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Abstract 

Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) 
studies is one of the most common analyses in genomics. DE analysis often 
represents the first step towards understanding the molecular mechanisms 
underlying disease susceptibility and phenotypic variation. However, identifying 
DE genes from RNAseq presents statistical and computational challenges that 
arise from several unique properties of the sequencing data. Specifically, gene 
expression estimates in RNAseq experiments are based on read counts that 
often display over-dispersion. In addition, gene expression levels are heritable 
and are influenced by the genetic structure of the study samples. Previous count-
based methods for identifying DE genes rely on simple hierarchical Poisson 
models (e.g., negative binomial) to model over-dispersion, which is assumed to 
be independent among samples. However, these methods fail to account for the 
gene expression similarity induced by relatedness and/or population structure, 
which can cause inflation of test statistics and/or loss of power. To address this 
problem, we present a Poisson mixed model with two random effects terms to 
account for both independent over-dispersion and sample relatedness in 
RNAseq DE analysis. To make our method scalable, we develop a novel 
sampling-based inference algorithm, taking advantage of recently developed 
innovations in efficient mixed model optimization and a latent variable 
representation of the Poisson model. With simulations, we show that, in the 
presence of population structure, our method properly controls for type I error 
and is more powerful than several widely used approaches. We apply our 
method to identify DE genes associated with sex in a baboon data set and DE 
genes associated with type 2 diabetes status as well as fasting glucose levels in 
a human data set. In both data sets, our method detects at least 40% more DE 
genes compared with the next best approach while properly controlling for type I 
error. Our method is implemented in the MACAU software package, freely 
available at www.xzlab.org/software.html. 
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Introduction 

RNA sequencing (RNAseq) has emerged as a powerful tool for transcriptome 
analysis, thanks to its many advantages over previous microarray techniques (1-
3). Compared with microarrays, RNAseq has increased dynamic range, does not 
rely on a priori-chosen probes, and can thus identify previously unknown 
transcripts and isoforms. It also yields allelic-specific expression estimates and 
genotype information inside expressed transcripts as a useful by-product (4-7). 
Because of these desirable features, RNAseq has been widely applied in many 
areas of genomics and is currently the gold standard method for genome-wide 
gene expression profiling. 

One of the most common analyses of RNAseq data involves identification of 
differentially expressed (DE) genes. Identifying DE genes that are influenced by 
predictors of interest -- such as disease status, risk factors, environmental 
covariates, or genotype -- is an important first step towards understanding the 
molecular basis of disease susceptibility as well as the genetic and 
environmental basis of gene expression variation. Progress towards this goal 
requires statistical methods that can handle the complexities of the increasingly 
large and structurally complex RNAseq data sets that are now being collected 
from population and family studies (8,9). However, identifying DE genes from 
such studies presents key statistical and computational challenges, primarily 
arising from two features of RNAseq data. 

The first important feature, and one that has received considerable attention 
(3,10,11), is that the raw data from an RNAseq experiment come in the form of 
read counts. Specifically, RNAseq uses the number of reads mapped to a given 
gene or isoform as an estimate of its expression level. As a result, RNAseq data 
display an appreciable dependence between the mean and variance of estimated 
gene expression levels: highly expressed genes tend to have high variance 
across samples, and vice versa. To account for the count nature of the data and 
the resulting mean-variance dependence, most statistical methods for DE 
analysis model RNAseq data using discrete distributions. For example, early 
studies showed that gene expression variation across technical replicates can be 
accurately described by a Poisson distribution (12-14). More recent methods also 
take into account over-dispersion across biological replicates (15,16) by 
replacing Poisson models with negative binomial models (10,11,17-21) or other 
related approaches (22-26). While non-count based methods are also commonly 
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used (primarily relying on transformation of the count data to more flexible, 
continuous distributions (27,28)), recent comparisons have highlighted the 
benefits of modeling RNAseq data using the original counts and accounting for 
the resulting mean-variance dependence (29-32), consistent with observations 
from many count data analyses in other statistical settings (33).  Indeed, accurate 
modeling of mean-variance dependence is one of the keys to enable powerful 
DE analysis with RNAseq, especially in the presence of large sequencing depth 
variation across samples (18,27,34). 

The second important feature of RNAseq data, which has been largely 
overlooked in DE analysis thus far, is that gene expression levels are heritable. 
In humans, the narrow-sense heritability of gene expression levels averages from 
15%-34% in peripheral blood (35-39) and is about 23% in adipose tissue (35), 
with a maximum heritability in both tissues as high as 90% (35,36). Similarly, in 
baboons, gene expression levels are about 28% heritable in the peripheral blood 
(7). Some of these effects are attributable to nearby, putatively cis-acting genetic 
variants: indeed, recent studies have shown that the expression levels of almost 
all genes are influenced by cis-eQTLs and/or display allelic specific expression 
(ASE) (3,7,40-42). However, the majority of heritability is often explained by distal 
genetic variants (i.e., trans-QTLs, which account for 63%-84% of heritability in 
humans (35) and baboons (7)). Because gene expression levels are heritable, 
gene expression levels will covary with kinship or population structure. Failure to 
account for this covariance could lead to spurious associations or reduced power 
to detect true DE effects. This phenomenon has been extensively documented in 
genome-wide association studies (43-45) and more recently, in bisulfite 
sequencing studies (46), but is less explored in RNAseq studies. In particular, 
none of the currently available count-based methods for identifying DE genes in 
RNAseq can appropriately control for population structure. Consequently, even 
though count-based methods have been shown to be more powerful, recent 
RNAseq studies have turned to linear mixed models, which are specifically 
designed for quantitative traits, to deal with the confounding effects of kinship or 
population structure (7,36,47). 

Here, we present a Poisson mixed model (PMM) that can explicitly model both 
overdispersed count data and genetic structure in RNAseq data for effective DE 
analysis. To make our model scalable to large data sets, we also develop an 
accompanying efficient inference algorithm based on an auxiliary variable 
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representation of the Poisson model (48-50) and recent advances in mixed 
model methods (44,45,51). We refer to the combination of the statistical method 
and the computational algorithm developed here as MACAU (Mixed model 
Association for Count data via data AUgmentation), which effectively extends our 
previous method of the same name on the simpler binomial model (46) to the 
more difficult Poisson model. MACAU works directly on RNAseq count data and 
introduces two random effects terms to both control for genetic relatedness 
among individuals and account for additional independent over-dispersion. As a 
result, MACAU properly controls for type I error in the presence of population 
structure and, in a variety of settings, is more powerful for identifying DE genes 
than several commonly used methods. We illustrate the benefits of MACAU with 
extensive simulations and real data applications to two large-scale RNAseq 
studies. 
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Methods and Materials 

Methods for Comparison 

We compared the performance of seven different methods in the main text: (1) 
our Poisson mixed model implemented in the MACAU software package (46); (2) 
the linear model implemented in the lm function in R; (3) the linear mixed model 
implemented in the GEMMA software package (44,45); (4) the Poisson model 
implemented in the glm function in R; (5) the negative binomial model 
implemented in the glm.nb function in R; (6) edgeR implemented in the edgeR 
package in R (18); (7) DESeq implemented in the DESeq package in R (10). For 
edgeR, we used estimateCommonDisp, and exactTest functions. For DESeq, we 
used estimateDispersions and nbiomTest functions and set method="blind", 
fitType="local", sharingMode="fit-only" in the estimateDispersions function. For 
both DESeq and edgeR, we have tried many parameter settings in addition to 
this default, and the results presented in the main text are the best we could 
obtain. All other methods were used with default settings. The performance of 
each method was evaluated using the area under the curve (AUC) function 
implemented in the pROC package in R (90), a widely used benchmark for 
RNAseq method comparisons (68).  

Both the linear model and the linear mixed model require quantitative phenotypes. 
Thus, we considered six different transformations of count data to quantitative 
values: (1) quantile normalization (TRCQ), where we first divided the number of 
reads mapped to a given gene by the total number of read counts for each 
individual, and then for each gene, quantile normalized the resulting proportions 
across individuals to a standard normal distribution (7); (2) total read count 
normalization (TRC), where we divided the number of reads mapped to a given 
gene by the total number of read counts for each individual (without further 
transformation to a standard normal within genes: (18)); (3) upper quantile 
normalization (UQ), where we divided the number of reads mapped to a given 
gene by the upper quantile (0.75-th percentile) of all genes for each individual 
(91); (4) relative log expression normalization (RLE) (10); (5) trimmed mean of M-
values (TMM) (34); and (6) VOOM normalization (27). Simulations showed that 
TRCQ, VOOM and TRC worked better than the other three methods, with TRCQ 
showing a small advantage (Figure S13). Therefore, we report results using 
TRCQ throughout the text. 

 

Simulations 

To make our simulations as realistic as possible, we simulated the gene 
expression count data based on parameters inferred from the real baboon data 
set that contains 63 samples (see the next section for a detailed description of 
the data). We varied the sample size (n) in the simulations (n = 63, 100, 200, 500, 
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800, or 1000). For n = 63, we used the baboon relatedness matrix � (7). For 
sample simulations with n > 63, we constructed a new relatedness matrix � by 
filling in its off-diagonal elements with randomly drawn off-diagonal elements 
from the baboon relatedness matrix following (46). In cases where the resulting 
� was not positive definite, we used the nearPD function in R to find the closest 
positive definite matrix as the final �. In most cases, we simulated the total read 
count �� for each individual from a discrete uniform distribution with a minimum 
(=1,770,083) and a maximum (=9,675,989), which equal to the minimum and 
maximum total read counts (i.e. summation of read counts across all genes) from 
the baboon data. We scaled the total read counts to ensure that the coefficient of 
variation is small (CV = 0.3), moderate (CV = 0.6) or high (CV = 0.9) across 
individuals (i.e. ���� � �� � �� � ��	 
� ���	 /�� ) and then discretized them. In 
the special case where CV = 0.3 and n = 63, we directly used the observed total 
read counts per individual � (��) from the baboon data (which has a CV = 0.33). 

We then repeatedly simulated a continuous predictor variable � from a standard 
normal distribution (without regard to the pedigree structure). We estimated the 
heritability of the continuous predictor using GEMMA, and retained �  if the 
heritability (��

�) estimate (with � 0.01 tolerance) was 0, 0.4 or 0.8, representing no, 
moderate and highly heritable predictors. Using this procedure, approximately 30 
percent of ��� generated were retained, with detailed retaining percent varied for 
different heritability values. 

Based on the simulated sample size, total read counts and continuous predictor 
variable, we simulated gene expression values using the following procedure. 
For the expression of each gene in turn, we simulated the genetic random effects 
� from a multivariate normal distribution with covariance �. We simulated the 
environmental random effects � based on independent normal distributions. We 
scaled the two sets of random effects to ensure a fixed value of heritability 

(�� �
��	


��	
����

 0 or 0.3 or 0.6) and a fixed value of over-dispersion variance 

(  �� � ���	 � ���	 �  0.1, 0.25 or 0.4, close to the lower, median and upper 
quantiles of the over-dispersion variance inferred from the baboon data, 
respectively), where the function V(•) denotes the sample variance. We then 
generated the effect size � of the predictor variable on gene expression. The 
effect size was either 0 (for non-DE genes) or generated to explain a certain 

percentage of variance in log� 	 (i.e. PVE �
���


���
���
; for DE genes). PVE values 

were 15%, 20%, 25%, 30% or 35% to represent different effect sizes. The 
predictor effects !�, genetic effects �, environmental effects �, and an intercept 
(" � 100) were then summed together to yield the latent variable log� 	 � " �

!� � � � �. Note that �� does not include the contribution of !� which in many 
cases represent non-genetic effects. Finally, the read counts were simulated 
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based on a Poisson distribution with rate determined by the total read counts and 
the latent variable  , or #�~%&���� �	 for the �'th individual.  

With the above procedure, we first simulated data for n = 63, CV = 0.3, ��
� = 0, 

PVE = 0.25, �� � 0.3 and  �� � 0.25. We then varied one parameter at a time to 
generate different scenarios for comparison. In each scenario, conditional on the 
sample size, total read counts and continuous predictor variable, we performed 
10 simulation replicates (i.e. replication is at the level described in the paragraph 
above). Each replicate consisted of 10,000 genes. For examining type I error 
control, all 10,000 genes were non-DE. For the power comparison, 1,000 genes 
were DE while 9,000 were non-DE. 

 

RNAseq Data Sets 

We considered two published RNAseq data sets in this study. 

The first RNAseq data set was collected from blood samples of yellow baboons 
(7) from the Amboseli ecosystem of southern Kenya as part of the Amboseli 
Baboon Research Project (ABRP) (67). The data are publicly available on GEO 
with accession number GSE63788. Read counts were measured on 63 baboons 
and 12,018 genes after stringent quality control as in (7). As in (7), we computed 
pairwise relatedness values from previously collected microsatellite data (92,93) 
using the software COANCESTRY (94). The data contains related individuals: 16 
pairs of individuals have a kinship coefficient exceeding 1/8 and 48 pairs exceed 
1/16. We obtained sex information for each individual from GEO. Sex differences 
in health and survival are major topics of interest in medicine, epidemiology, and 
evolutionary biology (92,95). Therefore, we used this data set to identify sex-
related gene expression variation. In the analysis, we included the top 5 
expression PCs as covariates to control for potential batch effects following the 
original study (7). 

The second RNAseq data set was collected from skeletal muscle samples of 
Finnish individuals (47) as part of the FUSION project (96,97). The data are 
publicly available in dbGaP with accession code phs001068.v1.p1. Among the 
271 individuals in the original study, we selected 267 individuals who have both 
genotypes and gene expression measurements. Read counts were measured on 
these 267 individuals and 21,753 genes following the same stringent quality 
control as in the FUSION study. For genotypes, we excluded SNPs with minor 
allele frequency (MAF) < 0.05 and Hardy-Weinberg equilibrium p-value <10-6. We 
used the remaining 5,696,681 SNPs to compute the relatedness matrix using 
GEMMA. The data contains remotely related individuals: 3 pairs of individuals 
have a kinship coefficient exceeding 1/32 and 6 pairs exceed 1/64. Two 
predictors from the data were available to us: the oral glucose tolerance test 
(OGTT) which classifies n = 162 individuals as either T2D patient (n = 66) or 
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normal glucose tolerance (NGT; i.e., control, n = 96); and a T2D-related 
quantitative trait -- fasting glucose levels (GL) -- measured on all n = 267 
individuals. We used these data to identify genes whose expression level is 
associated with either T2D or GL. In the analysis, we included age, sex and 
batch labels as covariates following the original study (47).  

For each of these two RNAseq data sets and each trait, we used a constrained 
permutation procedure to estimate the empirical false discovery rate (FDR) of a 
given analytical method. In the constrained permutation procedure, we permuted 
the predictor across individuals, estimated the heritability of the permuted 
predictor, and retained the permutation only if the permuted predictor had a 
heritability estimate (��

�) similar to the original predictor with ± 0.01 tolerance (for 
the original predictors: ��

� � 0.0002 for sex in the baboon data; ��
� � 0.0121 for 

T2D and ��
� � 0.4023 for GL in the human data). We then analyzed all genes 

using the permuted predictor. We repeated the constrained permutation 
procedure and analysis 10 times, and combined the p-values from these 10 
constrained permutations. We used this set of p-values as a null distribution from 
which to estimate the empirical false discovery rate (FDR) for any given p-value 
threshold (46). This constrained procedure thus differs from the usual 
unconstrained permutation procedure (every permutation retained) (98) in that it 
constrains the permuted predictor to have the same ��

� as the original predictor. 
We chose to use the constrained permutation procedure here because the 
unconstrained procedure is invalid under the mixed model assumption: the 
subjects are not exchangeable in the presence of individual relatedness or 
population structure (98,99). To validate our constrained permutation procedure 
and test its effectiveness in estimating FDR, we performed a simulation with 
1,000 DE genes and 9,000 non-DE genes as described above. We considered 
three predictor variables �  with different heritability: ��

� � 0 , ��
� � 0.4 , and 

��
� � 0.8. For each predictor variable and each p-value threshold, we computed 

the true FDR and then estimated the FDR based on either the constrained or 
unconstrained permutation procedures. The simulation results demonstrate that 
the constrained permutation procedure provides a much more accurate estimate 
of the true FDR while the unconstrained permutation procedure often under-
estimates the true FDR (Figure S14). Therefore, we applied the constrained 
permutation procedure for all real data analysis.  

Finally, we investigated whether the methods we compared were sensitive to 
outliers (25,100,101) in the two data sets. To do so, we first identified genes with 
potential outliers in the two data sets using BBSeq (22). In total, we identified 8 
genes with potential outliers in the baboon data, 130 genes with potential outliers 
in the human data (n = 267) and 43 genes with potential outliers in the subset of 
the human data for which we had T2D diagnoses (n = 162). We counted the 
number of genes with potential outliers in the top 1,000 genes with strong DE 
association evidence. In the baboon data (Figure S15), 4 genes with potential 
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outliers are in the top 1,000 genes with the strongest sex association determined 
by various methods: 2 of them by the negative binomial model, 3 of them by the 
Poisson model, but 0 of them by MACAU, linear model, or GEMMA. In human 
data, for T2D analysis (Figure S16), 9 genes with potential outliers are in the top 
1,000 genes with the strongest T2D association determined by various methods: 
1 by MACAU, 3 by negative binomial, 6 by Poisson, 1 by linear, and 1 by 
GEMMA. For GL analysis (Figure S17), 15 genes with potential outliers are in the 
top 1,000 genes with the strongest GL association determined by various 
methods: 2 by MACAU, 7 by negative binomial, 9 by Poisson, 3 by linear, and 3 
by GEMMA. Therefore, the influence of outliers on DE analysis is small in the two 
data sets. 
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Results 

MACAU Overview 

Here, we provide a brief overview of the Poisson mixed model (PMM); more 
details are available in the Supplementary Material. To identify DE genes with 
RNAseq data, we examine one gene at a time. For each gene, we model the 
read counts with a Poisson distribution 

#�~%&���� �	, � � 1, 2, + , ,, 
where for the ��th individual, #� is the number of reads mapped to the gene (or 
isoform); ��  is the total read counts for that individual summing read counts 
across all genes; and  � is an unknown Poisson rate parameter. We model the 
log-transformed rate  � as a linear combination of several parameters 

-&�� �	 � .�
�/ � ��� � �� � �� , � � 1,2, + , ,, 

� � ���, ��, + , ��	�~0���1, �����	, 

� � ���, ��, + , ��	�~0���1, ���1 � ��	2	, 

where .� is a c-vector of covariates (including the intercept); / is a c-vector of 
corresponding coefficients; ��  represents the predictor variable of interest (e.g. 
experimental perturbation, sex, disease status, or genotype); �  is its coefficient; 
� is an n-vector of genetic effects; � is an n-vector of environmental effects; � is 
an n by n relatedness matrix that models the covariance among individuals due 
to either individual relatedness or population structure; 2 is an n by n identity 
matrix that models independent environmental variation; ����  is the genetic 
variance component; ���1 � ��	 is the environmental variance component; and 
0��  denotes the multivariate normal distribution. In the above model, we 
assume that �  is known and can be computed based on either pedigree or 
genotype (44). When � is standardized to have 34��	 ,⁄ � 1, �� 6 70,18 has the 
usual interpretation of heritability (44), where the 34�·	 denotes the trace of a 
matrix. Importantly, unlike many other popular DE methods (10,18), our model 
can deal with both continuous and discrete predictor variables. 

Both of the random effects terms �  and �  model over-dispersion, the extra 
variance not explained by a Poisson model. However, the two terms model two 
different aspects of over-dispersion. Specifically, �  models the fraction of the 
extra variance that is explained by individual relatedness or population structure 
while �  models the fraction of the extra variance that is independent across 
samples. By modeling both aspects of over-dispersion, our PMM effectively 
generalizes the commonly used negative binomial model -- which only models 
independent extra variance -- to account for individual relatedness and 
population structure. In addition, our PMM naturally extends the commonly used 
linear mixed model (LMM) (44,51,52) to modeling count data.  
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Our goal here is to test the null hypothesis that gene expression levels are not 
associated with the predictor variable of interest, or :�: � � 0 . Testing this 
hypothesis requires estimating parameters in the PMM. The PMM belongs to the 
generalized linear mixed model family, where parameter estimation is notoriously 
difficult because of the random effects and the resulting intractable n-dimensional 
integral in the likelihood. Standard estimation methods rely on numerical 
integration (53) or Laplace approximation (54,55), but neither strategy scales well 
with the increasing dimension of the integral, which in our case equals the 
sample size. As a consequence, standard approaches often produce biased 
estimates and overly narrow (i.e., anti-conservative) confidence intervals (56-62). 
To overcome the high-dimensionality of the integral, we instead develop a novel 
Markov Chain Monte Carlo (MCMC) algorithm, which, with enough iterations, can 
achieve high inference accuracy (63,64). We use MCMC to draw posterior 
samples but rely on the asymptotic normality of both the likelihood and the 
posterior distributions (65) to obtain the approximate maximum likelihood 

estimate �<� and its standard error se(�<�
= ). With  �<� and se(�<�

= ), we can construct 
approximate Wald test statistics and p-values for hypothesis testing 
(Supplementary Material). Although we use MCMC, our procedure is still 
frequentist in nature.  

At the technical level, our MCMC algorithm is also novel, taking advantage of an 
auxiliary variable representation of the Poisson likelihood (48-50) and recent 
linear algebra innovations for fitting linear mixed models (44,45,51). Our MCMC 
algorithm introduces two continuous latent variables for each individual to replace 
the count observation, effectively extending our previous approach of using one 
latent variable for the simpler binomial distribution (46). Compared with a 
standard MCMC, our new MCMC algorithm reduces the computational 
complexity of each MCMC iteration from cubic to quadratic with respect to the 
sample size. Therefore, our method is orders of magnitude faster than the 
popular Bayesian software MCMCglmm (66) and can be used to analyze 
hundreds of samples and tens of thousands of genes with a single desktop PC 
(Figure S1). Although our procedure is stochastic in nature, we find the MCMC 
errors are often small enough to ensure stable p-values across independent 
MCMC runs (Figure S2).  

  

Simulations: control for individual relatedness and population structure 

We performed a series of simulations to compare the performance of the PMM 
implemented in MACAU with four other commonly used methods: (1) a linear 
model; (2) the linear mixed model implemented in GEMMA (44,45); (3) a Poisson 
model; and (4) a negative binomial model. We used quantile-transformed data for 
linear model and GEMMA (see Methods and Materials for normalization details 
and a comparison between various transformations) and used raw count data for 
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the other three methods. To make our simulations realistic, we use parameters 
inferred from a published RNAseq data set on a population of wild baboons (7,67) 
to perform simulations (Methods and Materials); this baboon data set contains 
known related individuals and hence invokes the problem of kinship/population 
structure outlined above.  

Our first set of simulations was performed to evaluate the effectiveness of 
MACAU and the other four methods in controlling for relatedness and population 
structure. To do so, we simulated expression levels for 10,000 genes in 63 
individuals (the sample size from the baboon data set). Simulated gene 
expression levels are influenced by both independent environmental effects and 
correlated genetic effects, where genetic effects are simulated based on the 
baboon kinship matrix (estimated from microsatellite data (7)) with either 
moderate (�� � 0.3) or high (�� � 0.6) heritability values. We also simulated a 
continuous predictor variable x that is itself moderately heritable ( ��

� � 0.4 ). 
Because we were interested in the behavior of the null in this set of simulations, 
gene expression levels were not affected by the predictor variable (i.e., no genes 
were truly DE).  

Figures 1 and S3 show quantile-quantile plots for analyses using MACAU and 
the other four methods against the null (uniform) expectation, for �� � 0.6 and 
�� � 0.3, respectively. Because genes are heritable and the predictor variable is 
also correlated with individual relatedness, the resulting p-values from the DE 
analysis are expected to be uniform only for a method that properly controls for 
individual relatedness and population structure. If a method fails to control for 
population structure, then the p-values would be inflated, resulting in false 
positives.  

Our results show that, because MACAU controls for population structure, the p-
values from MACAU follow the expected uniform distribution closely (and are 
slightly conservative) regardless of whether gene expression is moderately or 
highly heritable. The genomic control factors from MACAU are close to 1 
(Figures 1 and S3). Even if we use a relatively relaxed q-value cutoff of 0.2 to 
identify DE genes, we do not incorrectly identify any genes as DE with MACAU. 
In contrast, the p-values from negative binomial are inflated and skewed towards 
low (significant) values, especially for gene expression levels with high heritability. 
With negative binomial, 27 DE genes (when �� � 0.3) or 21 DE genes (when 
�� � 0.6) are erroneously detected at the q-value cutoff of 0.2. The inflation of p-
values is even more acute in Poisson, presumably because the Poisson model 
accounts for neither individual relatedness nor over-dispersion. For non-count-
based models, the p-values from a linear model are slightly skewed towards 
significant values, with 3 DE genes (when �� � 0.3 ) and 1 DE gene (when 
�� � 0.6) erroneously detected at q < 0.2. In contrast, because the LMM in 
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GEMMA also accounts for individual relatedness, it controls for population 
structure well.   

Two important factors influence the severity of population stratification in RNAseq 
data (Figure 2). First, the inflation of p-values in the negative binomial, Poisson 
and linear models becomes more acute with increasing sample size. In particular, 
when ��

� � 0.4, with a sample size of , � 1,000,  	�  from the negative binomial, 
Poisson and linear models reaches 1.71, 82.28, and 1.41, respectively. In 
contrast, even when , � 1,000,  	� from both MACAU and GEMMA remain close 
to 1 (0.97 and 1.01, respectively). Second, the inflation of p-values in the three 
models also becomes more acute when the predictor variable is more correlated 
with population structure. Thus, for a highly heritable predictor variable (��

� � 0.8), 
 	�  (when , � 1,000 ) from the negative binomial, Poisson and linear models 
increases to 2.13, 101.43, and 1.81, respectively, whereas  	� from MACAU and 
GEMMA remains close to 1 (1.02 and 1.05).  

 

Simulations: power to identify DE genes 

Our second set of simulations was designed to compare the power of different 
methods for identifying DE genes, again based on parameters inferred from real 
data. This time, we simulated a total of 10,000 genes, among which 1,000 genes 
were truly DE and 9,000 were non-DE. For the DE genes, simulated effect sizes 
corresponded to a fixed proportion of variance explained (PVE) in gene 
expression levels that ranged from 15% to 35%. For each set of parameters, we 
performed 10 replicate simulations and measured model performance based on 
the area under the curve (AUC) (as in (29,68,69)). We also examined several key 
factors that could influence the relative performance of the alternative methods: 
(1) gene expression heritability (��); (2) correlation between the predictor variable 
� and genetic relatedness (measured by the heritability of �, or ��

�); (3) variation 
of the total read counts across samples (measured by the coefficient of variation, 
or CV); (4) the over-dispersion parameter (��); (5) the effect size (PVE); and (6) 
sample size (n). To do so, we first performed simulations using a default set of 
values (�� � 0.3, ��

� = 0, CV = 0.3,  �� � 0.25, PVE = 0.25, and n = 63) and then 
varied them one at a time to examine the influence of each factor on the relative 
performance of each method.  

Our results show that MACAU works as well as or outperforms other methods in 
a wide range of settings (Figures 3, S4-S7), probably because it both models 
count data directly and controls for relatedness and population structure. In 
contrast, the Poisson approach consistently fared the worst across all simulation 
scenarios, presumably because it fails to account for over-dispersion (Figures 3, 
S4-S7).  
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Among the factors that influence the relative rank of various methods, the most 
important factor was heritability  ���	  (Figure 3A). While all methods perform 
worse with increasing gene expression heritability, heritability disproportionately 
affects the performance of models that do not account for relatedness (i.e., 
negative binomial, Poisson and Linear), whereas when heritability is zero (�� �

0), these approaches tend to perform slightly better. Therefore, for non-heritable 
genes, linear models perform slightly better than GEMMA, and negative binomial 
works similarly or slightly better than MACAU, most likely because they require 
fewer model parameters and thus have a greater number of degrees of freedom. 
However, even in this setting, the difference between MACAU and negative 
binomial is small, suggesting that MACAU is robust to model misspecification 
and works reasonably well even for non-heritable genes. On the other hand, 
when heritability is moderate (�� � 0.3) or high (�� � 0.6), the methods that 
account for relatedness are much more powerful than the methods that do not. 
Because almost all genes are influenced by cis-eQTLs (41,42) and are thus likely 
heritable to some extent, MACAU’s robustness for non-heritable genes and its 
high performance gain for heritable genes make it ideal for routine DE analysis.  

The second most important factor in relative model performance was the 
variation of total read counts across individuals (CV; Figure 3B). While all 
methods perform worse with increasing CV, CV particularly affects the 
performance of GEMMA. Specifically, when CV is small (0.3; as the baboon 
data), GEMMA works well and is the second best method behind MACAU. 
However, when CV is moderate (0.6) or high (0.9), the performance of GEMMA 
quickly decays: it becomes only the fourth best method when CV = 0.9. GEMMA 
performs poorly in high CV settings presumably because the linear mixed model 
fails to account for the mean-variance dependence observed in count data, which 
is in agreement with previous findings (46,70).   

The other three factors we explored had small impacts on the relative 
performance of the alternative methods, although they did affect their absolute 
performance. For example, as one would expect, power increases with large 
effect sizes (PVE) (Figure S4) or large sample sizes (Figure S5), and decreases 
with large over-dispersion �� (Figure S6) or large ��

� (Figure S7).  

Finally, in addition to the above comparisons, we also included comparisons with 
edgeR (18) and DESeq (10), two commonly used methods for DE analysis 
(32,71). Because edgeR and DESeq were originally designed for discrete 
predictor valuables, we discretized the continuous predictor � into 0/1 based on 
the median predictor value across individuals. We then re-simulated the data 
based on the basic parameter setting (n = 63, CV = 0.3, ��

� = 0, PVE = 0.25, �� � 
0.3 and  �� �  0.25), and applied all methods to the simulated data for 
comparison. Results are shown in Figure S8. Both edgeR and DESeq do not 
perform well, presumably because the two methods are specifically designed for 
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small sample comparisons and are not flexible enough for analyses of larger data 
sets.  

 

Real Data Applications  

To gain insight beyond simulation, we applied MACAU and the other four 
methods to two recently published RNAseq data sets. We did not apply edgeR 
and DESeq here because they are designed for small data sets. 

The first data set we considered is a baboon RNAseq study (7) from the 
Amboseli Baboon Research Project (ABRP) (67). Expression measurements on 
12,018 blood-expressed genes were collected for 63 adult baboons (26 females 
and 37 males), among which some were relatives. Here, we applied MACAU and 
the four other methods to identify genes with sex-biased expression patterns. 
Sex-associated genes are known to be enriched on sex chromosomes (72,73), 
and we use this enrichment as one of the criteria to compare method 
performance as in (22). Because the same nominal p-value from different 
methods may correspond to different type I errors, we compared methods based 
on empirical false discovery rate (FDR). In particular, we permuted the data to 
construct an empirical null, estimated the FDR at any given p-value threshold, 
and counted the number of discoveries at a given FDR cutoff (Methods and 
Materials).  

In agreement with our simulations, MACAU was the most powerful method of 
those we considered. Specifically, at an empirical FDR of 5%, MACAU identified 
105 genes with sex-biased expression patterns, 40% more than that identified by 
the linear model, the second best method at this FDR cutoff (Figure 4A). At a 
more relaxed FDR of 10%, MACAU identified 234 sex-associated genes, 47% 
more than that identified by the negative binomial model, the second best 
method at this FDR cutoff (Figure 4A). Further, as expected, the sex-associated 
genes detected by MACAU are enriched on the X chromosome (the Y 
chromosome is not assembled in baboons and is thus ignored), and this 
enrichment is stronger for the genes identified by MACAU than by the other 
methods (Figure 4B). Of the remaining approaches, the negative binomial, linear 
model, and GEMMA all performed similarly in the X chromosome enrichment 
evaluation.  

The second data set we considered is a RNAseq study on type II diabetes (T2D) 
collected as part of the Finland-United States Investigation of NIDDM Genetics 
(FUSION) Study  (47). Here, the data were collected skeletal muscle samples 
from 267 individuals with expression measurements on 21,753 genes. Individuals 
are from three municipalities (Helsinki, Savitaipale, and Kuopio) in Finland. 
Individuals within each municipality are more closely related than individuals 
between municipalities (e.g., the top genotype principal components vaguely 
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depict the three municipalities; Figure S9). Two related phenotypes were 
available to us: 162 individuals with T2D or NGT (normal glucose tolerance) 
status (i.e., case/control) based on the oral glucose tolerance test (OGTT) and 
267 individuals with the quantitative trait fasting glucose level (GL), a biological 
relevant trait of T2D. 

We performed analyses to identify genes associated with T2D status as well as 
genes associated with GL. Consistent with simulations and the baboon data 
analysis, MACAU identified more T2D-associated genes and GL-associated 
genes than other methods across a range of empirical FDR values. For the T2D 
analysis, MACAU identified 23 T2D-associated genes at an FDR of 5%, while 
GEMMA and the linear model, the second best methods at this FDR cutoff, 
identified only 1 T2D-associated gene (Figure 4C). Similarly, at an FDR of 10%, 
MACAU identified 123 T2D-associated genes, 51% more than that identified by 
the linear model, the second best method at this FDR cutoff (Figure 4C). For GL 
analysis, based on an FDR of 5%, MACAU detected 12 DE genes, while the 
other methods did not identify any DE genes at this FDR cutoff. At an FDR of 
10%, MACAU identified 100 GL associated genes, while the second best 
methods -- the linear model and GEMMA, identified 12 DE genes (Figure 4E).  

Several lines of evidence support the biological validity of the genes detected by 
MACAU. First, we performed Gene Ontology (GO) analysis using LRpath (74) on 
T2D and GL associated genes identified by MACAU as in the FUSION study (47) 
(Figure S10). The GO analysis results for T2D and GL are consistent with 
previous studies (47,75) and are also similar to each other, consistent with the 
biological relationship between the two traits. In particular, T2D status and high 
GL are associated with decreased expression of cellular respiratory pathway 
genes, consistent with previous observations (47,75). T2D status and GL are 
also associated with several pathways that are related to mTOR, including 
generation of precursor metabolites, poly-ubiquitination and vesicle trafficking, 
consistent with a prominent role of mTOR pathway in T2D etiology (76-79).  

Second, we performed overlap analyses between T2D and GL associated genes. 
We reasoned that T2D-associated genes are likely associated with GL, because 
T2D shares a common genetic basis with GL (80-82) and T2D status is 
determined in part by fasting glucose levels. Therefore, we used the overlap 
between genes associated with T2D and genes associated with GL as a 
measure of method performance. In the overlap analysis, genes with the 
strongest T2D association identified by MACAU show a larger overlap with the 
top 1,000 genes that have the strongest GL association than did genes identified 
by other methods (Figure 4D). For instance, among the top 100 genes with the 
strongest T2D-association evidence from MACAU, 63 of them also show strong 
association evidence with GL. In contrast, only 55 of the top 100 genes with the 
strongest T2D-association identified by GEMMA, the second best method, show 
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strong association evidence with GL. We observed similar results, with MACAU 
performing best, when performing the reciprocal analysis (overlap between 
genes with the strongest GL-association and the top 1,000 genes that have the 
strongest T2D-association: Figure 4F). Thus, MACAU appears to both confer 
more power to identify biologically relevant DE genes and be more consistent 
across analyses of related phenotypes.  

To assess the type I error rate of various methods, we permuted the trait data 
from the baboon and the human studies. Consistent with our simulation results, 
the p-values from MACAU and GEMMA under the permuted null were close to 
uniformly distributed (slightly conservative) in both data sets, whereas the other 
methods were not (Figures S11 and S12). Finally, none of the methods 
compared here are sensitive to outliers in the two data sets (Figures S15-S17): 
even the Poisson model and negative binomial model only identified a few genes 
with potential outliers as being strongly DE.  

Discussion 

Here, we present an effective Poisson mixed effects model, together with a 
computationally efficient inference method and software implementation in 
MACAU, for identifying DE genes in RNAseq studies. MACAU directly models 
count data and, using two random effects terms, controls for both population 
structure and independent over-dispersion. Because of its flexible modeling 
framework, MACAU controls for type I error in the presence of population 
structure and achieves higher power than several other methods for DE analysis 
across a range of settings. In addition, MACAU can easily accommodate 
continuous predictor variables and biological or technical covariates. We have 
demonstrated the benefits of MACAU using both simulations and applications to 
two recently published RNAseq data sets. 

MACAU is particularly well-suited to data sets that contain related individuals or 
population structure. Several major population genomic resources contain 
structure of these kinds. For example, the HapMap population (83), the Human 
Genome Diversity Panel (84), the 1000 Genomes Project in humans (85) as well 
as the 1001 Genomes Project in Arabidopsis (86) all contain data from multiple 
populations or related individuals. Several recent large-scale RNAseq projects 
also collected individuals from genetically differentiated populations (40). MACAU 
is also well-suited to analyzing genes with moderate to high heritability. Previous 
studies in humans have shown that, while heritability varies across genes, many 
genes are moderately or highly heritable, and almost all genes have detectable 
eQTL (41,87). Analyzing these data with MACAU can reduce false positives and 
increase power. Notably, even when genes exhibit zero heritability, our results 
show that MACAU incurs minimal loss of power compared with other approaches. 
Because in practice investigators do not have a priori knowledge about 
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population stratification or gene expression heritability levels, we recommend 
MACAU for general transcriptome analysis. 

Although we have designed MACAU for differential expression analysis, we note 
that MACAU may also be effective in other common settings. For example, 
MACAU could be readily applied in QTL mapping studies to identify genetic 
variants that are associated with gene expression levels estimated using 
RNAseq or related high-throughput sequencing methods. As another example, 
linear mixed models have been proposed as an effective tool to account for cell 
type heterogeneity (88) or batch effects (89) in microarray data by using the gene 
expression covariance matrix. MACAU provides a natural avenue for future 
extension of linear mixed models to control for these confounding effects in 
sequencing-based studies. Other future extensions include borrowing information 
across genes to estimate the over-dispersion parameter (10,15,18), or building in 
a hierarchical structure to model many genes at once, both of which could confer 
improvements to power.  

Currently, MACAU’s biggest limitation is computational speed. The MCMC 
algorithm in MACAU scales quadratically with the number of individuals/samples 
and linearly with the number of genes. Although MACAU is two orders of 
magnitude faster than the standard software MCMCglmm for fitting Poisson 
mixed effects models (Table S1), it can still take close to 20 hours to analyze a 
data set of the size of the human data we considered here (267 individuals and 
21,753 genes). To speed up computation, we have implemented MACAU with 
multithreading routines to take advantage of modern CPU architecture. Therefore, 
with moderate computation resources, MACAU can be easily applied to analyze 
the largest RNAseq data set currently published (n = 922: (42)) within a day. 
However, new algorithms will be needed to use MACAU for data sets that are 
orders of magnitude larger. 
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URLs 

The software implementation of MACAU is freely available at: 
www.xzlab.org/software.html. 
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Table 1. Current approaches for identifying differentially expressed genes 
in RNAseq. 

Statistical 
method 

Directly 
models 
counts? 

Controls for 
biological 

covariates? 

Controls for 
population 
structure? 

Software that 
implements the 

method 
Linear 

regression 
No Yes No R and many others 

Linear mixed 
model 

No Yes Yes GEMMA (44), EMMA 
(102) and FaSTLMM 
(51) 

Poisson model Yes Some 
methods do 

No GLMP (103) and 
DEGseq (13) 

Negative 
binomial model 

Yes Some 
methods do 

No edgeR (18), DESeq 
(10) and GLMNB(103) 

Poisson mixed 
model 

Yes Yes Yes MACAU 
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Figure 1. QQ-plots comparing expected and observed p-value distributions 
generated by different methods for the null simulations with population 
structure. In each case, 10,000 non-DE genes were simulated with n = 63, CV = 
0.3, �� = 0.25, �� = 0.6 and ��� = 0.4. Methods for comparison include MACAU 
(A), Negative binomial (B), Poisson (C), GEMMA (D), and Linear (E). Both 
MACAU and GEMMA properly control for type I error well in the presence of 
population structure. ��� is the genomic control factor. 
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Figure 2. Comparison of the genomic control factor ���   from different 
methods for the null simulations with population structure. 10,000 null 
genes were simulated with CV = 0.3, �� = 0.25, �� = 0.6, and (A) ��

�
� 0; (B) 

��
�

� 0.4 ; or (C) ��
�

� 0.8 . ���  (y-axis) changes with sample size n (x-axis). 
Methods for comparison were MACAU (red), Negative binomial (purple), 
GEMMA (blue), and Linear (cyan). Both MACAU and GEMMA provide calibrated 
test statistics in the presence of population structure across a range of settings. 
��� from Poisson exceeds 10 in all settings and is thus not shown.  
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Figure 3. MACAU exhibits increased power to detect true positive DE genes 
across a range of simulation settings. Area under the curve (AUC) is shown 
as a measure of performance for MACAU (red), Negative binomial (purple), 
Poisson (green), GEMMA (blue), and Linear (cyan). Each simulation setting 
consists of 10 simulation replicates, and each replicate includes 10,000 
simulated genes, with 1,000 DE and 9,000 non-DE. We used n = 63, ��

� = 0.0, 
PVE = 0.25, �� = 0.25. In (A) we increased �� while maintaining CV = 0.3 and in 
(B) we increased CV while maintaining �

�  = 0.3. Boxplots of AUC across 
replicates for different methods show that (A) heritability (  �

� ) influences the 
relative performance of the methods that account for population structure 
(MACAU and GEMMA) compared to the methods that do not (negative binomial, 
Poisson, linear); (B) variation in total read counts across individuals, measured 
by the coefficient of variation (CV), influences the relative performance of 
GEMMA. Insets in the two figures show the rank of different methods, where the 
top row represents the highest rank. 
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Figure 4. MACAU identifies more differentially expressed genes than other 
methods in the baboon (panel A and B) and human (panel C, D, E, and F) 
data sets. Methods for comparison include MACAU (red), Negative binomial 
(purple), Poisson (green), GEMMA (blue), and Linear (cyan). (A) shows the 
number of sex-associated genes identified by different methods at a range of 
empirical false discovery rates (FDRs). (B) shows the number of genes that are 
on the X chromosome out of the genes that have the strongest sex association 
for each method (note that the Y chromosome is not assembled in baboons and 
is thus ignored). For instance, in the top 400 genes identified by MACAU, 41 of 
them are also on the X chromosome. (C) shows the number of T2D-associated 
genes identified by different methods at a range of empirical false discovery rates 
(FDRs). (D) shows the number of genes that are in the list of top 1,000 genes 
most significantly associated with GL out of the genes that have the strongest 
association for T2D for each method. For instance, in the top 1,000 genes with 
the strongest T2D association identified by MACAU, 428 of them are also in the 
list of top 1,000 genes with the strongest GL association identified by the same 
method. (E) shows the number of GL-associated genes identified by different 
methods at a range of FDRs. (F) shows the number of genes that are in the list of 
top 1,000 genes most significantly associated with T2D out of the genes that 
have the strongest association for GL for each method. T2D: type II diabetes; GL: 
fasting glucose level. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073403doi: bioRxiv preprint 

https://doi.org/10.1101/073403
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073403doi: bioRxiv preprint 

https://doi.org/10.1101/073403
http://creativecommons.org/licenses/by-nc-nd/4.0/

