helix reordering (site B). 

 119 

 120 

 121 
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Strikingly, detection of weak binding events is simple even when phases are far from convergence 122 

(Figure 5). 123 

Standard Maps,  

Best Phases 

Standard maps,  

Degraded Phases 

PanDDA maps,  

Best Phases 

PanDDA maps,  

Degraded Phases 

    
(a) (b) (c)  (d) 

Figure 5. Weak ligand identification remains straightforward when phases are degraded. BAZ2B datasets were 
re-analysed using a deliberately sabotaged reference model, introducing a ~30° phase error and increasing Rwork 
and Rfree

 by ~12% for all datasets. Shown here is the weak hit (occupancy: 0.64) in dataset x492, contoured for 
different maps as labelled: (a,b) 1.78Å 2mFo-DFc (blue, 1σ) and mFo-DFc (green/red, ±3σ). (c,d) 1.79Å event (blue, 
2σ) and Z-maps (green/red, ±3). Rwork/Rfree are 0.18/0.21 and 0.30/0.32 for best and degraded phases respectively. 
BDCs for best and degraded phases are 0.77 and 0.73 respectively, and although the quality of the density for the 
ligand is reduced, ligand identification is no more difficult. 

Validation 124 

Model validation is a long-established bedrock of crystallographic analysis (13), and crucially requires 125 

a model that is numerically stable in refinement. To enable this, we generate an atomic ensemble model 126 

that reflects the crystal content by combining the ground state with the changed state modelled from 127 

event maps, with initial occupancies of 2*(1-BDC), as discussed in Supplementary D. These models are 128 

indeed well-behaved. However, we discovered that many, some built into strong event density, would 129 

be considered invalid (Figure S6) by the subjective but best-practice criterion (2) of visual assessment 130 

of agreement between model and conventional OMIT maps. 131 

To address this, we formulated the following strong objective validation principles: 132 

1. The changed-state partial model must conform to calculable numerical criteria (Table S2).  We 133 

adopt established requirements: a high correlation between the model and the observed 134 

density (RSCC>0.7); that the model must not move under refinement (low rmsd before vs after); 135 

and that ligand B-factors must be comparable to those of surrounding residues. We also apply 136 

a new metric, that modelling and refinement should result in negligible difference density 137 
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around the site (RSZD<3) (20). These metrics are fully defined in Methods and shown for all 138 

models in Table S3-Table S6. 139 

2. The ground state partial model is considered an immutable component of the crystal, with a 140 

status similar to common restraints (e.g. geometry or non-crystallographic symmetry), as in 141 

general there is not enough diffraction information to propose otherwise.  Thus, the ground 142 

state model needs to be fully complete before incorporation into the ensemble, and during 143 

further cycles of model building, it may not be altered.  To stabilise refinement, it may need to 144 

be strongly restrained to the original ground state model (by external restraints using e.g. 145 

PROSMART (21)).   146 

3. The primary event density must always be available when disseminating such models. 147 

We note that the infrastructure for criterion 3 does not currently exist in the PDB (22); and 148 

refinement programs do not yet support some external restraints that we predict will be important for 149 

numerical stability at low resolution or for very low occupancy at high resolution, in particular 150 

restraining relative B-factors to stabilise the occupancy. Both are the subject of future work.  151 

In general, only the changed state will be of primary scientific interest in the refined model, with the 152 

ground state essentially an experimental artefact.  Unlike the artefacts inherent in any crystal structure, 153 

here they are explicitly declared and need not be inferred by further analysis. Structure repositories, 154 

whether public (PDB) or internal, would ideally support this by removing the ground state for normal 155 

use. 156 

Discussion 157 

The PanDDA algorithm improves on current methods not only with dramatically better signal-to-158 

noise, but also by providing rigorous measures of confidence. This allows far more subtle changes to be 159 

modelled, whose importance will be experiment- and context-dependent: in ligand development, 160 

evidence of weak binding is now known to be productive for optimising binding potency (23). 161 

We thus propose a new standard practice for ligand binding and other changed-state studies, 162 

namely collecting a series of ground state datasets before proceeding with the putative changed-state 163 

datasets, to provide the contrast necessary to see the changes of interest. Approximately 30 datasets 164 
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are required for full convergence of the statistical model (Supplementary I), an experiment that can be 165 

completed within hours at modern synchrotron beamlines with fast pixel detectors (24) and sample 166 

automation (25), and that needs to be performed only once per crystal form. To address the other 167 

bottleneck, the logistics of analysing large numbers of datasets, the PanDDA implementation includes 168 

graphical tools and various command-line options. However, the method also works when fewer than 169 

30 datasets are available (Supplementary B), the trade-off being potentially reduced quality of the event 170 

maps; determining the break-even number of datasets for a given case is the subject of future work. 171 

The PanDDA method is applicable and effective at any resolution, though at lower resolutions, as 172 

maps become less precise, higher occupancies of changed states will in general be required for them to 173 

be detected by Z-score. What matters most is the consistency of ground-state models so that they can 174 

be well-represented by an average; therefore, in regions of crystals that tend to vary stochastically, 175 

such as crystal contacts, statistical confidence is reduced similarly to low resolutions. 176 

As the algorithm is a contrast-maximisation approach, event map density for changes appears 177 

somewhat stronger than density for unchanged atoms (typically, surrounding protein). In practice, this 178 

is not problematic, as unchanged conformations do not require modelling anyway, as more fully 179 

discussed in Supplementary D. 180 

In principle, the approach will allow comparisons between different crystal forms of the same 181 

protein.  However, since functionally important conformational changes are not only common in such 182 

cases but by their nature affect the functionally interesting regions, algorithmic treatment of the local 183 

alignment is complex and the topic of future work. 184 

Our results upend a long-held tenet in macromolecular crystallographic model building, that to 185 

visualise subtle features requires optimal phase estimates and thus a model as complete and globally 186 

error-free as possible (1). Conscientiously observed, this places a heavy time burden on the analysing 187 

scientist as it demands multiple iterations of modelling for each dataset. The PanDDA approach makes 188 

this both practically and theoretically unnecessary: a single local modelling step fully validates an 189 

interpretation, even when the model retains problems elsewhere. 190 
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More generally, we submit that a qualitative shift in approaches to generating crystallographic 191 

models is now due. PanDDA addresses one class of experiments, those involving induced local changes, 192 

but all problems of uninterpretable density, and indeed some of the R-factor gap (6), should be 193 

addressable by analogous map deconvolution methods. Multi-dataset experiments are no longer 194 

difficult; nevertheless, existing tools focus on pursuing a single, representative dataset through 195 

averaging (26). Instead, what will be key is establishing methods for targeted perturbations of poorly 196 

ordered regions, along with rigorous algorithms for reconstructing and visualising discrete states, and 197 

for subsequent model validation.   198 
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manual and tutorial are available at http://pandda.bitbucket.org. Processing 200-500 datasets on a 269 

3.7GHz Quad-Core Intel Xeon with 32GB of RAM takes 3-10+ hours but runtime depends greatly on 270 

resolution binning and size of crystallographic unit cell.  271 

Data Availability 272 

All crystallographic data, models, Z-maps and event maps are available at Zenodo 273 

(http://zenodo.org), with the following DOIs: BAZ2B: 10.5281/zenodo.48768; BRD1: 274 
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10.5281/zenodo.48769; JMJD2D: 10.5281/zenodo.48770; SP100: 10.5281/zenodo.48771. Models were 275 

built for those ligands that could be uniquely identified in the event density, except for those that 276 

interact extensively with the crystal contacts and are therefore unlikely to be biochemically relevant. 277 

Models have not yet been deposited in the PDB in order to ensure adherence to the essential validation 278 

principle 3 discussed above. 279 

Funding 280 

NMP and CMD recognize funding from EPSRC grant EP/G037280/1, UCB Pharma and Diamond Light 281 
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Materials and Methods 287 

An overview of the PanDDA algorithm is schematically outlined in Supplementary E.  288 

Dataset Preparation  289 

The input to PanDDA is a series of refined crystallographic datasets, each consisting of a refined 290 

structure and associated diffraction data, including 2mFo −DFc structure factors. These can come from 291 

any refinement program, as long as all datasets are refined using the same initial atomic model and the 292 

same protocol. All models of the protein must be identical, up to the numbering and labelling of atoms. 293 

All datasets used in this paper were prepared using the Dimple pipeline (part of CCP4 (28)), from 294 

reference models including solvent molecules; there is no requirement to remove solvent atoms from 295 

known binding sites.  296 

Structure and Map Alignment  297 

To allow map voxels to be compared between crystals that are not exactly isomorphous, maps are 298 

aligned using the refined models as reference points.  299 
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The input protein structures are aligned using a flexible alignment algorithm (Supplementary F). 300 

Sections of the protein are aligned separately, to give alignment matrices for that section. The 301 

alignments generated from the structures are stored and are used to transform and thereby align the 302 

electron density maps.  303 

Handling Variations of Map Resolutions  304 

To allow map voxels to be compared between crystals, maps have to be calculated at the same level 305 

of detail, even though crystals can diffract to a wide range of resolutions.  For analysing a specific 306 

dataset, its full resolution is used; but for contributing to the analysis of a different dataset, higher 307 

resolution datasets are truncated to the resolution of the target dataset, while lower resolution 308 

datasets are ignored. Therefore, we analyse the collection of datasets at a number of resolutions, and 309 

high resolution datasets are used multiple times for characterisation at lower resolutions, but will only 310 

be analysed once, at their highest possible resolution. Maps are recalculated using truncated diffraction 311 

data at each different resolution limit.  Thus, if processing in resolution bins of 1.0Å, 1.5Å, 2Å, and 2.5Å, 312 

a 1.2Å dataset would be analysed at 1.5Å, but also be used to build distributions at 2Å and 2.5Å.  313 

Fourier terms omitted in a given map, as happens when reflections are unobserved and then 314 

effectively set to zero, lead to systematic changes in electron density throughout the unit cell that 315 

strongly affect the outlier analysis; strong low-resolution terms are particularly problematic.  Therefore, 316 

reflections in all datasets are truncated to the set of miller indices common to all datasets; and for map 317 

calculation, all missing Fourier terms are estimated as DFc, which refinement programs perform 318 

automatically as long as the indices are correctly included in the reflection files. 319 

Truncated 2mFo −DFc structure factors are Fourier-transformed to generate maps. These maps are 320 

aligned using the alignment transformations from the local alignment (Supplementary F).  321 

Statistical Model 322 

Once maps for a particular resolution have been aligned, a statistical model is parameterised using 323 

the electron density of the ground state datasets. The aligned maps are placed on an isotropic Cartesian 324 

grid, and the electron density is sampled at each grid point of each dataset. The model treats the 325 

observed value of the electron density in dataset i, at grid point m, as being sampled from a distribution 326 
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𝜌𝑖,𝑚
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜌𝑚

𝑡𝑟𝑢𝑒 + 𝜀𝑖, (S1) 

where 𝜌𝑚
𝑡𝑟𝑢𝑒 models the natural variation in the electron density at point m, independent of dataset, 327 

and 𝜀𝑖  represents the experimental uncertainty in the electron density in dataset i. The variability of the 328 

𝜌𝑚
𝑡𝑟𝑢𝑒 term accounts for the fact that the crystals are not identical, and that small local fluctuations may 329 

exist between the crystals. These areas are most likely to be in the crystal contacts, or flexible areas of 330 

the protein. 𝜌𝑚
𝑡𝑟𝑢𝑒 represents the “true” (unmeasurable) electron density for this crystal form, of which 331 

each crystal (and associated dataset) is a sample. 332 

The simplest model is to assume that both the uncertainty in electron density values as well as 333 

variation in electron density at a point arising from differences between the crystals, can be modelled 334 

by a normal distribution. Therefore, if 335 

𝜌𝑚
𝑡𝑟𝑢𝑒~𝒩(𝜇𝑚, 𝑠𝑚

2 ), and 𝜀𝑖 = 𝒩(0, 𝜎𝑖
2), (S2) 

then 336 

𝜌𝑖,𝑚
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑~𝒩(𝜇𝑚, 𝜎𝑖

2 + 𝑠𝑚
2 ), (S3) 

where 𝜇𝑚 is the mean value of the electron density at point m, 𝑠𝑚 is the variance of the “true” 337 

electron density at point m, and 𝜎𝑖 is the uncertainty in dataset i. Under this model, the parameters 𝜇𝑚 338 

are estimated by taking the un-weighted average of all of the ground state densities.  339 

The mean ground state map is used to estimate the dataset uncertainty, 𝜎𝑖, for all datasets as 340 

follows. Subtracting the mean map from each dataset map we obtain a mean-difference map. By 341 

assuming that the experimental and model uncertainty in the electron density map are the major 342 

contributors to deviations from the mean map, the histogram of the mean-difference map values is 343 

used to estimate the total uncertainty of the dataset. Calculating the quantiles of a theoretical normal 344 

distribution 𝒩(0, 1) and plotting them against the quantiles from the mean-difference map, yields a Q-345 

Q plot where the slope of the central portion of the map (between the ±1.5 theoretical quantiles) gives 346 
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an estimate of the uncertainty of the dataset (Figure S11a). This is equivalent to the method used in 347 

Tickle (2012) for calculating the uncertainty of an electron density map (20). 348 

To estimate 𝑠𝑚, a maximum likelihood method is applied on our model in (S3), using the observed 349 

values 𝜌𝑖,𝑚
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, as well as estimates for 𝜎𝑖 and 𝜇𝑚 for the ground state datasets (Supplementary H). 350 

An example comparison of the ‘raw’ standard deviations of the grid points (simple standard deviation 351 

of electron density values, not accounting for observation error) and the ‘adjusted’ values is shown in 352 

Figure S12. This adjustment results in the majority of points having no variation that is not accounted 353 

for by the dataset uncertainties; the remaining points have non-negligible variation, with non-zero 𝑠𝑚, 354 

and these indicate naturally variable regions.  355 

Calculation of Z-Maps 356 

The parameterised statistical model allows the identification of areas of individual dataset maps that 357 

deviate significantly from the mean map: “events”. Z-scores are calculated by 358 

𝑍𝑖,𝑚 =
𝜌𝑖,𝑚

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑚

√𝜎𝑖
2+𝑠𝑚

2
, (S4) 

where large Z-scores indicate significant deviations from the mean map. The distributions of Z-scores 359 

for a particular dataset have improved normality compared to the simple differences from the mean 360 

(Figure S11b), as expected. 361 

Regions of individual datasets are identified as significant by contouring Z-maps at Z=2.5, and 362 

filtering remaining blobs by a minimum peak value of Z=3 and a minimum volume of 10Å3 (volume of a 363 

water molecule is ~30Å3).  Neighbouring blobs are grouped together if the minimum distance between 364 

them is less than 5Å. These parameters were identified on the BAZ2B dataset, and found appropriate 365 

in subsequent studies and are therefore the current program defaults. 366 

Calculation of Event Maps 367 

For identified events, the background density correction (BDC) factor is estimated as follows. 368 

Different fractions of the mean map are subtracted from the dataset map, and the correlation between 369 
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the resulting map and the mean map is calculated both globally and for the area around the event, 370 

defined by the blob identified in the Z-map expanded by 1Å. 371 

Globally, the dataset map looks similar to the mean map, so plotting the global correlation against 372 

the subtracted fraction yields a signal-to-noise curve, dropping off at a speed related to the noise in the 373 

dataset (green dashed line, Figure S7). Locally to the identified site, however, the dataset map is a 374 

superposition between something similar to the mean map and something that is unrelated (e.g. 375 

density of bound ligand). As more of the mean map is subtracted, the local correlation between the 376 

mean map and the resulting map (black dashed line, Figure S7) will decrease faster than the global 377 

correlation. Subtracting the local correlation curve from the global correlation curve, BDC is estimated 378 

where the difference between these two correlation curves is maximised (blue solid line, Figure S7). 379 

The final event map is calculated as in equation (1). 380 

Model Building and Refinement 381 

Interesting sites are identified by Z-maps and modelling is performed using a combination of Z-maps 382 

and event maps, similarly to the way that mFo-DFc maps may be used to guide the modelling of 2mFo-383 

DFc maps. Modelling takes place in the aligned reference frame, as defined in Supplementary F. 384 

After modelling of the changed state, the new conformations of the protein are merged with the 385 

ground state model. Atoms in the ground state that are not present or have moved in the changed state 386 

are assigned to a previously unused conformer (e.g. C). Similarly, atoms in the changed state model that 387 

are not present in the ground state, or have moved, are assigned another unused conformer (e.g. D). 388 

Atoms that are not changed between the two states remain unaltered. The resulting ensemble models 389 

are then back-transformed, using the local alignments, to the original crystallographic frame, for 390 

refinement.  391 

The models in Table 1 have then been refined as an ensemble using phenix.refine (29, 30), under 392 

conventional resolution-dependant refinement protocols, with constrained occupancy groups 393 

corresponding to the bound and unbound structures to ensure that the occupancies of the bound and 394 

unbound states sum to unity.  395 
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Because of the methodical way in which the ensembles are generated, the changed state model can 396 

be extracted simply by removing the atoms corresponding to the changed ground state atoms (i.e. 397 

conformer C in the above example). 398 

Validation 399 

The atomic model of the changed state is validated by 4 quality metrics (Table S2).  Two are electron 400 

density scores, generated by EDSTATS (20): RSCC reflects the fit of the atoms to the experimental 401 

density, and should typically be greater than 0.7; while RSZD measures the amount of difference density 402 

that is found around these atoms, and should be below 3. The B-factor ratio measures the consistency 403 

of the model with surrounding protein, and is calculated from the B-factors of respectively the changed 404 

atoms and all side-chain atoms within 4Å. Large values (>3) reflect poor evidence for the model, and 405 

intermediate values (1.5+) indicate errors in refinement or modelling; for weakly-binding ligands, 406 

systematically large ratios may be justifiable. RMSD compares the positions of all atoms built into event 407 

density, with their positions after final refinement, and should be below 1Å. 408 
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