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Abstract 21 

Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) 22 

studies is among the most common analyses in genomics. However, RNAseq 23 

DE analysis presents several statistical and computational challenges, including 24 

over-dispersed read counts and, in some settings, sample non-independence. 25 

Previous count-based methods rely on simple hierarchical Poisson models (e.g., 26 

negative binomial) to model independent over-dispersion, but do not account for 27 

sample non-independence due to relatedness, population structure and/or 28 

hidden confounders. Here, we present a Poisson mixed model with two random 29 

effects terms that account for both independent over-dispersion and sample non-30 

independence. We also develop a scalable sampling-based inference algorithm 31 

using a latent variable representation of the Poisson distribution. With simulations, 32 

we show that our method properly controls for type I error and is generally more 33 

powerful than other widely used approaches, except in small samples (n<15) with 34 

other unfavorable properties (e.g., small effect sizes). We also apply our method 35 

to three real data sets that contain related individuals, population stratification, or 36 

hidden confounders. Our results show that our method increases power in all 37 

three data compared to other approaches, though the power gain is smallest in 38 

the smallest sample (n=6). Our method is implemented in MACAU, freely 39 

available at www.xzlab.org/software.html. 40 

  41 
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Introduction 42 

RNA sequencing (RNAseq) has emerged as a powerful tool for transcriptome 43 

analysis, thanks to its many advantages over previous microarray techniques (1-44 

3). Compared with microarrays, RNAseq has increased dynamic range, does not 45 

rely on a priori-chosen probes, and can thus identify previously unknown 46 

transcripts and isoforms. It also yields allelic-specific expression estimates and 47 

genotype information inside expressed transcripts as a useful by-product (4-7). 48 

Because of these desirable features, RNAseq has been widely applied in many 49 

areas of genomics and is currently the gold standard method for genome-wide 50 

gene expression profiling.  51 

One of the most common analyses of RNAseq data involves identification of 52 

differentially expressed (DE) genes. Identifying DE genes that are influenced by 53 

predictors of interest -- such as disease status, risk factors, environmental 54 

covariates, or genotype -- is an important first step towards understanding the 55 

molecular basis of disease susceptibility as well as the genetic and 56 

environmental basis of gene expression variation. Progress towards this goal 57 

requires statistical methods that can handle the complexities of the increasingly 58 

large and structurally complex RNAseq data sets that are now being collected 59 

from population and family studies (8,9). Indeed, even in classical treatment-60 

control comparisons, the importance of larger sample sizes for maximizing power 61 

and reproducibility is increasingly well appreciated (10,11). However, identifying 62 

DE genes from such studies presents several key statistical and computational 63 

challenges, including accounting for ambiguously mapped reads (12), modeling 64 

uneven distribution of reads inside a transcript (13), and inferring transcript 65 

isoforms (14).  66 

A fundamental challenge shared by all DE analyses in RNAseq, though, is 67 

accounting for the count nature of the data (3,15,16). In most RNAseq studies, 68 

the number of reads mapped to a given gene or isoform (following appropriate 69 

data processing and normalization) is often used as a simple and intuitive 70 

estimate of its expression level (13,14,17). As a result, RNAseq data display an 71 

appreciable dependence between the mean and variance of estimated gene 72 

expression levels: highly expressed genes tend to have high read counts and 73 

subsequently high between-sample variance, and vice versa (15,18). To account 74 

for the count nature of the data and the resulting mean-variance dependence, 75 

most statistical methods for DE analysis model RNAseq data using discrete 76 
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distributions. For example, early studies showed that gene expression variation 77 

across technical replicates can be accurately described by a Poisson distribution 78 

(19-21). More recent methods also take into account over-dispersion across 79 

biological replicates (22,23) by replacing Poisson models with negative binomial 80 

models (15,16,24-28) or other related approaches (18,29-32). While non-count 81 

based methods are also commonly used (primarily relying on transformation of 82 

the count data to more flexible, continuous distributions (33,34)), recent 83 

comparisons have highlighted the benefits of modeling RNAseq data using the 84 

original counts and accounting for the resulting mean-variance dependence (35-85 

38), consistent with observations from many count data analyses in other 86 

statistical settings (39). Indeed, accurate modeling of mean-variance 87 

dependence is one of the keys to enable powerful DE analysis with RNAseq, 88 

especially in the presence of large sequencing depth variation across samples 89 

(25,33,40). 90 

A second important feature of many RNAseq data sets, which has been largely 91 

overlooked in DE analysis thus far, is that samples often are not independent. 92 

Sample non-independence can result from individual relatedness, population 93 

stratification, or hidden confounding factors. For example, it is well known that 94 

gene expression levels are heritable. In humans, the narrow-sense heritability of 95 

gene expression levels averages from 15%-34% in peripheral blood (41-45) and 96 

is about 23% in adipose tissue (41), with a maximum heritability in both tissues 97 

as high as 90% (41,42). Similarly, in baboons, gene expression levels are about 98 

28% heritable in the peripheral blood (7). Some of these effects are attributable 99 

to nearby, putatively cis-acting genetic variants: indeed, recent studies have 100 

shown that the expression levels of almost all genes are influenced by cis-eQTLs 101 

and/or display allelic specific expression (ASE) (3,7,46-48). However, the 102 

majority of heritability is often explained by distal genetic variants (i.e., trans-103 

QTLs, which account for 63%-84% of heritability in humans (41) and baboons 104 

(7)). Because gene expression levels are heritable, they will covary with kinship 105 

or population structure. Besides kinship or population structure, hidden 106 

confounding factors, commonly encountered in sequencing studies (49-52), can 107 

also induce similarity in gene expression levels across many genes even when 108 

individuals are unrelated (53-57). Failure to account for this gene expression 109 

covariance due to sample non-independence could lead to spurious associations 110 

or reduced power to detect true DE effects. This phenomenon has been 111 

extensively documented in genome-wide association studies (9,58,59) and more 112 
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recently, in bisulfite sequencing studies (60), but is less explored in RNAseq 113 

studies. In particular, none of the currently available count-based methods for 114 

identifying DE genes in RNAseq can appropriately control for sample non-115 

independence. Consequently, even though count-based methods have been 116 

shown to be more powerful, recent RNAseq studies have turned to linear mixed 117 

models, which are specifically designed for quantitative traits, to deal with the 118 

confounding effects of kinship, population structure, or hidden confounders 119 

(7,42,61). 120 

Here, we present a Poisson mixed model (PMM) that can explicitly model both 121 

over-dispersed count data and sample non-independence in RNAseq data for 122 

effective DE analysis. To make our model scalable to large data sets, we also 123 

develop an accompanying efficient inference algorithm based on an auxiliary 124 

variable representation of the Poisson model (62-64) and recent advances in 125 

mixed model methods (9,59,65). We refer to the combination of the statistical 126 

method and the computational algorithm developed here as MACAU (Mixed 127 

model Association for Count data via data AUgmentation), which effectively 128 

extends our previous method of the same name on the simpler binomial model 129 

(60) to the more difficult Poisson model. MACAU works directly on RNAseq count 130 

data and introduces two random effects terms to both control for sample non-131 

independence and account for additional independent over-dispersion. As a 132 

result, MACAU properly controls for type I error in the presence of sample non-133 

independence and, in a variety of settings, is more powerful for identifying DE 134 

genes than other commonly used methods. We illustrate the benefits of MACAU 135 

with extensive simulations and real data applications to three RNAseq studies. 136 

137 
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Methods and Materials 138 

Methods for Comparison 139 

We compared the performance of seven different methods in the main text: (1) 140 

our Poisson mixed model implemented in the MACAU software package (60); (2) 141 

the linear model implemented in the lm function in R; (3) the linear mixed model 142 

implemented in the GEMMA software package (9,59,66); (4) the Poisson model 143 

implemented in the glm function in R; (5) the negative binomial model 144 

implemented in the glm.nb function in R; (6) edgeR implemented in the edgeR 145 

package in R (25); (7) DESeq2 implemented in the DESeq2 package in R (24). 146 

All methods were used with default settings. The performance of each method in 147 

simulations was evaluated using the area under the curve (AUC) function 148 

implemented in the pROC package in R (67), a widely used benchmark for 149 

RNAseq method comparisons (68).  150 

Both the linear model and the linear mixed model require quantitative phenotypes. 151 

Here, we considered six different transformations of count data to quantitative 152 

values, taking advantage of several methods proposed to normalize RNAseq 153 

data (e.g., (12-14,17,22,33,69) ): (1) quantile normalization (TRCQ), where we 154 

first divided the number of reads mapped to a given gene by the total number of 155 

read counts for each individual, and then for each gene, quantile normalized the 156 

resulting proportions across individuals to a standard normal distribution (7); (2) 157 

total read count normalization (TRC), where we divided the number of reads 158 

mapped to a given gene by the total number of read counts for each individual 159 

(i.e. CPM, counts per million; without further transformation to a standard normal 160 

within genes: (25)); (3) upper quantile normalization (UQ), where we divided the 161 

number of reads mapped to a given gene by the upper quantile (75-th percentile) 162 

of all genes for each individual (70); (4) relative log expression normalization 163 

(RLE) (15); (5) the trimmed mean of M-values (TMM) method (40) where we 164 

divided the number of reads mapped to a given gene by the normalization factor 165 

output from TMM; and (6) VOOM normalization (33). Simulations in a 166 

supplementary figure showed that TRCQ, VOOM and TRC worked better than 167 

the other three methods, with TRCQ showing a small advantage. Therefore, we 168 

report results using TRCQ throughout the text. 169 

 170 

Simulations 171 

To make our simulations as realistic as possible, we simulated the gene 172 

expression count data based on parameters inferred from a real baboon data set 173 

that contains 63 samples (see the next section for a detailed description of the 174 

data). We varied the sample size (n) in the simulations (n = 6, 10, 14, 63, 100, 175 

200, 500, 800, or 1000). For n = 63, we used the baboon relatedness matrix � 176 

(7). For sample simulations with n > 63, we constructed a new relatedness matrix 177 
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�  by filling in its off-diagonal elements with randomly drawn off-diagonal 178 

elements from the baboon relatedness matrix following (60). For sample 179 

simulations with n < 63, we constructed a new relatedness matrix � by randomly 180 

sub-sampling individuals from the baboon relatedness matrix. In cases where the 181 

resulting � was not positive definite, we used the nearPD function in R to find the 182 

closest positive definite matrix as the final �. In most cases, we simulated the 183 

total read count �� for each individual from a discrete uniform distribution with a 184 

minimum (=1,770,083) and a maximum (=9,675,989) total read count (i.e. 185 

summation of read counts across all genes) equal to the minimum and maximum 186 

total read counts from the baboon data. We scaled the total read counts to 187 

ensure that the coefficient of variation was small (CV = 0.3), moderate (CV = 0.6) 188 

or high (CV = 0.9) across individuals (i.e. ���� � �� � �� � ��	 
� �
��	 /�� ), and 189 

then discretized them. In the special case where CV = 0.3 and n = 63, we directly 190 

used the observed total read counts per individual � (��) from the baboon data 191 

(which has a CV = 0.33). 192 

We then repeatedly simulated a continuous predictor variable � from a standard 193 

normal distribution (without regard to the pedigree structure). We estimated the 194 

heritability of the continuous predictor using GEMMA, and retained �  if the 195 

heritability (���) estimate (with � 0.01 tolerance) was 0, 0.4 or 0.8, representing no, 196 

moderate and highly heritable predictors. Using this procedure, approximately 30 197 

percent of � values generated were retained, with different retention percentages 198 

for different heritability values. 199 

Based on the simulated sample size, total read counts and continuous predictor 200 

variable, we simulated gene expression values using the following procedure. 201 

For the expression of each gene in turn, we simulated the genetic random effects 202 

� from a multivariate normal distribution with covariance �. We simulated the 203 

environmental random effects � based on independent normal distributions. We 204 

scaled the two sets of random effects to ensure a fixed value of heritability 205 

(�� � ��	


��	
����

 0 or 0.3 or 0.6) and a fixed value of over-dispersion variance 206 

(  �� � ���	 � ���	 �  0.1, 0.25 or 0.4, close to the lower, median and upper 207 

quantiles of the over-dispersion variance inferred from the baboon data, 208 

respectively), where the function V(•) denotes the sample variance. We then 209 

generated the effect size � of the predictor variable on gene expression. The 210 

effect size was either 0 (for non-DE genes) or generated to explain a certain 211 

percentage of variance in log��	 (i.e. PVE � ���



���

���
; for DE genes). PVE values 212 

were 15%, 20%, 25%, 30% or 35% to represent different effect sizes. The 213 

predictor effects  �, genetic effects �, environmental effects �, and an intercept 214 

( � log ����
��

	  to ensure that the expected simulated count is 100) were then 215 

summed together to yield the latent variable log��	 � ! �  � � � � �. Note that 216 

�� does not include the contribution of  �, which in many cases represent non-217 
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genetic effects. Finally, the read counts were simulated based on a Poisson 218 

distribution with rate determined by the total read counts and the latent variable �, 219 

or "�~$%������	 for the �'th individual.  220 

With the above procedure, we first simulated data for n = 63, CV = 0.3, ��� = 0, 221 

PVE = 0.25, �� � 0.3 and  �� � 0.25. We then varied one parameter at a time to 222 

generate different scenarios for comparison. In each scenario, conditional on the 223 

sample size, total read counts, and continuous predictor variable, we performed 224 

10 simulation replicates, where “replication” is at the level described in the 225 

paragraph above. Each replicate consisted of 10,000 genes. For examining type 226 

I error control, all 10,000 genes were non-DE. For the power comparison, 1,000 227 

genes were DE while 9,000 were non-DE. 228 

 229 

RNAseq Data Sets 230 

We considered three published RNAseq data sets in this study, which include 231 

small (n<15), medium (15≤n≤100), and large (n>100) sample sizes (based on 232 

current RNAseq sample sizes in the literature). 233 

The first RNAseq data set was collected from blood samples of yellow baboons 234 

(7) from the Amboseli ecosystem of southern Kenya as part of the Amboseli 235 

Baboon Research Project (ABRP) (71). The data are publicly available on GEO 236 

with accession number GSE63788. Read counts were measured on 63 baboons 237 

and 12,018 genes after stringent quality control as in (7). As in (7), we computed 238 

pairwise relatedness values from previously collected microsatellite data (72,73) 239 

using the software COANCESTRY (74). The data contains related individuals: 16 240 

pairs of individuals have a kinship coefficient exceeding 1/8 and 48 pairs exceed 241 

1/16. We obtained sex information for each individual from GEO. Sex differences 242 

in health and survival are major topics of interest in medicine, epidemiology, and 243 

evolutionary biology (72,75). Therefore, we used this data set to identify sex-244 

related gene expression variation. In the analysis, we included the top 5 245 

expression PCs as covariates to control for potential batch effects following the 246 

original study (7). 247 

The second RNAseq data set was collected from skeletal muscle samples of 248 

Finnish individuals (61) as part of the FUSION project (76,77). The data are 249 

publicly available in dbGaP with accession code phs001068.v1.p1. Among the 250 

271 individuals in the original study, we selected 267 individuals who have both 251 

genotypes and gene expression measurements. Read counts were obtained on 252 

these 267 individuals and 21,753 genes following the same stringent quality 253 

control as in the FUSION study. For genotypes, we excluded SNPs with minor 254 

allele frequency (MAF) < 0.05 and Hardy-Weinberg equilibrium p-value < 10-6. 255 

We used the remaining 5,696,681 SNPs to compute the relatedness matrix using 256 

GEMMA. The data contains remotely related individuals (3 pairs of individuals 257 
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have a kinship coefficient exceeding 1/32 and 6 pairs exceed 1/64) and is 258 

stratified by the municipality from which samples were collected. Two predictors 259 

from the data were available to us: the oral glucose tolerance test (OGTT) which 260 

classifies n = 162 individuals as either T2D patient (n = 66) or normal glucose 261 

tolerance (NGT; i.e., control, n = 96); and a T2D-related quantitative trait -- 262 

fasting glucose levels (GL) -- measured on all n = 267 individuals. We used these 263 

data to identify genes whose expression level is associated with either T2D or GL. 264 

In the analysis, we included age, sex and batch labels as covariates following the 265 

original study (61).  266 

The third RNAseq data set was collected from lymphoblastoid cell lines (LCLs) 267 

derived from 69 unrelated Nigerian individuals (YRI) (3). The data are publicly 268 

available on GEO with accession number GSE19480. Following the original 269 

study (3), we aligned reads to the human reference genome (version hg19) using 270 

BWA (78). We counted the number of reads mapped to each gene on either 271 

autosomes or the X chromosome using Ensembl gene annotation information 272 

obtained from the UCSC genome browser. We then filtered out lowly expressed 273 

genes with zero counts in over 90% of individuals. In total, we obtained gene 274 

expression measurements on 13,319 genes. Sex is the only phenotype available 275 

in the data and we used sex as the predictor variable to identify sex-associated 276 

genes. To demonstrate the efficacy of MACAU in small samples, we randomly 277 

subsampled individuals from the data to create small data sets with either n = 6 278 

(3 males and 3 females) or n = 10 (5 males and 5 females), or n = 14 individuals 279 

(7 males and 7 females). For each sample size n, we performed 20 replicates of 280 

subsampling and we evaluated method performance by averaging across these 281 

replicates. In each replicate, following previous studies (53-57), we used the 282 

gene expression covariance matrix as  �  (i.e. � � &&�/' , where &  is the 283 

normalized gene expression matrix and p is the number of genes) and applied 284 

MACAU to identify sex-associated genes. Note that the gene expression 285 

covariance matrix � contains information on sample non-independence caused 286 

by hidden confounding factors (53-57), and by incorporating �, MACAU can be 287 

used to control for hidden confounding factors that are commonly observed in 288 

sequencing data sets (49-52).  289 

For each of these RNAseq data sets and each trait, we used a constrained 290 

permutation procedure to estimate the empirical false discovery rate (FDR) of a 291 

given analytical method. In the constrained permutation procedure, we permuted 292 

the predictor across individuals, estimated the heritability of the permuted 293 

predictor, and retained the permutation only if the permuted predictor had a 294 

heritability estimate (���) similar to the original predictor with ± 0.01 tolerance (for 295 

the original predictors: ��� � 0.0002 for sex in the baboon data; ��� � 0.0121 for 296 

T2D and ��� � 0.4023 for GL in the FUSION data; ��� are all close to zero with 297 

small variations depending on the sub-sample size in the YRI data). We then 298 

analyzed all genes using the permuted predictor. We repeated the constrained 299 
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permutation procedure and analysis 10 times, and combined the p-values from 300 

these 10 constrained permutations. We used this set of p-values as a null 301 

distribution from which to estimate the empirical false discovery rate (FDR) for 302 

any given p-value threshold (60). This constrained procedure thus differs from 303 

the usual unconstrained permutation procedure (every permutation retained) (79) 304 

in that it constrains the permuted predictor to have the same ��� as the original 305 

predictor. We chose to use the constrained permutation procedure here because 306 

the unconstrained procedure is invalid under the mixed model assumption: the 307 

subjects are not exchangeable in the presence of sample non-independence 308 

(individual relatedness, population structure, or hidden confounders) (79,80). To 309 

validate our constrained permutation procedure and test its effectiveness in 310 

estimating FDR, we performed a simulation with 1,000 DE genes and 9,000 non-311 

DE genes as described above. We considered three predictor variables � with 312 

different heritability: ��� � 0, ��� � 0.4, and ��� � 0.8. For each predictor variable 313 

and each p-value threshold, we computed the true FDR and then estimated the 314 

FDR based on either the constrained or unconstrained permutation procedures. 315 

The simulation results presented in a supplementary figure demonstrate that the 316 

constrained permutation procedure provides a much more accurate estimate of 317 

the true FDR while the unconstrained permutation procedure often under-318 

estimates the true FDR. Therefore, we applied the constrained permutation 319 

procedure for all real data analysis.  320 

Finally, we investigated whether the methods we compared were sensitive to 321 

outliers (31,81,82) in the first two data sets. To examine outlier sensitivity, we first 322 

identified genes with potential outliers using BBSeq (18). In total, we identified 8 323 

genes with potential outliers in the baboon data, 130 genes with potential outliers 324 

in the FUSION data (n = 267) and 43 genes with potential outliers in the subset 325 

of the FUSION data for which we had T2D diagnoses (n = 162). We counted the 326 

number of genes with potential outliers in the top 1,000 genes with strong DE 327 

association evidence. In the baboon data, 4 genes with potential outliers are in 328 

the top 1,000 genes with the strongest sex association determined by various 329 

methods: 2 of them by the negative binomial model, 3 of them by the Poisson 330 

model, but 0 of them by MACAU, linear model, or GEMMA. In the FUSION data, 331 

for T2D analysis, 9 genes with potential outliers are in the top 1,000 genes with 332 

the strongest T2D association determined by various methods: 1 by MACAU, 3 333 

by negative binomial, 6 by Poisson, 1 by linear, and 1 by GEMMA. For GL 334 

analysis, 15 genes with potential outliers are in the top 1,000 genes with the 335 

strongest GL association determined by various methods: 2 by MACAU, 7 by 336 

negative binomial, 9 by Poisson, 3 by linear, and 3 by GEMMA. All outliers are 337 

presented in supplementary figures. Therefore, the influence of outliers on DE 338 

analysis is small in the real data. 339 

  340 
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Results 341 

MACAU Overview 342 

Here, we provide a brief overview of the Poisson mixed model (PMM); more 343 

details are available in the Supplementary Material. To identify DE genes with 344 

RNAseq data, we examine one gene at a time. For each gene, we model the 345 

read counts with a Poisson distribution 346 

"�~$%������	, � � 1, 2, , , -, 
where for the �.th individual, "� is the number of reads mapped to the gene (or 347 

isoform); ��  is the total read counts for that individual summing read counts 348 

across all genes; and �� is an unknown Poisson rate parameter. We model the 349 

log-transformed rate �� as a linear combination of several parameters 350 

/%����	 � 0�
�1 � ��� � �� � �� , � � 1,2, , , -, 351 

� � ���, ��, , , ��	�~2���3, �����	, 
� � ���, ��, , , ��	�~2���3, ���1 � ��	4	, 

where 0� is a c-vector of covariates (including the intercept); 1 is a c-vector of 352 

corresponding coefficients; ��  represents the predictor variable of interest (e.g. 353 

experimental perturbation, sex, disease status, or genotype); �  is its coefficient; 354 

� is an n-vector of genetic effects; � is an n-vector of environmental effects; � is 355 

an n by n positive semi-definite matrix that models the covariance among 356 

individuals due to individual relatedness, population structure, or hidden 357 

confounders; 4  is an n by n identity matrix that models independent 358 

environmental variation; ����  is the genetic variance component; ���1 � ��	 is 359 

the environmental variance component; and 2��  denotes the multivariate 360 

normal distribution. In the above model, we assume that � is known and can be 361 

computed based on either pedigree, genotype, or the gene expression matrix (9). 362 

For pedigree/genotype data, when �  is standardized to have  56��	 -⁄ � 1 , 363 

�� 8 90,1: has the usual interpretation of heritability (9), where the 56�·	 denotes 364 

the trace of a matrix. Importantly, unlike several other DE methods (15,25), our 365 

model can deal with both continuous and discrete predictor variables. 366 

Both of the random effects terms �  and �  model over-dispersion, the extra 367 

variance not explained by a Poisson model. However, the two terms � and � 368 

model two different aspects of over-dispersion. Specifically, � models the fraction 369 

of the extra variance that is explained by sample non-independence while � 370 

models the fraction of the extra variance that is independent across samples. For 371 

example, let us consider a simple case in which all samples have the same 372 

sequencing depth (i.e. �� � �) and there is only one intercept term ! included as 373 

the covariate. In this case, the random effects term � models the independent 374 
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over-dispersion: without � , ��"	 � <�"	 =1 � <�"	>��� � 1?@  is still larger than 375 

the mean <�"	 � ������/�, with the difference between the two increasing with 376 

increasing ��. In a similar fashion, the random effects term � models the non-377 

independent over-dispersion by accounting for the sample covariance matrix �. 378 

By modeling both aspects of over-dispersion, our PMM effectively generalizes 379 

the commonly used negative binomial model -- which only models independent 380 

extra variance -- to account for sample non-independence. In addition, our PMM 381 

naturally extends the commonly used linear mixed model (LMM) (9,65,83) to 382 

modeling count data.  383 

Our goal here is to test the null hypothesis that gene expression levels are not 384 

associated with the predictor variable of interest, or A�: � � 0 . Testing this 385 

hypothesis requires estimating parameters in the PMM (as has previously been 386 

done in other settings (84,85), including for modeling uneven RNAseq read 387 

distribution inside transcripts (13); details in Supplementary Material). The PMM 388 

belongs to the generalized linear mixed model family, where parameter 389 

estimation is notoriously difficult because of the random effects and the resulting 390 

intractable n-dimensional integral in the likelihood. Standard estimation methods 391 

rely on numerical integration (86) or Laplace approximation (87,88), but neither 392 

strategy scales well with the increasing dimension of the integral, which in our 393 

case equals the sample size. As a consequence, standard approaches often 394 

produce biased estimates and overly narrow (i.e., anti-conservative) confidence 395 

intervals (89-95). To overcome the high-dimensionality of the integral, we instead 396 

develop a novel Markov Chain Monte Carlo (MCMC) algorithm, which, with 397 

enough iterations, can achieve high inference accuracy (96,97). We use MCMC 398 

to draw posterior samples but rely on the asymptotic normality of both the 399 

likelihood and the posterior distributions (98) to obtain the approximate maximum 400 

likelihood estimate �C� and its standard error se(�C�D ). With  �C� and se(�C�D ), we can 401 

construct approximate Wald test statistics and p-values for hypothesis testing 402 

(Supplementary Material). Although we use MCMC, our procedure is frequentist 403 

in nature.  404 

At the technical level, our MCMC algorithm is also novel, taking advantage of an 405 

auxiliary variable representation of the Poisson likelihood (62-64) and recent 406 

linear algebra innovations for fitting linear mixed models (9,59,65). Our MCMC 407 

algorithm introduces two continuous latent variables for each individual to replace 408 

the count observation, effectively extending our previous approach of using one 409 

latent variable for the simpler binomial distribution (60). Compared with a 410 

standard MCMC, our new MCMC algorithm reduces the computational 411 

complexity of each MCMC iteration from cubic to quadratic with respect to the 412 

sample size. Therefore, our method is orders of magnitude faster than the 413 

popular Bayesian software MCMCglmm (99) and can be used to analyze 414 

hundreds of samples and tens of thousands of genes with a single desktop PC 415 
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(Figure S1). Although our procedure is stochastic in nature, we find the MCMC 416 

errors are often small enough to ensure stable p-values across independent 417 

MCMC runs (Figure S2).  418 

  419 

Simulations: control for sample non-independence 420 

We performed a series of simulations to compare the performance of the PMM 421 

implemented in MACAU with four other commonly used methods: (1) a linear 422 

model; (2) the linear mixed model implemented in GEMMA (9,59); (3) a Poisson 423 

model; and (4) a negative binomial model. We used quantile-transformed data for 424 

linear model and GEMMA (see Methods and Materials for normalization details 425 

and a comparison between various transformations; Figure S3) and used raw 426 

count data for the other three methods. To make our simulations realistic, we use 427 

parameters inferred from a published RNAseq data set on a population of wild 428 

baboons (7,71) to perform simulations (Methods and Materials); this baboon data 429 

set contains known related individuals and hence invokes the problem of sample 430 

non-independence outlined above.  431 

Our first set of simulations was performed to evaluate the effectiveness of 432 

MACAU and the other four methods in controlling for sample non-independence. 433 

To do so, we simulated expression levels for 10,000 genes in 63 individuals (the 434 

sample size from the baboon data set). Simulated gene expression levels are 435 

influenced by both independent environmental effects and correlated genetic 436 

effects, where genetic effects are simulated based on the baboon kinship matrix 437 

(estimated from microsatellite data (7)) with either zero (�� � 0.0), moderate 438 

(�� � 0.3), or high (�� � 0.6) heritability values. We also simulated a continuous 439 

predictor variable x that is itself moderately heritable (��� � 0.4). Because we 440 

were interested in the behavior of the null in this set of simulations, gene 441 

expression levels were not affected by the predictor variable (i.e., no genes were 442 

truly DE).  443 

Figures 1, S4, and S5 show quantile-quantile plots for analyses using MACAU 444 

and the other four methods against the null (uniform) expectation, for �� � 0.6, 445 

�� � 0.3, and �� � 0.0 respectively. When genes are heritable and the predictor 446 

variable is also correlated with individual relatedness, then the resulting p-values 447 

from the DE analysis are expected to be uniform only for a method that properly 448 

controls for sample non-independence. If a method fails to control for sample 449 

non-independence, then the p-values would be inflated, resulting in false 450 

positives.  451 

Our results show that, because MACAU controls for sample non-independence, 452 

the p-values from MACAU follow the expected uniform distribution closely (and 453 

are slightly conservative) regardless of whether gene expression is moderately or 454 

highly heritable. The genomic control factors from MACAU are close to 1 455 
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(Figures 1 and S4). Even if we use a relatively relaxed q-value cutoff of 0.2 to 456 

identify DE genes, we do not incorrectly identify any genes as DE with MACAU. 457 

In contrast, the p-values from negative binomial are inflated and skewed towards 458 

low (significant) values, especially for gene expression levels with high heritability. 459 

With negative binomial, 27 DE genes (when �� � 0.3) or 21 DE genes (when 460 

�� � 0.6) are erroneously detected at the q-value cutoff of 0.2. The inflation of p-461 

values is even more acute in Poisson, presumably because the Poisson model 462 

accounts for neither individual relatedness nor over-dispersion. For non-count-463 

based models, the p-values from a linear model are slightly skewed towards 464 

significant values, with 3 DE genes (when �� � 0.3 ) and 1 DE gene (when 465 

�� � 0.6) erroneously detected at q < 0.2. In contrast, because the LMM in 466 

GEMMA also accounts for individual relatedness, it controls for sample non-467 

independence well. Finally, when genes are not heritable, all methods except 468 

Poisson correctly control type I error (Figure S5).  469 

Two important factors influence the severity of sample non-independence in 470 

RNAseq data (Figure 2). First, the inflation of p-values in the negative binomial, 471 

Poisson and linear models becomes more acute with increasing sample size. In 472 

particular, when ��� � 0.4, with a sample size of - � 1,000, �	�  from the negative 473 

binomial, Poisson and linear models reaches 1.71, 82.28, and 1.41, respectively. 474 

In contrast, even when - � 1,000, �	�  from both MACAU and GEMMA remain 475 

close to 1 (0.97 and 1.01, respectively). Second, the inflation of p-values in the 476 

three models also becomes more acute when the predictor variable is more 477 

correlated with population structure. Thus, for a highly heritable predictor variable 478 

(��� � 0.8), �	�  (when - � 1,000) from the negative binomial, Poisson and linear 479 

models increases to 2.13, 101.43, and 1.81, respectively, whereas �	�  from 480 

MACAU and GEMMA remains close to 1 (1.02 and 1.05).  481 

We also compared MACAU with edgeR (25) and DESeq2 (15), two commonly 482 

used methods for DE analysis (38,100). Because edgeR and DESeq2 were 483 

designed for discrete predictor valuables, we discretized the continuous predictor 484 

�  into 0/1 based on the median predictor value across individuals. We then 485 

applied all methods to the same binarized predictor values for comparison. 486 

Results are shown in Figure S6. For the five methods compared above, the 487 

results on binarized values are comparable with those for continuous variables 488 

(i.e. Figure S6 vs Figure 1). Both edgeR and DESeq2 produce anticonservative 489 

p-values and perform similarly to the negative binomial model in terms of type I 490 

error control.  491 

Finally, we explored the use of principal components (PCs) from the gene 492 

expression matrix or the genotype matrix to control for sample non-independence. 493 

Genotype PCs have been used as covariates to control for population 494 

stratification in association studies (101). However, recent comparative studies 495 

have shown that using PCs is less effective than using linear mixed models 496 
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(83,102). Consistent with the poorer performance of PCs in association studies 497 

(83,102), using the top PCs from either the gene expression matrix or the 498 

genotype matrix does not improve type I error control for negative binomial, 499 

Poisson, linear, edgeR or DESeq2 approaches (Figures S7 and S8).  500 

 501 

Simulations: power to identify DE genes 502 

Our second set of simulations was designed to compare the power of different 503 

methods for identifying DE genes, again based on parameters inferred from real 504 

data. This time, we simulated a total of 10,000 genes, among which 1,000 genes 505 

were truly DE and 9,000 were non-DE. For the DE genes, simulated effect sizes 506 

corresponded to a fixed proportion of variance explained (PVE) in gene 507 

expression levels that ranged from 15% to 35%. For each set of parameters, we 508 

performed 10 replicate simulations and measured model performance based on 509 

the area under the curve (AUC) (as in (35,68,103)). We also examined several 510 

key factors that could influence the relative performance of the alternative 511 

methods: (1) gene expression heritability ( �� ); (2) correlation between the 512 

predictor variable � and genetic relatedness (measured by the heritability of �, or 513 

��� ); (3) variation of the total read counts across samples (measured by the 514 

coefficient of variation, or CV); (4) the over-dispersion parameter (��); (5) the 515 

effect size (PVE); and (6) sample size (n). To do so, we first performed 516 

simulations using a default set of values (�� � 0.3, ��� = 0, CV = 0.3,  �� � 0.25, 517 

PVE = 0.25, and n = 63) and then varied them one at a time to examine the 518 

influence of each factor on the relative performance of each method.  519 

Our results show that MACAU works either as well as or better than other 520 

methods in almost all settings (Figures 3, S9-S14), probably because it both 521 

models count data directly and controls for sample non-independence. In 522 

contrast, the Poisson approach consistently fared the worst across all simulation 523 

scenarios, presumably because it fails to account for any sources of over-524 

dispersion (Figures 3, S9-S14).  525 

Among the factors that influence the relative rank of various methods, the most 526 

important factor was heritability  ���	  (Figure 3A). While all methods perform 527 

worse with increasing gene expression heritability, heritability disproportionately 528 

affects the performance of models that do not account for relatedness (i.e., 529 

negative binomial, Poisson and Linear), whereas when heritability is zero (�� �530 

0), these approaches tend to perform slightly better. Therefore, for non-heritable 531 

genes, linear models perform slightly better than GEMMA, and negative binomial 532 

models work similarly or slightly better than MACAU. This observation most likely 533 

arises because linear and negative binomial models require fewer parameters 534 

and thus have a greater number of degrees of freedom. However, even in this 535 

setting, the difference between MACAU and negative binomial is small, 536 
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suggesting that MACAU is robust to model misspecification and works 537 

reasonably well even for non-heritable genes. On the other hand, when 538 

heritability is moderate (�� � 0.3) or high (�� � 0.6), the methods that account for 539 

sample non-independence are much more powerful than the methods that do not. 540 

Because almost all genes are influenced by cis-eQTLs (47,48) and are thus likely 541 

heritable to some extent, MACAU’s robustness for non-heritable genes and its 542 

high performance gain for heritable genes make it appealing.  543 

The second most important factor in relative model performance was the 544 

variation of total read counts across individuals (CV; Figure 3B). While all 545 

methods perform worse with increasing CV, CV particularly affects the 546 

performance of GEMMA. Specifically, when CV is small (0.3; as the baboon 547 

data), GEMMA works well and is the second best method behind MACAU. 548 

However, when CV is moderate (0.6) or high (0.9), the performance of GEMMA 549 

quickly decays: it becomes only the fourth best method when CV = 0.9. GEMMA 550 

performs poorly in high CV settings presumably because the linear mixed model 551 

fails to account for the mean-variance dependence observed in count data, which 552 

is in agreement with previous findings (60,104).   553 

The other four factors we explored had small impacts on the relative performance 554 

of the alternative methods, although they did affect their absolute performance. 555 

For example, as one would expect, power increases with large effect sizes (PVE) 556 

(Figure S9) or large sample sizes (Figure S10), and decreases with large over-557 

dispersion �� (Figure S11) or large ��� (Figure S12).  558 

Finally, we included comparisons with edgeR (25) and DESeq2 (15). In the basic 559 

parameter simulation setting (n = 63, CV = 0.3, ��� = 0, PVE = 0.25, �� � 0.3 and 560 

 �� � 0.25), we again discretized the continuous predictor �  into a binary 0/1 561 

variable based on the median predictor value across individuals. Results for all 562 

methods are shown in Figure S13A. For the five methods also tested on a 563 

continuous predictor variable, the power on binarized values is much reduced 564 

compared with the power when the predictor variable is modeled without 565 

binarization (e.g. Figure S13A vs Figure 3). Further, neither edgeR nor DESeq2 566 

perform well, consistent with the recent move from these methods towards linear 567 

models in differential expression analysis (3,7,46-48,105). This result is not 568 

contingent on having large sample sizes. In small sample size settings (n=6, 569 

n=10, and n=14, with samples balanced between the two classes, 0 or 1), 570 

MACAU again outperforms the other methods, though the power difference is 571 

much smaller (n=10 and n=14; Figures S13C and S31D) and sometimes 572 

negligible (n=6, Figure S13B).  573 

In summary, the power of MACAU and other methods, as well as the power 574 

difference between methods, is influenced in a continuous fashion by multiple 575 

factors. Larger sample sizes, larger effect sizes, lower read depth variation, lower 576 

gene expression heritability, lower predictor variable heritability, and lower over-577 
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dispersion all increase power. However, MACAU’s power is less diminished by 578 

high gene expression heritability and high read depth variability than the non-579 

mixed model methods, while retaining the advantage of modeling the count data 580 

directly. In challenging data analysis settings (e.g., when sample size is low and 581 

effect size is low: Figure S13B for n=6), no method stands out, and using 582 

MACAU results in no or negligible gains in power relative to other methods. 583 

When the sample size is low (n=6) and effect sizes are large, however, MACAU 584 

consistently outperforms the other methods (n=6, Figure S14).   585 

 586 

Real Data Applications  587 

To gain insight beyond simulation, we applied MACAU and the other six methods 588 

to three recently published RNAseq data sets.  589 

The first data set we considered is the baboon RNAseq study (7) used to 590 

parameterize the simulations above. Expression measurements on 12,018 blood-591 

expressed genes were collected by the Amboseli Baboon Research Project 592 

(ABRP) (71) for 63 adult baboons (26 females and 37 males), among which 593 

some were relatives. Here, we applied MACAU and the six other methods to 594 

identify genes with sex-biased expression patterns. Sex-associated genes are 595 

known to be enriched on sex chromosomes (106,107), and we use this 596 

enrichment as one of the criteria to compare method performance, as in (18). 597 

Because the same nominal p-value from different methods may correspond to 598 

different type I errors, we compared methods based on empirical false discovery 599 

rate (FDR). In particular, we permuted the data to construct an empirical null, 600 

estimated the FDR at any given p-value threshold, and counted the number of 601 

discoveries at a given FDR cutoff (see Methods and Materials for permutation 602 

details and a comparison between two different permutation procedures; Figure 603 

S15).  604 

In agreement with our simulations, MACAU was the most powerful method of 605 

those we considered. Specifically, at an empirical FDR of 5%, MACAU identified 606 

105 genes with sex-biased expression patterns, 40% more than that identified by 607 

the linear model, the second best method at this FDR cutoff (Figure 4A). At a 608 

more relaxed FDR of 10%, MACAU identified 234 sex-associated genes, 47% 609 

more than that identified by the negative binomial model, the second best 610 

method at this FDR cutoff (Figure 4A). Further, as expected, the sex-associated 611 

genes detected by MACAU are enriched on the X chromosome (the Y 612 

chromosome is not assembled in baboons and is thus ignored), and this 613 

enrichment is stronger for the genes identified by MACAU than by the other 614 

methods (Figure 4B). Of the remaining approaches, the negative binomial, linear 615 

model, and GEMMA all performed similarly and are ranked right after MACAU. 616 
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The Poisson model performs the worst, and edgeR and DESeq2 fall between the 617 

Poisson model and the other methods (Figures 4A and 4B). 618 

The second data set we considered is an RNAseq study on type II diabetes (T2D) 619 

collected as part of the Finland-United States Investigation of NIDDM Genetics 620 

(FUSION) Study (61). Here, the data were collected from skeletal muscle 621 

samples from 267 individuals with expression measurements on 21,753 genes. 622 

Individuals are from three municipalities (Helsinki, Savitaipale, and Kuopio) in 623 

Finland. Individuals within each municipality are more closely related than 624 

individuals between municipalities (e.g., the top genotype principal components 625 

generally correspond to the three municipalities; Figure S16). Two related 626 

phenotypes were available to us: 162 individuals with T2D or NGT (normal 627 

glucose tolerance) status (i.e., case/control) based on the oral glucose tolerance 628 

test (OGTT) and 267 individuals with the quantitative trait fasting glucose level 629 

(GL), a biologically relevant trait of T2D. 630 

We performed analyses to identify genes associated with T2D status as well as 631 

genes associated with GL. To accommodate edgeR and DESeq2, we also 632 

discretized the continuous GL values into binary 0/1 categories based on the 633 

median GL value across individuals. We refer to the resulting values as GL01. 634 

Therefore, we performed two sets of analyses for GL: one on the continuous GL 635 

values and the other on the discretized GL01 values. Consistent with simulations 636 

and the baboon data analysis, MACAU identified more T2D-associated genes 637 

and GL-associated genes than other methods across a range of empirical FDR 638 

values. For the T2D analysis, MACAU identified 23 T2D-associated genes at an 639 

FDR of 5%, while GEMMA and the linear model, the second best methods at this 640 

FDR cutoff, identified only 1 T2D-associated gene (Figure 4C). Similarly, at an 641 

FDR of 10%, MACAU identified 123 T2D-associated genes, 51% more than that 642 

identified by the linear model, the second best method at this FDR cutoff (Figure 643 

4C). For GL analysis, based on an FDR of 5%, MACAU detected 12 DE genes, 644 

while the other methods did not identify any DE genes at this FDR cutoff. At an 645 

FDR of 10%, MACAU identified 100 GL associated genes, while the second best 646 

methods -- the linear model and GEMMA -- identified 12 DE genes (Figure 4E). 647 

For the dichotomized GL01, none of the methods detected any DE genes even at 648 

a relaxed FDR cutoff of 20%, highlighting the importance of modeling the original 649 

continuous predictor variable in DE analysis.  650 

Several lines of evidence support the biological validity of the genes detected by 651 

MACAU. First, we performed Gene Ontology (GO) analysis using LRpath (108) 652 

on T2D and GL associated genes identified by MACAU, as in the FUSION study 653 

(61) (Figure S17). The GO analysis results for T2D and GL are consistent with 654 

previous studies (61,109) and are also similar to each other, as expected given 655 

the biological relationship between the two traits. In particular, T2D status and 656 

high GL are associated with decreased expression of cellular respiratory pathway 657 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/073403doi: bioRxiv preprint 

https://doi.org/10.1101/073403
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes, consistent with previous observations (61,109). T2D status and GL are 658 

also associated with several pathways that are related to mTOR, including 659 

generation of precursor metabolites, poly-ubiquitination and vesicle trafficking, in 660 

agreement with a prominent role of mTOR pathway in T2D etiology (110-113).  661 

Second, we performed overlap analyses between T2D and GL associated genes. 662 

We reasoned that T2D-associated genes are likely associated with GL because 663 

T2D shares a common genetic basis with GL (114-116) and T2D status is 664 

determined in part by fasting glucose levels. Therefore, we used the overlap 665 

between genes associated with T2D and genes associated with GL as a 666 

measure of method performance. In the overlap analysis, genes with the 667 

strongest T2D association identified by MACAU show a larger overlap with the 668 

top 1,000 genes that have the strongest GL association than did genes identified 669 

by other methods (Figure 4D). For instance, among the top 100 genes with the 670 

strongest T2D-association evidence from MACAU, 63 of them also show strong 671 

association evidence with GL. In contrast, only 55 of the top 100 genes with the 672 

strongest T2D-association identified by GEMMA, the second best method, show 673 

strong association evidence with GL. We observed similar results, with MACAU 674 

performing the best, when performing the reciprocal analysis (overlap between 675 

genes with the strongest GL-association and the top 1,000 genes that have the 676 

strongest T2D-association: Figure 4F). To include the comparison with edgeR 677 

and DESeq2, we further examined the overlap between T2D associated genes 678 

and GL01 associated genes for all methods (Figure S18). Again, MACAU 679 

performs the best, followed by GEMMA and the linear model, and neither edgeR 680 

nor DESeq2 perform well in this context (Figure S18). Therefore, MACAU 681 

appears to both confer more power to identify biologically relevant DE genes and 682 

be more consistent across analyses of related phenotypes.  683 

To assess the type I error rate of various methods, we permuted the trait data 684 

from the baboon and the FUSION studies. Consistent with our simulation results, 685 

the p-values from MACAU and GEMMA under the permuted null were close to 686 

uniformly distributed (slightly conservative) in both data sets, whereas the other 687 

methods were not (Figures S19 and S20). In addition, none of the methods 688 

compared here are sensitive to outliers in the two data sets (Figures S21-S23).  689 

Finally, although large, population-based RNAseq data sets are becoming more 690 

common, MACAU’s flexible PMM modeling framework allows it to be applied to 691 

DE analysis in small data sets with unrelated individuals as well. In this setting, 692 

MACAU can use the gene expression covariance matrix as the  �  matrix to 693 

control for hidden confounding effects that are commonly observed in 694 

sequencing studies (49-52). Hidden confounders can induce similarity in gene 695 

expression levels across many genes even though individuals are unrelated (53-696 

57), similar to the effects of kinship or population structure. Therefore, by 697 

defining  �  using a gene expression (instead of genetic) covariance matrix, 698 
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MACAU can effectively control for sample non-independence induced by hidden 699 

confounders, thus extending the linear mixed model widely used to control for 700 

hidden confounders in array based studies (53-57) to sequencing count data. 701 

To illustrate this application, we analyzed a third data set on lymphoblastoid cell 702 

lines (LCLs) derived from 69 unrelated Nigerian individuals (YRI) (3) from the 703 

HapMap project (117), with expression measurements on 13,319 genes. We also 704 

aimed to identify sex-associated genes in this data set. To demonstrate the 705 

effectiveness of MACAU in small samples, we randomly subsampled individuals 706 

from the data to create small data sets with either n = 6 (3 males and 3 females), 707 

n = 10 (5 males and 5 females), or n = 14 individuals (7 males and 7 females). 708 

For each sample size n, we performed 20 replicates of random subsampling and 709 

then evaluated method performance by averaging across replicates. In each 710 

replicate, we used the gene expression covariance matrix as � and compared 711 

MACAU’s performance against other methods. Because of the small sample size, 712 

none of the methods were able to identify DE genes at an FDR cutoff of 10%, 713 

consistent with recent arguments that at least 6-12 biological replicates are 714 

needed to ensure sufficient power and replicability in DE analysis (11). We 715 

therefore used enrichment of genes on the sex chromosomes to compare the 716 

performance of different methods (Figure S24). The enrichment of top ranked 717 

sex-associated genes on sex chromosomes has previously been used for 718 

method comparison and is especially suitable for comparing methods in the 719 

presence of batch effects and other hidden confounding factors (118).  720 

In this comparison, MACAU performs the best of all methods when the sample 721 

size is either n = 10 or n = 14, and is ranked among the best (together with the 722 

negative binomial model) when n = 6. For instance, when n = 6, among the top 723 

50 genes identified by each method, the number of genes on the sex 724 

chromosomes for MACAU, negative binomial, Poisson, edgeR, DESeq2, 725 

GEMMA, and Linear are 3.3, 2.7, 3.1, 1.8, 3.0, 2.0, and 2.4, respectively. The 726 

advantage of MACAU becomes larger when the sample size increases: for 727 

example, when n = 14, an average of 10.6 genes in the top 50 genes from 728 

MACAU are on the sex chromosomes, which is again larger than that from the 729 

negative binomial (8.3), Poisson (6.0), edgeR (6.65), DESeq2 (8.8), GEMMA 730 

(9.8), or Linear (8.05). These results suggest that MACAU can also perform 731 

better than existing methods in relatively small sample study designs with 732 

unrelated individuals by controlling for hidden confounders. However, MACAU’s 733 

power gain is much smaller in this setting than in the first two data sets we 734 

considered (the baboon and Fusion data). In addition, MACAU’s power gain is 735 

negligible in the case of n=6 when compared with the second best method, 736 

though its power gain over the commonly used edgeR and DESeq2 is still 737 

substantial. MACAU’s small power gain in this data presumably stems from both 738 

the small sample size and the small effect size of sex in the data, consistent with 739 

previous reports for blood cell-derived gene expression (3,7,119). 740 
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Discussion 743 

Here, we present an effective Poisson mixed effects model, together with a 744 

computationally efficient inference method and software implementation in 745 

MACAU, for identifying DE genes in RNAseq studies. MACAU directly models 746 

count data and, using two random effects terms, controls for both independent 747 

over-dispersion and sample non-independence. Because of its flexible modeling 748 

framework, MACAU controls for type I error in the presence of individual 749 

relatedness, population structure, and hidden confounders, and MACAU 750 

achieves higher power than several other methods for DE analysis across a 751 

range of settings. In addition, MACAU can easily accommodate continuous 752 

predictor variables and biological or technical covariates. We have demonstrated 753 

the benefits of MACAU using both simulations and applications to three recently 754 

published RNAseq data sets. 755 

MACAU is particularly well-suited to data sets that contain related individuals or 756 

population structure. Several major population genomic resources contain 757 

structure of these kinds. For example, the HapMap population (117), the Human 758 

Genome Diversity Panel (120), the 1000 Genomes Project in humans (121) as 759 

well as the 1001 Genomes Project in Arabidopsis (122) all contain data from 760 

multiple populations or related individuals. Several recent large-scale RNAseq 761 

projects also collected individuals from genetically differentiated populations (46). 762 

MACAU is also well-suited to analyzing genes with moderate to high heritability. 763 

Previous studies in humans have shown that, while heritability varies across 764 

genes, many genes are moderately or highly heritable, and almost all genes 765 

have detectable eQTL (47,123). Analyzing these data with MACAU can reduce 766 

false positives and increase power. Notably, even when genes exhibit zero 767 

heritability, our results show that MACAU incurs minimal loss of power compared 768 

with other approaches.  769 

While we have mainly focused on illustrating the benefits of MACAU for 770 

controlling for individual relatedness and population stratification, we note that 771 

MACAU can be used to control for sample non-independence occurred in other 772 

settings. For example, cell type heterogeneity (55) or other hidden confounding 773 

factors (53) are commonly observed in sequencing studies and can induce gene 774 

expression similarity even when individuals are unrelated (49-52). Because the 775 

gene expression covariance matrix �  contains information on sample non-776 

independence caused by hidden confounding factors (53-57), MACAU could be 777 

applied to control for hidden confounding effects by using the gene expression 778 

covariance as the � matrix. Therefore, MACAU provides a natural avenue for 779 

extending the commonly used mixed effects model for controlling for hidden 780 

confounding effects (53-56) in array-based studies to sequencing studies. In 781 

addition, although we have designed MACAU for differential expression analysis, 782 

we note that MACAU may also be effective in other common settings. For 783 
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example, MACAU could be readily applied in QTL mapping studies to identify 784 

genetic variants that are associated with gene expression levels estimated using 785 

RNAseq or related high-throughput sequencing methods.  786 

In the present study, we have focused on demonstrating the performance of 787 

MACAU in three published RNAseq data sets with sample sizes ranging from 788 

small (n=6) to medium (n=63) to large (n=267), relative to the size of most 789 

current RNAseq studies. Compared with small sample studies, RNAseq studies 790 

with medium or large sample sizes are better powered and more reproducible, 791 

and are thus becoming increasingly common in genomics (10,11). For example, 792 

a recent comparative study makes explicit calls for medium to large sample 793 

RNAseq studies performed with at least 12 replicates per condition (i.e. n>=24) 794 

(11). However, we recognize that many RNAseq studies are still carried out with 795 

a small number of samples (e.g. 3 replicates per condition). As our simulations 796 

make clear, the power of all analysis methods is dramatically reduced with 797 

decreasing sample size, conditional on fixed values of other factors that influence 798 

power (e.g., effect size, gene expression heritability). Thus, MACAU’s advantage 799 

is no longer obvious in simulated data with only 3 replicates per condition when 800 

the effect size is also small (although its advantage becomes apparent when the 801 

simulated effect size increases: Figures S13B and S14). In addition, MACAU’s 802 

advantage is much smaller and sometimes negligible in the small real data set 803 

when compared with the medium and large data sets analyzed here. 804 

Furthermore, because MACAU requires estimating one more parameter than 805 

other existing methods, MACAU requires at least five samples to run while 806 

existing DE methods require at least four. Therefore, MACAU may not confer 807 

benefits to power in some settings, and is especially likely (like all methods) to be 808 

underpowered in very small sample sizes with small effect sizes. Future 809 

extensions of MACAU are likely needed to ensure its robust performance in small 810 

as well as moderate to large samples. For example, further power improvements 811 

could be achieved by borrowing information across genes to estimate the over-812 

dispersion parameter (15,22,25) or building in a hierarchical structure to model 813 

many genes at once.  814 

Like other DE methods (24,25), MACAU requires data pre-processing to obtain 815 

gene expression measurements from raw sequencing read files. This data pre-816 

processing step may include read alignment, transcript assembly, alternative 817 

transcript quantification, transcript measurement, and normalization. Many 818 

methods are available to perform these tasks (12,14,68,124-129) and different 819 

methods can be differentially advantageous across settings (68,124,130). 820 

Importantly, MACAU can be paired with any pre-processing method that retains 821 

the count nature of the data. While we provide a preliminary comparison of 822 

several methods here (see Materials and Methods; Figure S3), a full analysis of 823 

how different data pre-processing choices affect MACAU’s performance in 824 

alternative study designs is beyond the scope of this paper. Notably, recent 825 
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results suggest that a recommended approach is to incorporate data pre-826 

processing and DE analysis into the same, joint statistical framework (131), 827 

which represents an important next step for the MACAU software package.  828 

We note that, like many other DE methods (15,25), we did not model gene length 829 

in MACAU. Because gene length does not change from sample to sample, it 830 

does not affect differential expression analysis on any particular gene (15,25). 831 

However, gene length will affect the power of DE analysis across different genes: 832 

genes with longer length tend to have a larger number of mapped reads and 833 

more accurate expression measurements, and as a consequence, DE analysis 834 

on these genes tends to have higher statistical power (2,70,132). Gene length 835 

may also introduce sample-specific effects in certain data sets (133). Therefore, 836 

understanding the impact of, and taking into account gene length effects, in 837 

MACAU DE analysis represents another possible future extension.  838 

Currently, despite the newly developed computationally efficient algorithm, 839 

applications of MACAU can still be limited by its relatively heavy computational 840 

cost. The MCMC algorithm in MACAU scales quadratically with the number of 841 

individuals/samples and linearly with the number of genes. Although MACAU is 842 

two orders of magnitude faster than the standard software MCMCglmm for fitting 843 

Poisson mixed effects models (Table S1), it can still take close to 20 hours to 844 

analyze a data set of the size of the FUSION data we considered here (267 845 

individuals and 21,753 genes). Therefore, new algorithms will be needed to use 846 

MACAU for data sets that are orders of magnitude larger.   847 
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Table 1. Current approaches for identifying differentially expressed genes 1230 

in RNAseq. 1231 

Statistical 
method 

Directly 
models 
counts? 

Controls for 
biological 

covariates? 

Controls for 
sample non-

independence? 

Example software 
that implements the 

method 
Linear 

regression 
No Yes No R and many others 

Linear mixed 
model 

No Yes Yes GEMMA (9) and 
EMMA (134)  

Poisson model Yes Some 
methods do 

No GLMP (135) and 
DEGseq (20) 

Negative 
binomial model 

Yes Some 
methods do 

No edgeR (25), DESeq 
(15) and GLMNB(135) 

Poisson mixed 
model 

Yes Yes Yes MACAU 
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Figure 1. QQ-plots comparing expected and observed p-value distributions 1234 

generated by different methods for the null simulations in the presence of 1235 

sample non-independence. In each case, 10,000 non-DE genes were 1236 

simulated with n = 63, CV = 0.3, �� = 0.25, �� = 0.6 and ��� = 0.4. Methods for 1237 

comparison include MACAU (A), Negative binomial (B), Poisson (C), GEMMA 1238 

(D), and Linear (E). Both MACAU and GEMMA properly control for type I error 1239 

well in the presence of sample non-independence. ���  is the genomic control 1240 

factor. 1241 
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Figure 2. Comparison of the genomic control factor ���   from different 1244 

methods for the null simulations in the presence of sample non-1245 

independence. 10,000 null genes were simulated with CV = 0.3, �� = 0.25, �� = 1246 

0.6, and (A) ��
�

� 0 ; (B) ��
�

� 0.4 ; or (C) ��
�

� 0.8 . ���  (y-axis) changes with 1247 

sample size n (x-axis). Methods for comparison were MACAU (red), Negative 1248 

binomial (purple), GEMMA (blue), and Linear (cyan). Both MACAU and GEMMA 1249 

provide calibrated test statistics in the presence of sample non-independence 1250 

across a range of settings. ��� from Poisson exceeds 10 in all settings and is 1251 

thus not shown.  1252 
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Figure 3. MACAU exhibits increased power to detect true positive DE genes 1255 

across a range of simulation settings. Area under the curve (AUC) is shown 1256 

as a measure of performance for MACAU (red), Negative binomial (purple), 1257 

Poisson (green), GEMMA (blue), and Linear (cyan). Each simulation setting 1258 

consists of 10 simulation replicates, and each replicate includes 10,000 1259 

simulated genes, with 1,000 DE and 9,000 non-DE. We used n = 63, ��
� = 0.0, 1260 

PVE = 0.25, �� = 0.25. In (A) we increased �� while maintaining CV = 0.3 and in 1261 

(B) we increased CV while maintaining �
�  = 0.3. Boxplots of AUC across 1262 

replicates for different methods show that (A) heritability (  �
� ) influences the 1263 

relative performance of the methods that account for sample non-independence 1264 

(MACAU and GEMMA) compared to the methods that do not (negative binomial, 1265 

Poisson, linear); (B) variation in total read counts across individuals, measured 1266 

by the coefficient of variation (CV), influences the relative performance of 1267 

GEMMA and negative binomial. Insets in the two figures show the rank of 1268 

different methods, where the top row represents the highest rank. 1269 
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Figure 4. MACAU identifies more differentially expressed genes than other 1272 

methods in the baboon (panels A and B) and FUSION (panels C, D, E, and F) 1273 

data sets. Methods for comparison include MACAU (red), Negative binomial 1274 

(purple), Poisson (green), edgeR (magenta), DESeq2 (rosybrown), GEMMA 1275 

(blue), and Linear (cyan). (A) shows the number of sex-associated genes 1276 

identified by different methods at a range of empirical false discovery rates 1277 

(FDRs). (B) shows the number of genes that are on the X chromosome out of the 1278 

genes that have the strongest sex association for each method (note that the Y 1279 

chromosome is not assembled in baboons and is thus ignored). For instance, in 1280 

the top 400 genes identified by MACAU, 41 of them are also on the X 1281 

chromosome. (C) shows the number of T2D-associated genes identified by 1282 

different methods at a range of empirical false discovery rates (FDRs). (D) shows 1283 

the number of genes that are in the list of top 1,000 genes most significantly 1284 

associated with GL out of the genes that have the strongest association for T2D 1285 

for each method. For instance, in the top 1,000 genes with the strongest T2D 1286 

association identified by MACAU, 428 of them are also in the list of top 1,000 1287 

genes with the strongest GL association identified by the same method. (E) 1288 

shows the number of GL-associated genes identified by different methods at a 1289 

range of FDRs. (F) shows the number of genes that are in the list of top 1,000 1290 

genes most significantly associated with T2D out of the genes that have the 1291 

strongest association for GL for each method. T2D: type II diabetes; GL: fasting 1292 

glucose level. 1293 
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