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Abstract—We consider the computational problem of
phasing an individual genotype sample given a collection
of known haplotypes in the population. We give a fast and
accurate algorithm GPhase for reconstructing haplotype
pair consistent with input genotype. It uses the coalescent
based mutation model of Stephens and Donnelly (2000).
Computing optimal solution under this model is expensive
and our algorithm uses a greedy approximation for fast
and accurate estimation. Our algorithm is simple, efficient
and has linear time and space complexity. Experiments on
real datasets revealed improved gene level phasing accu-
racy for GPhase tool compared to other widely used tools
such as SHAPEIT, Beagle, MaCH and Impute2. On sim-
ulated data, GPhase tool was able to phase samples each
containing more than 1700 markers with high accuracy.
GPhase can be used for gene level phasing of individual
samples using publicly available haplotype datasets such as
HapMap data or 1000 genome data. This finds applications
in studies on recessive Mendelian disorders where parent
data is lacking. GPhase is freely available for download
and use from https://github.com/kshitijtayal/GPhase/.

I. INTRODUCTION

Identification of genomic variants is known as
variant calling. Since functional consequences very
often depend on having two or more such variations
either as part of the same or different haplotypes,
it is critical to establish the relationship between
SNPs as to whether they occur as part of the same
haplotype or different haplotypes. Haplotype recon-
struction from genotype data is known as phasing.
In this work we consider the problem of phasing
an individual genotype given a collection of known
haplotypes.

Diploid organisms such as humans carry two
homologous copies of each chromosome, one from
each parent. Mutations and recombinations results
in haplotype diversity in a population. In this

work, we consider only biallelic genotypes with
SNPs. Biallelic haplotypes can be represented as
binary vectors, where a 0 and a 1 at a given
SNP location (locus) indicates reference and al-
ternative alleles respectively. Haplotypes in Fig.
1 can thus be represented by (1, 0, 0, 0, 0, 1) and
(1, 1, 0, 1, 1, 0) and the genotype is represented by
(1/1, 0/1, 0/0, 0/1, 0/1, 0/1). First and third locus
in this case are homozygous and rest are heterozy-
gous. Since there are 4 heterozygous sites in this
genotype, there are in total 24 haplotypes consistent
with it. Thus, the solution space of haplotypes
consistent with a given genotype has exponential
dependence on the number of heterozygous sites.

The whole gamut of haplotype determination
algorithms broadly falls under either haplotype as-
sembly or haplotype inference. Haplotype assem-
bly uses sequence reads directly to determine con-
stituent haplotypes whereas haplotype inference use
genotype data to infer haplotypes. Our work falls
under the latter.

Clark’s algorithm (1990) [3] was one of the
first computational techniques used for haplotype
inferencing. It follows parsimony approach where it
attempts to restrict the number of distinct haplotypes
observed in the sample. It performs reasonably well
on instances with small set of markers, however
its performance suffers if markers are sparsely
connected. Expectation-Maximization (EM) based
algorithms (1995) [6], [8], [12] assigns alleles to
haplotypes with high likelihood using estimated
values for population haplotype frequencies, typi-
cally assuming uniform prior for haplotypes. EM
approaches are computationally expensive in case
of large number of heterozygous sites.
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−−A−−G−−A−−−T −−C−−−G−−−−
−−C−−G−−A−−−T −−C−−−T −−−−
−−C−−T −−A−−−C−−T −−−G−−−−

Fig. 1. First sequence is reference sequence. Other two sequences
are two copies of a chromosome. Non SNP positions are marked by
- while the rest are SNPs. There are 6 SNPs in total.

Approximate coalescent based methods, where
new haplotypes are viewed as being derived from
existing ones through mutation and recombination,
achieved significant improvements in phasing qual-
ity. PHASE(v1.1) (2001) [18] was the first sta-
tistical method based on approximate coalescent
based mutation model of Stephens and Donnelly
[16] which identifies new haplotypes as derivative
of old haplotypes with mutations. It uses Gibbs
sampling to sample from the underlying Markov
chain on the haplotype solution space. It exhib-
ited superior accuracy than Clarks and EM but
suffered from very high computational overhead.
PHASE(v2.1.1) (2005) [17] used coalescent with
recombination model to account for linkage disequi-
librium and recombination. Similar to PHASE(v1.1)
it is also computationally expensive. PHASE [18],
[17] was considered gold standard for accuracy
[2] but lost its importance due to slow speed.
fastPHASE (2006)[15] made it possible to phase
thousands of heterozygous sites at a considerable
speed at the cost of reduced accuracy than its
predecessors. Speed up in fastPHASE is achieved
by locally clustering the haplotype using Hidden
Markov model (HMM).

Beagle (2007) [1], similar to fastPHASE, use
HMM to infer haplotypes. Similar to fastPHASE,
it performs local clustering of haplotypes at each
position, but allowing different number of clusters at
each marker. Haplotype clusters form HMM states
here. Impute2 (2009) [9] and MaCH (2010) [11]
can operate on large data sets than what PHASE
can deal with and simultaneously achieving greater
accuracy than fastPHASE. They can be used for
imputation of untyped variants as well. SHAPEIT
(2012)[5] is an enhancement over Impute2 and
MACH that scales linearly in the number of SNPs.
It is lot more faster, accurate and uses less memory
as compared to other two. Availability of large
amounts of public haplotype data such as 1000

genome data [4] and HapMap data [7] have con-
tributed to further improvements in phasing accu-
racy. We refer the reader to [2] for a review on
various phasing algorithms.

A. Our Contribution

We consider the problem of phasing an individ-
ual genotype sample given a collection of known
haplotypes in the population. The known haplotype
collection could for instance be the publicly avail-
able haplotype data such as HapMap data [7] or
1000 genome data[4]. We give a fast and accurate
algorithm GPhase for reconstructing a haplotype
pair consistent with input genotype. Our algorithm
is based on the coalescent based mutation model
of Stephens and Donnelly [16] (without recombi-
nation) which is used in PHASE (v1.1) [18]. Com-
puting optimal solution under this model is expen-
sive and our algorithm uses greedy approximation
for fast and accurate estimation. Our algorithm is
simple, efficient and has linear time and space
complexity. It constructs the solution incrementally
while maintaining a collection of top k candidate
solutions at each step and finally uses the top most
solution as its solution. Experiments on real datasets
revealed improved gene level phasing accuracy for
GPhase tool compared to SHAPEIT, Beagle, MaCH
and Impute2. On simulated data, GPhase tool was
able phase samples each containing more than 1700
markers with high accuracy. Our algorithm can be
viewed as an instance based learner that, for each
input sample, infers most probable solution from
whole training data (known haplotype collection)
using the mutation model. This is in contrast to
other approaches that either use simpler mutation
models or build simple generalized models such
as HMM from the training data for faster infer-
encing, which results in information/accuracy loss.
GPhase tool can be used for gene level phasing
of individual samples using publicly available hap-
lotype datasets such as 1000 genome data. This
has applications in studies on recessive Mendelian
disorders in the absence of parent data. The tool
is freely available for download and use from
https://github.com/kshitijtayal/GPhase/.
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II. ALGORITHM

Notations: We use 0 and 1 to represent two
alleles of a biallelic locus. A haplotype h is specified
over l loci by an l-dimensional binary vector. A
genotype G characterized over l loci is also an l-
dimensional vector from {0, 1, 2}l, where 0, 1 and 2
are counts of the allele coded as 1. It is assumed that
genotype data has no missing information. Let h(i)
and G(i) denote the ith locus of haplotype h and
genotype G respectively. Let h(i : j) and G(i : j)
for i ≤ j denote the sequence of loci i, i+ 1, . . . , j
in h and G respectively. Pair of haplotypes (h1, h2),
called diploid is said to be consistent with genotype
G if G(i) = h1(i) + h2(i) for all i ∈ {1, . . . , l}.
Let An = {a1, . . . , an} denote a multi-set of n
haplotypes each consisting of l loci. We also refer
to An as an n × l haplotype matrix with rows
numbered 1, . . . , n and columns numbered 1, . . . , l
and An(i, j) denoting the jth locus of haplotype ai.
We may conveniently refer to An as a set or as a
matrix.

A. Review of Mutation Model [16]

In this section we review relevant parts of the
coalescent based model proposed by Stephens and
Donnelly (2000) [16] which is used by PHASE
(v1.1) [18] for haplotype inferencing. Our algorithm
uses this model for inferencing. We refer the reader
to [16], [18] for details. Let An denote a multi-set
of n known haplotypes each consisting of l loci.
Let π(h|An) denote the conditional distribution of
observing an l loci haplotype h given An. Stephens
and Donnelly [16], proposes an approximation to
π(h|An) as

π(h|An) =
∑
α∈An

∞∑
m=0

1

n

(
θ

n+ θ

)m
n

n+ θ
(Pm)αh,

where P is the mutation matrix and θ is a scaled
mutation rate. That is, π(h|An) corresponds to
the probability of choosing one haplotype say α
uniformly at random from An and applying m
mutations to α to obtain h, where m is geometrically
distributed with parameter θ/(n+θ). Since comput-
ing the above expression can be expensive, Stephens
and Donnelly [16] makes further simplifying as-
sumption that each locus mutates independently at
rate θ/2 and thus with a total rate of lθ/2 and

according to a 2× 2 transition matrix (for biallelic
case) P . In this simplified model, a haplotype α is
chosen uniformly at random from An and thereafter
m locations (with repetition) are chosen uniformly
from α and mutated according to mutation matrix
P , where m is geometrically distributed with pa-
rameter lθ/(n + lθ). Using properties of Poisson
distribution, this process can be equivalently viewed
as drawing a time t from exponential distribution
with rate parameter 1 and applying mi mutations
to each locus i ∈ {1, . . . , l} where mi values
are independent and are Poisson distributed with
parameter θt/n. Mutations at each locus are again as
per the mutation matrix P . This yields the following
modified expression

π (h|An) =
∑
αεAn

1

n

∫
exp(−t)F (θ,t,n)

α(1)h(1) · · ·F
(θ,t,n)
α(l)h(l)dt

where

F
(θ,t,n)
α(i)h(i) =

∞∑
m=0

(θt/n)m

m!
exp

(
−θt
n

)
(Pm)α(i)h(i)

The integral in the above expression is further
approximated using Gaussian quadrature to finally
obtain

π (h|An) =
1

n

∑
α∈An

f(α, h) (1)

where

f(α, h) =
s∑
i=1

wiF
(θ,ti,n)
α(1)h(1) · · ·F

(θ,ti,n)
α(l)h(l) (2)

Here t1, . . . , ts are the quadrature points and
w1, . . . , ws are the quadrature weights (marginal
probabilities). Matrices F (θ,ti,n)

α(i)h(i) can be precomputed
where the infinite sum can be well approximated by
a finite sum of a large number of terms.

For a haplotype pair H = (h1, h2) we have

Pr(H|An) ∝ π(h1|An, h2)π(h2|An) (3)

In fact, for large n, finding H = (h1, h2) that
maximizes eq. (3) can be approximated by finding
H that maximizes

γ(h1, h2) = π(h1|An)π(h2|An). (4)

PHASE algorithm uses the above model to phase
a collection of genotypes G = {G1, . . . , Gn} [18].
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Their algorithm uses Gibbs sampling where in each
iteration, a random genotype Gi from G is phased
assuming all remaining genotypes in G are correctly
phased. If H−i denote the reconstructed haplotypes
for all genotypes in G except Gi, then most probable
haplotype hi consistent with Gi is inferred using
equation (1) for π(h|H−i) and is selected as a
haplotype for Gi. The process is repeated until
the underlying Markov chain on the solution space
mixes.

Size of the set of haplotypes {hi} consistent
with a genotype Gi has exponential dependency
on the number of heterozygous loci in Gi. Hence,
|{hi}| can be very large in general and this makes
finding most probable hi consistent with genotype
Gi computationally expensive. This issue is partially
addressed in PHASE [18] by considering only few
random heterozygous loci in Gi in each iteration
of Gibbs sampling and thereby restricting the size
of {hi} for each updation [18]. However this can
result in increased mixing time. Simplified alter-
native models were also considered in other tools
such as SHAPEIT and fastPHASE for performance
improvements. In the next section, we describe our
algorithm that approximately solves the problem of
computing a haplotype pair (h1, h2) consistent with
genotype G that maximizes eq (4) given a collection
of known haplotypes An. Our algorithm runs in time
linear in the number of heterozygous loci in G. We
consider only biallelic genotypes.

B. GPhase Algorithm

We describe GPhase algorithm to solve the fol-
lowing problem: given a collection An of known
haplotypes and an unphased genotype G, recon-
struct the haplotype pair H = (h1, h2) that is
consistent with G and maximizes γ(h1, h2) given
by equation (4). If there is a small collection of
genotypes to be phased given the known haplotype
collection An, then the algorithm can be used to
phase each genotype in the collection separately.
We describe a greedy algorithm to solve this prob-
lem approximately. Our experiments for gene level
phasing show that the phasing quality achieved by
our greedy approximation exhibit superior quality
compared to other widely used phasing tools.

Let l denote the number of loci in G and in
haplotypes belonging to An. For brevity of notation,
given θ and n, let

∆i
ab = F

(θ,ti,n)
ab (5)

where a, b ∈ {0, 1}. We remark that ∆i
00,∆

i
01,∆

i
10

and ∆i
11 for i ∈ {1, . . . , s} are fixed for a given

problem as θ and n are fixed. Given two haplotypes
α and β, f(α, β) can be written as

f(α, β) =
s∑
i=1

wici(α, β) (6)

where

ci(α, β) =
l∏

j=1

∆i
α(j)β(j) (7)

For i ∈ {1, . . . , s}, ci(α, β) can be interpreted
as a ‘product similarity’ between α and β where
for each locus j, depending on (α(j)β(j)) ∈
{00, 01, 10, 11}, a multiplicative term ∆i

α(j)β(j) is
contributed to ci(α, β). Function f(α, β) can hence
be interpreted as the weighted sum of s similarity
values c1(α, β), . . . , cs(α, β). It is easy to see that
each locus contributes independently to similarity
values ci(α, β) and the final weighted sum f(α, β)
is invariant to the relative ordering of loci. It is
also easy to verify that the same holds true for
π(h|An) and that the optimal solution that maxi-
mizes γ(h1, h2) is thus invariant any fixed permu-
tation of columns of An and loci of G where the
same permutation is applied to both.

For ease of exposition, before describing the
GPhase algorithm, we consider a related problem:
given a collection An of known haplotypes and
an unphased genotype G, find haplotype h that is
consistent with G and maximizes π(h|An). We give
a fast greedy algorithm GPhaseSingle (Algorithm 1)
to find an approximate solution to this problem. We
remark that this is a fundamental and computation-
ally expensive sub-problem in some of the existing
phasing tools. Our approach could hence be of use
in other phasing methods as well. We will later
extend this algorithm to solve the original problem.
The algorithm considers one locus at a time and
builds candidate solutions incrementally in a greedy
fashion. It maintains its top k candidate solutions
(for a fixed parameter k) that are updated after each
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incremental extension. The order in which loci of G
is considered for phasing is governed by the column
ordering of matrix An resulting from the following
skewness permutation of its columns.
Skewness permutation of An,G: Let An(j) be
the jth column of matrix An. Let δ(j) denote the
absolute value of difference between total number
of 1s and total number of 0s in column An(j).
Skewness permutation of the columns of matrix An
and correspondingly genotype G are done in the
following manner. Let L ⊆ {1, . . . , l} denote the
subset of heterozygous loci in G and let l′ = |L|.
Reorder columns of An such that its first l − l′

columns correspond to columns in {1, . . . , l} − L
(corresponding to homozygous loci in G) in an
arbitrary order. Remaining l′ columns correspond
to columns in L arranged in the decreasing order
of their corresponding δ(j) values. Hence, in the
permuted matrix of An, columns corresponding to
homozygous loci in G appear first followed by
columns corresponding to heterozygous loci in G
in the decreasing order of their 0/1 skewness (δ(j)
values).

By considering columns of the permuted matrix
from left to right, loci (columns) with larger 0/1
skewness are considered earlier because phasing
them can be done with lesser uncertainty. From now
we assume that columns of An (and correspondingly
loci in G) are reordered based on its skewness
permutation. Recalling the notations, let h(1 : j)
for j < l denote a partial haplotype solution for
loci 1, . . . , j. Let π(h(1 : j)|An) denote the value
of π(h|An) when both h and An are restricted to
columns 1, . . . , j. The greedy algorithm maintains
top-k partial solutions h1(1 : j), . . . , hk(1 : j), for
a fixed parameter k, using a k element min heap
data structure based on their π(hi(1 : j)|An) values.
Recalling that the first l − l′ loci of G are all the
homozygous loci of G (after permutation), the heap
is initialized with a single partial solution h(1 : l−l′)
where h(j) = G(j) for j ∈ {1, . . . , l − l′}, with
its corresponding value π(hi(1 : l − l′)|An). Each
candidate top-k partial solution h(1 : j) from the
heap is extended by one locus j+1 in the following
manner. Let h(1 : j)0 denote the sequence of length
j + 1 obtained by appending 0 as the rightmost
element to the sequence h(1 : j). Consider the two
possible extensions h0 = h(1 : j)0 and h1 = h(1 :

j)1 which are j + 1 length haplotypes obtained by
appending 0 and 1 respectively to h(1 : j). Both
h0 and h1 are considered for insertion into the top
k heap of extended solutions based on their values
π(h0(1 : j+1)|An) and π(h1(0 : j+1)|An). Finally,
after scanning all l loci, haplotype h with maximum
value in the k-heap is output as the solution. Top
k partial solutions are maintained instead of only
the current best in order to handle situations where
final top solutions are suboptimal for the partial
solutions considered during extension steps. Larger
values of k would improve the quality of final
solution. These steps are given below as Algorithm
1. Parameters for the algorithm are mutation rate θ,
quadrature points {t1, . . . , ts}, quadrature weights
{w1, . . . , ws} and heap size k.

Algorithm 1. GPhaseSingle

Input:An and G on l loci.
Output: Haplotype h consistent with G.

/* Let l′ be the number of heterozygous loci in
G. */
Do skewness permutation of An, G
Initialize partial solution h(1 : l − l′) with
h(j) = G(j) for j ∈ {1, . . . , l − l′}.
Insert h(1 : l − l′) in T with value π(h(1 :
l − l′)|An).
for j = l − l′ to l − 1 do
S := Elements of T .
Empty T .
for all h(1 : j) in S do

Consider extensions h0 = h(1 : j)0 and
h1 = h(1 : j)1.
Insert h0 in T with value π(h0(1 : j +
1)|An).
Insert h1 in T with value π(h1(1 : j +
1)|An).

end for
end for
return h ∈ T with maximum value.

end

Implementation and Run time: Permutation of An
and G involves computing δ(j) values and sorting
them, which can be achieved in O(nl + l log(l)) =
O(nl) time. We note that since min heap T main-
tains top-k largest solutions, inserting a new element
h in T succeeds only if either heap size is less than
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k or if heap minimum is less than value of h, in
which case the minimum element is replaced with
h. In order to compute π(h(1 : j)|An) efficiently,
we maintain k two dimensional arrays of the form
B[1..n][1..s], where s is the number of quadrature
points, one such array for each of the top k partial
solutions, with total O(nk) space. For each top
k partial solution h(1 : j), B[i][r] entries in its
corresponding B array store cr(ai(1 : j), h(1 : j))
values as given by eq. (7). That is, for a top k
partial solution h(1 : j), we store its s component
similarity values c1(), . . . , cs() between each haplo-
type ai ∈ An and h, both restricted to loci 1, . . . , j.
From eq.(1) and eq.(6), it is easy to see that value of
partial solution π(h|An) is obtained from its corre-
sponding B array as (1/n)

∑n
i=1

∑s
r=1wr · B[i][r].

From eq. (7), it is straightforward to verify that if a
partial solution h(1 : j) is extended by say 0, values
in its B[i][r] array entries can be easily updated as
either B[i][r]×∆r

00 or B[i][r]×∆r
10 depending on

whether j + 1st locus of ai is either 0 or 1. From
Algorithm 1, it follows that the total cost of one
iteration of the outer loop is O(nk) and the total run
time is thus O(nlk). Thus, for fixed k, the algorithm
runs in linear time and uses linear space.

GPhase algorithm: The final algorithm is obtained
by straightforward modification of the previous
GPhaseSingle algorithm. Instead of maintaining top
k partial solutions which are single haplotypes, we
maintain k haplotype pairs (h1(1 : j), h2(1 : j))
consistent with G(1 : j) as partial solutions. That
is, G(i) = h1(i) + h2(i) for i = 1, . . . , j. Value of
the partial solution is given by γ(h1(1 : j), h2(1 :
j)) = π(h1(1 : j)|An) · π(h2(1 : j|An) (see
eq.(4)). Extending a partial solution pair (h1(1 :
j), h2(1 : j)) give rise to two new solution pairs viz.
(h1(1 : j)0, h2(1 : j)1) and (h1(1 : j)1, h2(1 : j)0).
Finally, the solution pair with maximum value is
output. The final algorithm is given in Algorithm 2.
Parameters for the algorithm remain the same.

By arguments similar to that for GPhaseSingle, it
follows that GPhase require total O(nlk) time and
uses O(nk) space. Hence it runs in linear time and
uses linear space for fixed k.

Algorithm 2. GPhase
Input:An and G.
Output: Haplotype pair (h1, h2) consistent with
G.

1: /* Let l′ be the number of heterozygous loci
in G. */

2: Do skewness permutation of An, G
3: Initialize partial solution (h1(1 : l− l′), h2(1 :
l − l′)) with h1(j) = h2(j) = G(j) for j ∈
{1, . . . , l − l′}.

4: Insert (h1(1 : l− l′), h2(1 : l− l′)) in T with
value γ(h1(1 : l − l′), h2(1 : l − l′)).

5: for j = l − l′ to l − 1 do
6: S := Elements of T .
7: Empty T .
8: for all (h1(1 : j), h2(1 : j)) in S do
9: h′0 = h1(1 : j)0 and h′1 = h2(1 : j)1

10: h′′1 = h1(1 : j)1 and h′′0 = h2(1 : j)0
11: Insert (h′0, h

′
1) in T with

value γ(h′0(1 : j + 1), h′1(1 : j + 1)).
12: Insert (h′′0, h

′′
1) in T with

value γ(h′′0(1 : j + 1), h′′1(1 : j + 1)).
13: end for
14: end for
15: return (h1, h2) ∈ T with maximum value.

end

III. RESULTS

We conducted experiments where we compared
GPhase phasing quality with other existing tools.
We performed experiments on both real datasets
and simulated datasets. In particular, we compared
GPhase output with phasing output of Beagle [1],
MaCH [11], Impute2 [9] and SHAPEIT [5]. For
comparison, we used the standard metrics of accu-
racy and switch accuracy [13]. Accuracy is defined
as (l − 1 −ms)/(l − 1), where l is the number of
heterozygous loci in the input genotype and ms is
the number of mismatching loci between inferred
haplotype and true haplotype. Switch accuracy is
defined as (l − 1 − sw)/(l − 1) where sw is the
number of switches to recover true haplotype from
inferred haplotype.

In all our experiments, model parameters used by
GPhase, namely mutation rate θ, quadrature points,
quadrature weights and matrix P were same as that
in PHASE implementation [17]. Value θ was set to
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Fig. 2. Distribution of gene counts based on the average no. of
heterozygous sites for 10 individuals. Heterozygous count range is
split into 12 equal sized intervals and no. of genes falling in each
interval is plotted separately.

1/ log(2n) and number of quadrature points were
2. The 2 × 2 transition matrix P required for pre-
computing ∆r

ij has entries P00 = P11 = 0 and P01 =
P10 = 1. Value of k was set to 20.

A. Real Dataset

For real dataset, we used in-house data that con-
sisted of genotype samples from 10 unrelated indi-
viduals. For each individual, there were 1529 SNP
markers from across chromosomes. These markers
spanned 81 genes. There were 2463 heterozygous
loci in total across all individuals. Constituent hap-
lotypes for these individual genotype samples were
already known from their nuclear family data. This
was used for validation. We conducted separate
phasing experiment on each gene level sample for
each individual using the collection of known hap-
lotypes extracted from 1000 genome data. Fig 2
shows the distribution of genes based on the average
number of heterozygous loci in their corresponding
genotypes (from 10 individuals).

We used 1000 genome public dataset[4] to create
the known haplotype set An. In our experiments,
An consisted of 5008 individual haplotypes from 26
populations. All tools were run with default settings.
We ran SHAPEIT on the inputs both under default
recombination setting and under variable recombi-
nation setting. In the latter case, recombination data
was provided using standard chromosome map files
for human chromosomes [10]. Flag -no-mcmc was
used with SHAPEIT and SHAPEIT RECOM.

Fig. 3. Tool-wise cumulative distributions where for different accu-
racy values, the percentage of genes whose mean switch accuracy is
at least the specified accuracy value is plotted.

Fig. 4. Tool-wise cumulative distributions where for different accu-
racy values, the percentage of genes whose mean accuracy is at least
the specified accuracy value is plotted.

Figures 4 and 3 provide accuracy plots for phas-
ing outputs from all the candidate tools. They pro-
vide cumulative distribution of the percentage of
genes (out of 81) whose mean accuracy and mean
switch accuracy (across 10 individuals) are at least
w for different accuracy values w. From these plots
we see that GPhase phasing quality is superior to
other tools for most of the plotted accuracy values.
This is true in particular for higher accuracy values.

Figures 5 and 6 give plots of mean accuracy
and mean switch accuracy of GPhase separately for
inputs whose heterozygous loci count falls in dif-
ferent ranges. As evident from these plots, GPhase
performs comparably well on inputs with wide
range of heterozygous loci counts.

B. Simulated Data

For simulated data generation, we used Cosi2
[14] as haplotype simulation tool with parame-
ters calibrated to empirical human data. We ran
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Fig. 5. Mean accuracy of GPhase for genotype inputs falling under
different heterozygous loci count ranges.

Fig. 6. Mean switch accuracy of GPhase for genotype inputs falling
under different heterozygous loci count ranges.

it with default settings for European population.
Three separate experiments were conducted based
on the total number of simulated haplotypes gen-
erated, viz. 1000 haplotypes, 5000 haplotypes and
10,000 haplotypes. Haplotypes in the collection had
l = 1760 markers. Each simulated data set has
a recombination rate sampled from a distribution
matching the decode map[10] with recombination
clustered into hotspots. The simulation package can
be obtained from http://www.broad.mit.edu/sfs/cosi.

Simulated data were devoid of SNP ids. Hence
public reference haplotype datasets were not in-
cluded in these experiments. We used leave-one-
out cross-validation (LOOCV) where known set
An is created by including all haplotypes ex-
cept one pair and we infer constituent haplotypes
from the combined genotype of the remaining
pair. We ran these experiments with GPhase and
with SHAPEIT. Default recombination settings were
used for SHAPEIT. Mean switch accuracy results
for GPhase and SHAPEIT for these cross validation
experiments are given in table I. GPhase phasing
exhibited comparable or improved quality for all
three values of n.

We note that genotype samples considered in this
experiment consists of about 1700 markers which

is more than the typical number of markers seen
at gene level. GPhase is able to obtain good phas-
ing accuracy here as well even without explicitly
modeling recombination. We believe that this is due
to sufficiently large collection of known haplotypes
An in these experiments as larger collections would
contain several haplotype instances resulting from
different recombination possibilities. This perhaps
alleviates the need for explicitly factoring recombi-
nation into the model.

TABLE I
AVERAGE PERCENTAGE SWITCH ACCURACY FOR CROSS

VALIDATION EXPERIMENTS ON SIMULATED DATASETS WITH
DIFFERENT SIZES n.

n = 1000 n = 5000 n = 10, 000
GPhase 97.51 97.5 98.73

SHAPEIT 96.1 97.2 98.16

We also performed leave-one-out cross-validation
on 1000 genome data using GPhase. The data con-
sisted of 5008 haplotypes each with 4859 markers.
As in earlier experiment, all haplotypes except one
pair were provided as An in each cross-validation
experiment. GPhase achieved mean switch accuracy
of 97.82 percentage in this case.

As discussed earlier, GPhase has linear run time
and uses linear space. The tool implementation was
done in Python. The tool does fast phasing and all
inputs were phased in a matter of seconds.

IV. CONCLUSION

We considered the problem of phasing an indi-
vidual genotype sample given a collection of known
haplotypes. We give a greedy approximation algo-
rithm GPhase that uses the coalescent based muta-
tion model of Stephens and Donnelly [16], which
is also used in PHASE (v1.1) [18], for inferring a
consistent haplotype pair. Though computing opti-
mal solution under this model is computationally
expensive, our algorithm computes an approximate
solution efficiently in linear time and space. Ex-
periments on real datasets revealed improved gene
level phasing accuracy for GPhase tool compared
to widely used tools such as SHAPEIT, Beagle,
MaCH and Impute2. On simulated data, GPhase
tool was able phase samples containing more than
1700 markers with high accuracy. GPhase tool can
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be used for gene level phasing of individual samples
using publicly available haplotype datasets such as
1000 genome data. This has applications in studies
on recessive Mendelian disorders in the absence
of parent data. It would be interesting to provide
theoretical bounds on the quality of the solution
computed by GPhase algorithm, perhaps under cer-
tain assumptions on the known haplotype collection,
that explains empirical findings. It would also be
worthwhile to conduct chromosome level phasing
experiments using GPhase with large collections of
known haplotypes to evaluate its ability to deal with
recombinations.
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