
Pitfalls in Inferring Human Microbial Dynamics from Temporal

Metagenomics Data

Hong-Tai Cao,1, 2, 3 Travis E. Gibson,1 Amir Bashan,1, 4 and Yang-Yu Liu1, 5

1Channing Division of Network Medicine,

Brigham and Women’s Hospital, Harvard Medical School,

Boston, Massachusetts 02115, USA

2Department of Electrical Engineering,

University of Southern California, Los Angeles, California 90089, USA

3Chu Kochen Honors College, College of Electrical Engineering,

Zhejiang University, Hangzhou, Zhejiang 310027, China

4Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel

5Center for Cancer Systems Biology,

Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA

Abstract

Human gut microbiota is a very complex and dynamic ecosystem that plays a crucial role in

our health and well-being. Inferring microbial community structure and dynamics directly from

time-resolved metagenomics data is key to understanding the community ecology and predicting

its temporal behavior. Many methods have been proposed to perform the inference. Yet, we point

out that there are several pitfalls along the way, from uninformative temporal measurements to the

compositional nature of the relative abundance data, focusing on highly abundant species by ignor-

ing or grouping low-abundance species, and implicit assumptions in various regularization methods.

These issues have to be seriously considered in ecological modeling of human gut microbiota.
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I. INTRODUCTION

We coexist with trillions of microbes that live in and on our bodies [1]. Those microorgan-

isms play key roles in human physiology and diseases [2]. Propelled by metagenomics and

next-generation DNA sequencing technologies, many scientific advances have been made

through the work of large-scale, consortium-driven metagenomic projects [3, 4]. Despite

these technical advances that help us acquire more accurate organismal compositions and

metabolic functions, little is known about the underlying ecological dynamics of our micro-

biota. Indeed, the microbes in our guts form very complex and dynamic ecosystems, which

can be altered by diet change, medical interventions, and other factors [5–7]. The alterability

of our microbiota not only o↵ers a promising future for practical microbiome-based thera-

pies [6, 8], such as fecal microbiota transplantation (FMT) [9, 10], but also raises long-term

safety concerns. After all, due to its high complexity, careless interventions could shift our

microbiota to an undesired state with unintended health consequences. Consequently, there

is an urgent need to understand the underlying ecological dynamics of our microbiota; in the

absence of this knowledge we lack a theoretical framework for microbiome-based therapies

in general.

Inferring system dynamics is a typical task in system identification [11]. Measured tem-

poral data, reasonable dynamical models, and objective criterion for model selection are the

key elements in successfully inferring any system dynamics [12]. In the context of human

gut microbiota, the measured temporal data are the time-series of microbe abundances,

which are typically measured from the stool samples of a few individuals. Di↵erent dynam-

ical models have been used to describe the dynamics of microbial ecosystems, e.g., linear

models [13]; nonlinear models such as di↵erent variations of the Generalized Lotka-Volterra

(GLV) model [14–19]; and other models [20]. Among theses models, GLV is a very popular

one due to its simplicity. Given the measured temporal data and a dynamical model with

many unknown parameters, we need to identify those parameters that yield the best model

estimation according to certain criteria (e.g., minimum estimation error).

There are many existing methods to infer the microbial dynamics and reconstruct the

ecological network from temporal metagenomics data based on the GLV model [21–24].

An overview of the workflow is depicted in Fig. 1. We apply certain perturbations to the

systems (for example the administration of antibiotics or prebiotics) and measure the species
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abundances as a function of time using DNA sequencing technologies. What we don’t

know is the underlying microbial dynamics, which can be parameterized in a population

dynamics model with various model parameters, i.e., intrinsic growth rates, inter- and intra-

species interactions in the GLV model. In particular, the inter-species interactions can be

captured by an ecological network and visualized as a directed graph shown in Fig. (1C).

If the measured temporal data, i.e., the time-series of microbe abundances, are “rich” or

informative enough, then we can reconstruct the ecological dynamics by identifying all the

model parameters. The model parameters can then be used in turn to predict the temporal

behavior of the microbial ecosystem, an ultimate goal of ecological modeling of human gut

microbiota.

Yet, this is just an ideal case. In reality, there are many pitfalls along the way. For

example, the temporal data could be uninformative due to either low sampling rate or “un-

excited” system dynamics. The compositionality nature of the relative abundance data will

cause fundamental limitations in inference. And overlooking low-abundance but strongly

interacting species might lead to erroneous model parameters. Those pitfalls are often ig-

nored but can seriously a↵ect the inference results. In this work we systematically study

those pitfalls and point out possible solutions. Note that here we aim to reconstruct the

ecological dynamics and the corresponding directed inter-species interaction network, rather

than constructing any undirected microbial association network using similarity-based tech-

niques, e.g., Pearson or Spearman correlations for abundance data or the hypergeometric

distribution for presence absence data. The construction of microbial association networks

has its own pitfalls, as discussed with detail in [25].

II. KEY ELEMENTS IN INFERENCE

A. Model

One of the key elements in system identification is choosing a reasonable dynamics model.

Recently, population dynamics models, especially the classical GLV model, have been used

for predictive modeling of the intestinal microbiota [17, 21–24]. Consider a collection of n

microbes in a habitat with the population of microbe i at time t denoted as xi(t), the GLV

model assumes that the microbe populations follow a set of ordinary di↵erential equations

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2016. ; https://doi.org/10.1101/073254doi: bioRxiv preprint 

https://doi.org/10.1101/073254


(ODEs)

ẋi(t) = xi(t)

 
ri +

nX

j=1

aijxj(t)

!
, i = 1, · · · , n. (1)

Here ri is the intrinsic growth rate of microbe i, aij (when i 6= j) accounts for the impact

that microbe j has on the population change of microbe i, and the terms aiix2
i are adopted

according to Verhulst’s logistic growth model [26]. Both ri and aij are assumed to be time-

invariant, i.e., they are constant regardless of how the system evolves over time. By collecting

the individual populations xi(t) into a state vector x(t) = (x1(t), · · · , xn(t))> 2 Rn
>0, Eq. (1)

can be represented in the compact form

ẋ(t) = diag (x(t)) (r +A x(t)) , (2)

where r = (r1, · · · , rn)> 2 Rn is a column vector of the intrinsic growth rates, A = {aij} 2

Rn⇥n is the inter-species interaction matrix, and diag generates a diagonal matrix from a

vector.

The original GLV model, Eq. (2), excludes all the external perturbations applied to the

system. For a class of asymptotically stable microbial ecosystems that follow this deter-

ministic model and without any external perturbations, the microbe abundance profile will

asymptotically approach a unique steady state [19]. The time-series data at steady state are

rather uninformative and not very useful for system identification.

To excite the system and get “richer” or more informative time-series data, we have to

apply external perturbations to drive the system and measure its response. In fact, we have

to design very clever drive-response experiments to infer the underlying dynamics [20, 27].

Recently, an extended GLV model has been proposed to explicitly consider the impact of

various external stimuli or perturbations uq(t)’s on the system dynamics [21, 23]:

ẋ(t) = diag (x(t)) (r +A x(t) +C u(t)) , (3)

where u(t) = (u1(t), · · · , ul(t))> 2 Rl is the perturbation vector at time t, C = {ciq} 2 Rn⇥l

is the susceptibility matrix with ciq representing the stimulus strength of perturbation uq

on species i. This mimics realistic perturbations from antibiotics or prebiotics, which can

inhibit or benefit the growth of certain microbes. The presence or absence of the antibiotics

or prebiotics is evaluated as a binary perturbation u(t) (Fig. 1A) and the overall influences

on the microbial species can be represented by the sum of products of susceptibility C and
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species abundance. We can then infer the microbial system under this particular drive-

response scheme.

Besides the binary perturbation scheme, there is another type of drive-response experi-

ment, which does not require us to introduce the susceptibility matrix C in the GLV model

at all. This driving perturbation is implemented by setting up di↵erent initial conditions

for the microbial ecosystem. For each initial condition change (which mimics the immediate

result of an FMT), the system will respond by displaying certain transient behavior before

it reaches the equilibrium (steady) state. If we concatenate several perturbed time-series

corresponding to di↵erent initial conditions, we can treat the initial conditions as jumps or

finite pulses from the equilibrium state. By construction, the concatenated time-series data

contains various transient behavior of the system corresponding to di↵erent finite pulses,

which could be very informative and help us infer the underlying system dynamics. Fur-

ther comparisons between the above two drive-response experiments are discussed later (see

Supplementary Figure 1).

B. Data

Prior to the era of high-throughput DNA sequencing, microbiology studies heavily relied

on cultivating microbes from collected samples. Yet, this process is rather tedious and time-

consuming. Thanks to the development of next generation sequencing, we can now study

microbiomes by direct DNA sequencing. In particular, the 16S ribosomal RNA (rRNA)

gene targeted amplicon sequencing is a popular approach. In this approach, part of the

16S rRNA gene, which is the most ubiquitous and conserved marker gene of the bacterial

genome, is sequenced [28]. Due to its simplicity, relatively low cost, and the availability

of various developed analysis pipelines, this approach has become routine for determining

the taxonomic composition and species diversity of microbial communities [29]. By filtering

spurious reads and carefully clustering/grouping the remaining reads into the so-called Op-

erational Taxonomic Units (OTUs) based on sequence similarity, one can obtain reliable and

informative counts from 16S rRNA gene sequences. Indeed, as working names of groups of

related bacteria, OTUs are intended to represent some degree of taxonomic relatedness. For

example, when sequences are clustered at 97% sequence similarity, each resulting cluster is

typically thought of as representing a biological species. One can then assign a frequency to
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each distinct genome within the microbial community describing their relative abundances

within the population.

Note that comparing microbial composition between two or more populations on the ba-

sis of OTUs in their corresponding samples is totally di↵erent from comparing the absolute

abundance of the taxa in the microbial ecosystems from which the samples are collected.

Simply because we don’t know the total taxa abundance of the entire microbial ecosystem,

it is only reasonable to draw inferences regarding the relative abundance of a taxon in the

ecosystem using its relative abundance in the collected sample. In short, the microbial com-

munity can be described in terms of which OTUs are present and their relative abundances.

The intrinsic compositionality of the relative abundance data will cause trouble in inference,

as we will discuss in Sec. III C.

To reveal the pitfalls in inference, in this work we generate synthetic time-series data of

microbe abundances using the classical GLV model. There are several advantages of using

synthetic data. First of all, in this way we know exactly all the model parameters, and we

can compare the inferred model parameters with their corresponding ground truth values.

Second, we can freely choose the sampling rate and systematically study its impact on the

performance of inference. Third, we can test di↵erent drive-response perturbation schemes

and check which scheme o↵ers more informative time-series data. Fourth, we can compare

the di↵erence of using absolute abundances and relative abundances in inference. Finally, we

can compare the results of di↵erent regularization methods to check if certain regularization

techniques perform better than others.

Since there is no closed-form solution to the ODEs of the GLV model (3), we solve them

at predetermined time points. Many numerical integration methods such as explicit Runge-

Kutta formula [30, 31], Adams-Bashforth-Moulton method [32] and Gear’s method [33, 34]

can be used to approximate the solutions of (3). In this work, we choose the frequently used

Runge-Kutta method. The total number of the synthetic data points is obtained by dividing

the integral interval by the step-size. Note that the integral interval [0, t] in the numerical

integration can be mapped to any length of time in reality, such as several weeks, days, or

hours. To assign a realistic time unit to the synthetic data, we leverge two observations:

(1) in our simulations (with the model parameters and initial conditions chosen in the

way as described in Supporting Information), the GLV systems typically reach equilbrium

state around t = 1; (2) after small perturbations human microbial ecosystems relax to the
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equilibrium state in about 10 days [17, 21, 24, 35]. Hence, we map the integral interval

[0, t] in the simulation to [0, 10t] days in real time. For example, if we run the numerical

integration from t = 0 to 10, this is equivalent to collecting the time-series data from day 0

to day 100. We emphasize that all the result presented in this work do not depend on the

details of the time unit chosen in our simulations.

C. Inference Methods

Let xi(tk) be the population of the i-th microbial species or OTU and uq(tk) be the q-th

external perturbation at time point tk. Here, k = 0, 1, · · · , T . The synthetic temporal data

are generated based on the intrinsic growth rate vector r, the inter-species interaction matrix

A, and the susceptibility matrix C. We need an inference method to identify all the model

parameters in r, A and C, based on the time-series data {xi(t), uq(t)}.

Move xi(t) of (3) to the left hand side and then integrate both sides over the time interval

[tk, tk+1), yielding

ln (xi(tk+1))� ln (xi(tk)) =

 
ri +

nX

j=1

aijxj(tk) +
lX

q=1

ciquq(tk)

!
(tk+1 � tk) + "i(tk), (4)

where we have assumed that xi(t) and up(t) are roughly constant over t 2 [tk, tk+1), tk > 0.

Here "i(tk) represents the corresponding error arising from the approximation of the integral

by holding the integrand constant over the time interval.

Define the scaled log-di↵erence matrix Y = {yik} = {yi(tk)} 2 Rn⇥T where yi(tk) =

[ln (xi(tk+1))�ln (xi(tk))]/(tk+1�tk), the parameter vector ✓>i = [ri, ai1, · · · , ain, ci1, · · · , cil]> 2

R1+n+l, and the vector �k = [1, x1(tk), · · · , xn(tk), u1(tk), · · · , ul(tk)]
> 2 R1+n+l, then the

discretized GLV model (4) can be represented by a system of linear algebraic equations:

Y = ⇥ ·�+ ✏. (5)

Here ⇥ = col{✓i} =
⇥
✓

>
1 , ✓

>
2 , · · · , ✓>n

⇤>
= [r,A,C] 2 Rn⇥(1+n+l) is the parameter matrix

that needs to be identified. ✏ 2 Rn⇥T represents the corresponding approximation error

matrix. � = row{�k} = [�0,�1, · · · ,�T�1] 2 R(1+n+l)⇥T . Equation (5) is often called the

identification function that can be used to solve for the unknown parameter matrix ⇥.

Given any time-series data x(tk) and u(tk) of the GLV model, ⇥ should be a solution of

the identification function (5). Yet, ⇥ usually cannot be exactly solved, since (5) is usually
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underdetermined because of the limited available data. Indeed, the number of equations

n⇥T is typically less than the number of unknowns n⇥ (1+n+ l). ⇥ can be approximately

solved by optimization methods. There are many algorithms to obtain an approximate

solution, though. We discuss those methods as follows.

1. Least square

Mathematically, ⇥ can be estimated as ⇥̂ by solving the following optimization problem:

min
⇥̂

kY � ⇥̂�k2F, (6)

where kZkF =
qPm

i=1

Pn
j=1 z

2
ij is the Frobenius norm of matrix Z = {zij} 2 Rm⇥n. The

solution ⇥̂ can be obtained by the classical least-square regression method:

⇥̂ = Y�> ���>�†
, (7)

where
�
��>�† represents the pseudo-inverse matrix of ��>. Note that

�
��>�† =

�
��>��1

when ��> is non-singular.

2. Regularizations

In statistic regressions, the least-square solution (without any penalty) (7) can be biased

and cause overfitting, which results in extremely large absolute values in the model parame-

ters, rendering the results meaningless. It is possible that the matrix ��> is nearly singular,

which will cause its inverse matrix numerically unstable and the estimation over-fitted. To

avoid extreme parameter values and increase the numerical stability of the inference algo-

rithm, we can add penalty terms to the regression. This is often called regularization in

regression methods.

Depending on the penalty terms (e.g., based on `

1- or `2-norm), there are many di↵erent

types of regularization methods. In particular, lasso regularization [36–38], which uses `

1-

norm penalties, solves the regression problem in the form of

min
�i,✓̂i

 
1

2T

TX

k=1

⇣
yik � �k✓̂

>
i

⌘2
+ �i

1+n+lX

j=1

|✓̂ij|
!
, (8)
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where ✓̂ij is the j-th element in ✓̂i and i = 1, 2, · · · , n. Lasso regression estimates the

unknown parameters in the i-th row of ⇥̂. There are several algorithms solving this opti-

mization problem, such as truncated singular value decomposition, l-curve, cross validation

and so on. Detailed algorithms and discussions can be found in [39]. In this work, we use

the k-fold cross validation method and let k = 5 in lasso regularization.

To perform cross validation, we divide the the entire data into two parts: training and

test. The training data is used to solve the optimization problem and identify the model

parameters. The test data is used for validation. In k-fold cross validation, we divide the

original data into k data sets, randomly choose one set as the test data, and use the rest

(k � 1) data sets as the training data. The regularizations are performed on the training

dataset, and then the residual error of the test set (or the whole dataset) is constructed as a

function of �i. This function is used to measure the accuracy of time-series prediction, where

smaller error means better estimation. The value of �i is set when this function reaches its

minimum. Finally the estimation of the model is obtained by the regularization over the

total dataset.

Di↵erent from the lasso regularization that uses `1-norm penalties, Tikhonov regulariza-

tion, as known as ridge regression in statistics, uses `2-norm penalties:

min
�i,✓̂i

 
1

2T

TX

k=1

⇣
yik � �k✓̂

>
i

⌘2
+

�i

2
k✓̂>i k2

!
, (9)

where k · k represents the `

2-norm and i = 1, 2, · · · , n. Similar to lasso regression, the

above penalty terms �i can also be determined by cross validation. There are n di↵erent

�i’s penalizing all the model parameters. Alternatively, we can let the same �i penalize the

same part of the estimations ✓̂i in ⇥̂ so that the growth rate vector r, interaction matrix A

and susceptibility matrix C are penalized separately [21]:

min
�r,�A,�c,⇥̂

kY � ⇥̂�k2F + �rkr̂k2 + �AkÂk2F + �ckĉk2F. (10)

Note that in the original optimization problem (9), it is not required that some �i’s should

be the same value mathematically. For simplicity, the estimation ⇥̂ is penalized by using

di↵erent �i in two di↵erent schemes: vector scheme and matrix scheme. The former is an

optimization problem in the form of (9) by breaking up the matrix ⇥̂ into vectors and using

di↵erent penalty terms for di↵erent rows of ⇥̂. The latter treats the r, A and C as separate

objects and use the same �i for penalizing the same object. It then solves the regularization
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in the form of (10), as shown above. As there is an implicit assumption that the r, A and

C should be penalized separately in (10), it adds more constraints when identifying the

parameters in the extended GLV model. We prefer the original optimization (9) because of

its flexibility in choosing the penalty terms.

Linear combinations of `1- and `

2-norm penalties in (8) and (9) result in the so-called

elastic net regularization method [40]:

min
�i,✓̂i

 
1

2T

TX

k=1

⇣
yik � �k✓̂

>
i

⌘2
+ �iPµ(✓̂

>
i )

!
, (11)

where Pµ(✓̂>i ) =
1�µ
2 k✓̂>i k2 + µ

P1+n+l
j=1 |✓̂ij|, and µ 2 [0, 1] is a predetermined parameter for

the optimization. The elastic net regularization becomes the Tikhonov (or lasso) regular-

ization when µ = 0 (or 1), respectively.

All the regularization methods (lasso, Tikhonov and elastic net) use penalty terms to

regularize the least-square regression. The penalty terms make the absolute values of es-

timation smaller and suppress the unimportant parameters to 0. Due to the presence of

penalty terms �i

P
|✓̂ij| in lasso regularization (8), unimportant parameters in ✓i will be

forced to be 0. Therefore lasso is a kind of sparse regression that implicitly assumes the

interaction matrix A in the GLV model is sparse (which is of course not necessarily true).

By contrast, Tikhonov regularization (9) does not force the parameters to be zero, because

the penalty term �i

2 k✓̂
>
i k2 does not penalize the absolute values in the estimation. Therefore

Tikhonov regularization does not have the property of sparse regression. Although these

regularization methods reduce the norm of estimation and aim to make the results more

realistic, it doesn’t mean the results are getting close to the ground truth, as we will discuss

in Sec. III E.

III. PITFALLS

A. Accurate time-series prediction does not imply accurate inference.

Since the ground truth is typically unknown in real-world system identification problems,

the identified system parameters are usually verified by simulating the model dynamics and

comparing the predicted time-series with the measured one. This is suitable for simple sys-

tems with the number of unknown parameters much smaller than the number of data points.
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Yet, for complex ecosystems such as human gut microbiota that have hundreds of species,

this approach is rather unreliable in practice. Consider the popular binary perturbation

scheme of microbial systems described by the extended GLV model (3), which is a system

of nonlinear di↵erential equations with n(1 + n+ l) unknown parameters for n species with

l external perturbations. Since the time-series data typically have very limited time resolu-

tion and very few data points, we are facing an underdetermined problem (the number of

equations, which is proportional to the number of data points, is much less than the number

of unknowns). Over-fitting is a notorious issue in this scenario. Even if the temporal be-

havior of microbial systems are predicted with high accuracy, there is no guarantee that the

identified model parameters are close to their ground truth values. Indeed, accurate tempo-

ral predictions are possible even if the identified interactions look totally di↵erent from the

actual ones [41].

To demonstrate the above point, we set up a synthetic microbial system with 8 species,

following the GLV dynamics with 3 binary perturbations. It is a microbial system with

homogeneous interaction strengths among all species with mean degree 6.4 in the underlying

ecological network. The abundance of a certain species is increased when its susceptibility

is positive and the binary perturbation is turned on. The population of all the species in

the microbial systems are simulated from t = 0 to 10, mapped to 100 days. The sampling

rate is set to be once per day, which means there are total 100 data points for this data set,

where the time interval between two adjacent data points is one day.

Comparing Fig. 2A2 and A3, we find that we can accurately predict the temporal behavior

of microbial population, given the same initial conditions and the time-series perturbation

data (Fig. 2A1). Yet, the identified inter-species interaction network (Fig. 2B2) looks dras-

tically di↵erent from the ground truth (Fig. 2B1). For example, some strong interactions

(e.g., 2 ! 1) are lost, and some unessential interactions are inferred as dominant interac-

tions (e.g., 6 ! 5). In fact, all the identified model parameters are quite di↵erent from the

ground truth (see Fig. 2C1-C3).

The inference method used in generating Fig. 2 is just the least-square regression, which

is fast and e↵ective in predicting the population behavior. But it has a potential drawback

of over-fitting, especially when there are a lot of estimation parameters while the given

time-series is not long enough. Here, we have 100 data points and 96 model parameters,

hence it is not a big surprise that there is an over-fitting issue and the regression results
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are not reliable. If the sampling rate is increased to 100 times per day (which is of course

more challenging and expensive), then both the prediction of microbial populations and

interaction network reconstruction become more accurate and the over-fitting issue will be

largely mitigated, as shown in Fig. 1.

The above result clearly demonstrates that accurate temporal prediction could be just

due to over-fitting, and the identified model parameters could be far from the ground truth.

B. Sampling rate really matters.

Di↵erent sampling rates capture di↵erent resolutions of the dynamics of the microbial

system [42]. Inferred microbial networks from time series data can be misleading if the

microbial system is sampled at an improper frequency. Unfortunately, there is no simple

rules like nyquist frequency for the GLV model, and the ideal sampling rate depends on

the particular microbial system of interest [42, 43]. Results presented in Fig. 1 and Fig. 2

clearly suggest that sampling rate is really an important factor determining the performance

of inference, as discussed in detail below.

We are interested in the continuous-time dynamics of microbial communities. But mea-

surements are always taken at discrete time points, resulting in discrete time-series data. The

sampling rate becomes crucial as it bridges the measured discrete time-series data and the

original microbial system. Obviously, higher sampling rate makes the interpolated discrete

time-series data better approximate the continuous-time dynamics of the original system. It

should be pointed out that the inference method (4) itself requires high sampling rates. The

scaled log di↵erence yik represents the linearized approximation of the GLV, whose numer-

ator is a nonlinear function and the denominator is the step size. The approximation error

is "i(tk) = yik � c, where c = ri +
Pn

j=1 aijxj(tk) +
Pl

q=1 ciquq(tk) in the integral interval

[tk, tk+1). As tk+1� tk increases linearly, yik changes nonlinearly, which results in a nonlinear

increase of "i(tk). Sampling rate becomes substantial because of this nonlinear behavior of

the approximation error. Though we can arbitrarily increase the sampling rate for synthetic

data, it is rather costly in real data collection. Hence, it would be more desirable if the

time-series data can approximate the original microbial dynamics with higher accuracy at a

lower sampling rate.

The binary perturbation scheme helps us excite the system to get more informative time-
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series data, but the extended GLV model (3) introduces more model parameters (which

consist of the whole susceptibility matrix C) than the original GLV model (2). Moreover,

the presence and absence of the introduced antibiotics or prebiotics bring new di�culties.

More unknown model parameters apparently require time-series data with higher sampling

rate. In reality, due to many limitations, the finest longitudinal data of human gut micro-

biota is actually sampled on just a daily basis. Hence, using the original GLV model with

concatenated time-series with di↵erent initial conditions could be a better way to perform

inference. Indeed, we find that this initial-condition-perturbation scheme is much better

than the binary perturbation scheme in terms of smaller number of unknowns. It also pro-

vides higher accurate inferring results comparing to the binary external perturbations (see

Supplementary Figure 1).

We now evaluate the impacts of sampling rate on the performance of inference with the

initial-condition-perturbation scheme. We choose four sampling rates: weekly, every two

days, daily, and twice a day, as shown in Fig. 3. Indeed, we find that the higher sampling

rate, the better inference results. Even the data are sampled every two days, the inferred

interactions are much more reliable than the results with weekly sampling rate.

In reality, the initial-condition-perturbation can be implemented by fecal microbiota

transplantation, which immediately changes the abundances of multiple species (or even

introduces some new species). In the rest of this paper, we will focus on this type of pertur-

bation.

C. Compositionality raises serious challenges.

As discussed in Sec.II B, microbial communities can be typically described in terms of

memberships and relative abundances of OTUs. Of course, if the total population is roughly

time-invariant, then the compositionality of relative abundance data will not significantly

alter the original time-series data. This may lead us to conclude that this will not a↵ect

the inference. Yet, this is not the case. A time-invariant total population will be linearly

correlated with the constant row in �, introducing linear correlations of rows of �. This

will leads to the rank deficiency of the matrix ��>. Hence a roughly time-invariant total

population will cause��> to be almost singular, drastically reducing the numerical stability

of the inverse and worsening the inference results.
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It seems that there is no numerical stability issue if the total population is not time-

invariant. However, this is not the case. To demonstrate the e↵ect of compositionality of

relative abundance data in inference, we normalize the original time-series data obtained

from the same microbial system used in Fig. 3. We simply apply the least-square re-

gression method to both original and normalized time-series data. Results are shown in

Fig. 4. It is obvious that normalizing the original time-series data makes the inference

results worse. Moreover, the accurate prediction of the microbial populations becomes im-

possible. These results can be explained by the fact that normalization makes ��> singu-

lar. Let x̃(tk) be the normalized data of x(tk). It holds that
P

i x̃i(tk) = 1. Denote x̃(tk) =

col{x̃1(tk), x̃2(tk), · · · , x̃n(tk)}, k = 0, 1, · · ·T�1. Let X̃ = [x̃(t0), x̃(t1), · · · , x̃(tT�1)] 2 Rn⇥T .

Apparently, the rows of X̃ are linearly dependent, and rank(X̃) 6 min(n � 1, T ). Let

1 2 R1⇥T be a row vector andU = [u(t0), u(t1), · · · , u(tT�1)] 2 Rl⇥T , then� = col{1, X̃,U}.

We have rank(�) 6 min(n� 1 + l, T ), simply because the constant row (i.e., the first row)

and one row in the X̃ partition of � are linearly correlated with the other rows in �. This

leads to rank(��>) 6 n� 1 + l and thus ��> is rank deficient (i.e., singular).

In addition to causing rank deficiency, compositionality will cause a more serious issue:

distorting the original dynamics. As shown by the top (blue) curves in Fig. 4A1 and B1. The

first jump is a positive jump in the original data (A1), representing an increase in absolute

abundance of this species. Yet, it becomes negative after normalization (B1), indicating a

decrease in the relative abundance of this species. This distortion of the oringinal temporal

data will definitely a↵ect the inference results. One promising solution to resolve this issue

is to measure overall microbial biomass over time in the ecosystem via the quantitative PCR

technique [21, 23, 24].

D. Grouping or ignoring low-abundance species lacks justification.

Since the number of equations is typically much smaller than the number of unknowns,

many previous works group those low-abundance species together and treat them as a

pseudo-species [21, 22]. This approach sounds very rational in reducing the number of

unknowns (i.e., model parameters). Yet, we don’t know if it indeed works as we expected.

In case the low-abundance species are also strongly interacting species (i.e. they interact

strongly with their interacting partners), they can easily drive the the microbial ecosys-
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tem to di↵erent steady states [19]. Simply grouping all the low-abundance species together

might generate distorted interaction networks. To test this idea, we systematically study

the impact of grouping low-abundance species in inferences.

We define high-abundance species to be those species that account up to 90% of the

total abundance or more in the sampled time series data. We compare three di↵erent

scenarios: (1) We infer the interactions using the entire time series data without grouping

low-abundance species. (2) We simply remove the low-abundance species in the temporal

data, and focus only on the remaining species. (3) We group all the low-abundance species

as a new species, and then perform the inference. Inspired by [19], we deliberately generate a

microbial system with interaction strength heterogeneity. The inferred results for the above

three scenarios are shown in Fig. 5. Note that when all the species are considered, the

identified interactions are accurate. Yet, ignoring or grouping low-abundance species leads

to poor inference results.

We emphasize that grouping low-abundance species is not a solution to the underdeter-

mined problem. Even the microbial interaction network is assumed to be homogeneous,

reconstructed network obtained by grouping some low-abundance species can be mislead-

ing, because grouping can create false interactions between the grouped species and highly

abundant species.

E. Regularizations need to be done with care.

Since the identification function (5) is typically under-determined, to avoid over-fitting,

regularization methods such as (9), (8) and (11) are preferred to the least-square regression

method (no regularization) (7). To determine which of the methods: least-square regression

(no regularization), Tikhonov (with `

2-norm penalty), lasso (with `

1-norm penalty) and

elastic net (a linear combination of `1- and `

2-norm penalties), works best, we apply them

to the same time-series data (Fig. 6). We find that least-square regression certainly cannot

identify the model parameters. To our surprise, Tikhonov regularization does not work well

either. This is partially due to the fact that it penalizes the square of unknowns, rather

than the absolute values of the unknowns as lasso regularization does. If the unknowns

have orders of magnitude di↵erences, then Tikhonov regularization is doomed to failure.

By contrast, lasso regularization shrinks the absolute values of the unknowns to avoid the
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over fitting problem. Hence it works very well even if the unknowns could have orders of

magnitude di↵erences. Finally, although elastic net regularization combines both `

1- and

`

2-norm penalties, there is no clear improvement in its inferred results.

IV. CONCLUSIONS AND PROSPECTS

Inferring microbial dynamics from temporal metagenomics data is a very challenging task.

Existing methods work well in predicting the population evolution of microbial systems.

Yet, the identified model parameters might be totally di↵erent from their ground-truth

values. Without direct experimental validation, it is hard to conclude that the inferred

dynamics represents the true underlying microbial dynamics. New inference methods that

can leverage some prior knowledge of the growth rates or/and inter-species interactions need

to be developed.

Note that in this work, we do not focus on some other issues in dealing with real micro-

biome data, e.g., measurement noise, which of course will also a↵ect the inference. Instead,

we focus on synthetic data generated from GLV model. We point out that even with “clean”

time series data, current technological limitations and common practices can lead to poor

system identification. Some of these pitfalls can be overcome with more information, i.e.,

the measurement of total bacterial biomass present in the samples using qPCR techniques.

Other pitfalls are more di�cult to deal with. New inference methods that can take full ad-

vantage of existing microbiome datasets still need to be developed. In particular, Bayesian

inference algorithms could be very useful in practice, because they can not only estimate

error in inferences of dynamical systems parameters but also perform statistical modeling

of temporal metagenomics data [24].
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FIG. 1. Overview of the workflow inferring microbial dynamics from time-series data.

Given suitable perturbations (A) on a microbial ecosystem, and the corresponding time-series of

microbe abundances (B), we aim to infer the microbial dynamics and reconstruct the underlying

microbe-microbe interaction network (C), using classical population dynamics models, e.g., the

Generalized Lotka-Volterra (GLV) model, and various standard system identification techniques

(D). In the ideal case, the reconstructed microbe-microbe interaction network (E) captures all the

key features of the original network (C), and the predicted time-series (F) agrees well with the

original measurement (B). Yet, as pointed in this paper, there are many pitfalls in inferring the

microbial dynamics from time-series data. In both (C) and (E), positive (or negative) interactions

are shown in blue (or red) arrows, respectively. The absolute interaction strengths are proportional

to the arrow widths and the microbiota growth rates are represented by circle colors.
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FIG. 2. Perfect time-series prediction does not imply accurate network reconstruction.

A1: Time series of binary perturbations. A2: Synthetic time-series of species abundances gener-

ated from a GLV model. Both perturbation and abundance data are sampled once per day. A3:

Predicted time-series of species abundances calculated from the inferred GLV model. B1: Original

inter-species interaction network. B2: Reconstructed inter-species interaction network. Here in

both B1 and B2 only the top-10 strongest interactions are shown. Circle colors represent growth

rates. C1: Inferred interaction strengths v.s. true interaction strengths. C2: Inferred growth rates

v.s. true growth rates. C3: Inferred susceptibilities v.s. true susceptibilities.
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FIG. 3. Impact of sampling rates on inferring microbial dynamics. Row-1: Time-series of

species abundances generated from a GLV model with di↵erent sampling rates: (A1) once a week;

(B1) every two days; (C1) daily; and (D1) twice a day. Row-2: Predicted time-series of species

abundances calculated from the corresponding inferred GLV model. Row-3: True interaction

strengths v.s. inferred interaction strengths from time-series data of di↵erent sampling rates.

Row-4: True growth rates v.s. inferred growth rates from time-series data of di↵erent sampling

rates.
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FIG. 4. Compositionality of relative abundance data impedes the inference of microbial

dynamics. Column-1: using absolute abundances data. (A1) Time-series of absolute abundances;

(A2) Predicted time-series of absolute abundances; (A3) True interaction strengths v.s. inferred

interaction strengths; (A4) True growth rates v.s. inferred growth rates. Column-2: using relative

abundances data. (B1) Time-series of relative abundances; (B2) Predicted time-series of relative

abundances; (B3) True interaction strengths v.s. inferred interaction strengths; (B4) True growth

rates v.s. inferred growth rates. Inference results from relative abundances are far from the ground

truth. The time-series prediction of relative abundances also di↵er significantly from that of the

original relative abundances.
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FIG. 5. Ignoring or grouping low-abundance species impedes the inference of microbial

dynamics. Column (A): Without ignoring or grouping of low-abundance species, the inference

results are acceptable, and the predicted time-series agrees well with the original time-series data,

provided the sampling rate is high enough. Column (B): After ignoring the low-abundance species,

the inference results are much worse, despite the predicted time-series still agrees well with the

original time-series data. Column (C): If we group the low-abundance species together and regard

them as a new species, the inference results are still not comparable to the results of using original

data. In generating these figures, we consider a system of n = 15 species with an heterogeneous

inter-species interaction network with mean degree hki = 11.2.
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FIG. 6. Inappropriate regularization impedes the inference of microbial dynamics. Col-

umn (A): Without any regularization, we can perform the inference using the least-square method

(i.e., no penalty terms). The inference results are not acceptable. Column (B): With Tikhonov

regularization (also known as L2-regularization or ridge regression), the inference results are still

bad. Column (C): With lasso regularization (also known as L1-regularization), the inference results

are slightly better. Column (D): With elastic net regularization, which uses a linear combination

of `1- and `2-norm penalty terms (with µ = 0.5 in (11)), the inference results are as good as that

of using lasso only. Note that in all the four cases, the predicted time-series agrees well with the

original time-series data. In generating these figures, we consider a microbial ecosystem of n = 30

species with an homogeneous inter-species interaction network and mean degree hki = 23.2.
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SUPPORTING INFORMATION

A. Generate the synthetic data.

We use a class of asymptotically stable GLV models for the generation of synthetic data

[1]. Let N be a random matrix whose elements are drawn from the standard normal dis-

tribution, i.e., [N]ij ⇠ N (0, 1). Let H be a diagonal matrix whose diagonal elements are

either all ones or from a power-law distribution, i.e., [H]ij ⇠ P (�) = (1� u)
1

1�� in [1,+1)

with exponent � = 1.2, and u taken from a uniform distribution U [0, 1). Let A be the adja-

cency matrix of the interaction network in the microbial community. Finally, the interaction

matrix A is generated by

A =
1

s

NH �A (1)

with all diagonal elements aii’s set to be �1 to ensure stability. Here, s is a scaling factor,

and the Hadamard product � multiplies two matrices of the same dimension element by

element. If the diagonal matrix H has all ones for diagonal elements, then the columns

of A have similar mean absolute values and all the species are equally interactive, which

generates a homogeneous interaction network. If the diagonal elements of H are taken from

a power-law distribution, then some columns will have high mean absolute values and the

corresponding species become the so-called strongly interactive species, which generates a

heterogeneous interaction network. A determines the total number of interactions among

all the species in the microbial community, whose o↵-diagonal elements follow a Bernoulli

distribution, i.e., [A]ij ⇠ P (X = 1) = 0.8. To ensure stability, the scaling factor s = 1 if

the H generates a homogeneous interaction network, otherwise s = 1P
i[H]ii

[1].

Regarding the intrinsic growth rate vector r, if we allow for low-abundance species, we

draw [r]i from a uniform distribution U(0, 1). Otherwise, we simply choose [r]i ⇠ U(0, n),

where n is the total number of species. In both cases, we keep generating intrinsic growth

rate r until the expected steady state x

⇤ = �A�1
r becomes feasible, i.e., x⇤

i > 0 for all

species. For the susceptibility matrix C, we choose [C]iq ⇠ U [�3, 3]. In the case of binary

perturbation scheme, we choose the initial conditions at t0 to be close to the equilibrium

state, i.e., [�A�1
r,�1.05A�1

r], so that the intrinsic system relaxation doesn’t mix up with

its response to external binary perturbation. In the case of changing initial conditions

scheme, we use the same initial conditions as the case of binary perturbation scheme. Finally

1
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the GLV model is solved according the Runge-Kutta method. The final time-series data are

sampled as needed from the numerical integration results.

B. Compare the drive response model.

To compare the inference results of two driving-response schemes: (1) external binary

perturbations; (2) changing of initial conditions, we apply them to synthetic data generated

from the same microbial system. We apply the least-square regression method to infer the

dynamics at two di↵erent sampling rates. Details are shown in Supplementary Fig. 1. We

find that concatenating time-series of di↵erent initial conditions yields much better inference

results than external perturbations. Indeed, the identification results of the external binary

perturbation scheme look really bad. Yet, its predicted time-series still agrees well with the

original one, partially because the susceptibility matrix C is inferred properly in this case.

[1] T. E. Gibson, A. Bashan, H.-T. Cao, S. T. Weiss, and Y.-Y. Liu, PLOS Computational Biology

12, e1004688 (2016).
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FIG. 1. Inferred results of the same microbial system with two di↵erent driving re-

sponse schemes under the same sampling rate. All the data are sampled from the same

microbial systems. Column A represent the data and inferred results under binary perturbations

sampled once per day. Column B is same as A but the sampling rate is doubled. Column C

represent the data sampled once per day and the inferred results by changing the initial conditions

only. Column D is the same as C but the sampling rate is doubled. Clearly we get better inference

results by changing the initial conditions and doubling the sampling rate.
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