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Abstract 9 

Motivation: Protein contacts contain key information for the understanding of protein structure and 10 

function and thus, contact prediction from sequence is an important problem. Recently exciting 11 

progress has been made on this problem, but the predicted contacts for proteins without many sequence 12 

homologs is still of low quality and not extremely useful for de novo structure prediction.  13 

Method: This paper presents a new deep learning method that predicts contacts by integrating both 14 

evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural 15 

network formed by two deep residual neural networks. The first residual network conducts a series of 16 

1-dimensional convolutional transformation of sequential features; the second residual network 17 

conducts a series of 2-dimensional convolutional transformation of pairwise information including 18 

output of the first residual network, EC information and pairwise potential. By using very deep residual 19 

networks, we can model contact occurring patterns and very complex sequence-structure relationship 20 

and thus, obtain high-quality contact prediction regardless of how many sequence homologs are 21 

available for proteins in question.  22 

Results: Our method greatly outperforms existing methods and leads to much more accurate 23 

contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 24 

membrane proteins, the average top L long-range prediction accuracy obtained our method, one 25 

representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, 26 

respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 27 

0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without 28 

any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that 29 

using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, 30 

respectively. Our contact-assisted models also have much better quality than template-based models 31 

especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 32 

for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for 33 

only 10 of them. Further, even if trained by only non-membrane proteins, our deep learning method 34 
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works very well on membrane protein contact prediction. In the recent blind CAMEO benchmark, our 35 

fully-automated web server implementing this method successfully folded 4 targets with a new fold and 36 

only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein 37 

of 125 residues, one α protein of 140 residues and one α protein of 217 residues. 38 

Availability: http://raptorx.uchicago.edu/ContactMap/  39 

Author Summary 40 

Protein contact prediction from sequence alone is an important problem. Recently exciting progress has 41 

been made on this problem due to the development of direct evolutionary coupling analysis (DCA). 42 

However, DCA is effective on only some proteins with a very large number (>1000) of sequence 43 

homologs. To further improve contact prediction, we borrow ideas from the latest breakthrough of deep 44 

learning, a powerful machine learning technique that has recently revolutionized object recognition, 45 

speech recognition and the GO game. We have developed a new deep learning method that predicts 46 

contacts by integrating both sequence conservation and co-variation information through an ultra-deep 47 

neural network, which can model very complex relationship between sequence and contact map as well 48 

as high-order correlation among residues.  49 

Our test results suggest that deep learning can revolutionize protein contact prediction. Tested on 398 50 

membrane proteins, the L/10 long-range accuracy obtained by our method is 77.6% while that by the 51 

state-of-the-art methods CCMpred and MetaPSICOV is 51.8% and 61.2%, respectively. Ab initio 52 

folding using our predicted contacts as restraints can generate much better 3D structural models than 53 

the other contact prediction methods. In particular, without using any force fields our predicted contacts 54 

yield correct folds for 203 of the 579 test proteins, while MetaPSICOV- and CCMpred can do so for 55 

only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than 56 

template-based models (TBM) built from the training proteins. For example, our contact-assisted 57 

models have TMscore>0.5 for 208 of the 398 membrane proteins while TBMs have TMscore >0.5 for 58 

only 10 of them. Even without using any membrane proteins to train our deep learning models, our 59 

method still performs very well on membrane protein contact prediction. Recent blind test of our 60 

method in CAMEO shows that our method successfully folded 4 targets with a new fold and only 61 

0.3L-2.3L effective sequence homologs. 62 

Introduction 63 

De novo protein structure prediction from sequence alone is one of most challenging problems in 64 

computational biology. Recent progress has indicated that some correctly-predicted long-range contacts 65 

may allow accurate topology-level structure modeling (1) and that direct evolutionary coupling 66 

analysis (DCA) of multiple sequence alignment (MSA) may reveal some long-range native contacts for 67 

proteins and protein-protein interactions with a large number of sequence homologs (2, 3). Therefore, 68 

contact prediction and contact-assisted protein folding has recently gained much attention in the 69 

community. However, for many proteins especially those without many sequence homologs, the 70 

predicted contacts by the state-of-the-art predictors such as CCMpred (4), PSICOV (5), Evfold (6), 71 
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plmDCA(7), Gremlin(8), MetaPSICOV (9) and CoinDCA (10) are still of low quality and insufficient 72 

for accurate contact-assisted protein folding (11); (12). This motivates us to develop a better contact 73 

prediction method, especially for proteins without a large number of sequence homologs. In this paper 74 

we define that two residues form a contact if they are spatially proximal in the native structure, i.e., the 75 

Euclidean distance of their Cβ atoms less than 8Å (13).  76 

Existing contact prediction methods roughly belong to two categories: evolutionary coupling analysis 77 

(ECA) and supervised machine learning. ECA predicts contacts by identifying co-evolved residues in a 78 

protein, such as EVfold (6), PSICOV (5), CCMpred (4), Gremlin (8), plmDCA and others (14-16). 79 

However, DCA usually needs a large number of sequence homologs to be effective (10, 17). 80 

Supervised machine learning predicts contacts from a variety of information, e.g., SVMSEQ (18), 81 

CMAPpro (13), PconsC2 (17), MetaPSICOV (9), PhyCMAP (19) and CoinDCA-NN (10). Meanwhile, 82 

PconsC2 uses a 5-layer supervised learning architecture (17); CoinDCA-NN and MetaPSICOV employ 83 

a 2-layer neural network (9). CMAPpro uses a neural network with more layers, but its performance 84 

saturates at about 10 layers. Some supervised methods such as MetaPSICOV and CoinDCA-NN 85 

outperform ECA on proteins without many sequence homologs, but their performance is still limited by 86 

their shallow architectures.  87 

To further improve supervised learning methods for contact prediction, we borrow ideas from very 88 

recent breakthrough in computer vision. In particular, we have greatly improved contact prediction by 89 

developing a brand-new deep learning model called residual neural network (20) for contact prediction. 90 

Deep learning is a powerful machine learning technique that has revolutionized image classification 91 

(21, 22) and speech recognition (23). In 2015, ultra-deep residual neural networks (24) demonstrated 92 

superior performance in several computer vision challenges (similar to CASP) such as image 93 

classification and object recognition (25). If we treat a protein contact map as an image, then protein 94 

contact prediction is kind of similar to (but not exactly same as) pixel-level image labeling, so some 95 

techniques effective for image labeling may also work for contact prediction. However, there are some 96 

important differences between image labeling and contact prediction. First, in computer vision 97 

community, image-level labeling (i.e., classification of a single image) has been extensively studied, 98 

but there are much fewer studies on pixel-level image labeling (i.e., classification of an individual 99 

pixel). Second, in many image classification scenarios, image size is resized to a fixed value, but we 100 

cannot resize a contact map since we need to do prediction for every residue pair (equivalent to an 101 

image pixel). Third, contact prediction has much more complex input features (including both 102 

sequential and pairwise features) than image labeling. Fourth, the ratio of contacts in a protein is very 103 

small (<2%). That is, the number of positive and negative labels in contact prediction is extremely 104 

unbalanced.  105 

In this paper we present a very deep residual neural network for contact prediction. Such a network can 106 

capture very complex sequence-contact relationship and high-order contact correlation in a protein. We 107 

train this deep neural network using a subset of proteins with solved structures and then test its 108 

performance on public data including the CASP (26, 27) and CAMEO (28) targets as well as 109 

membrane proteins. Our experimental results show that our method yields much better accuracy than 110 
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existing methods and also result in much more accurate contact-assisted 3D structure modeling. The 111 

deep learning method described here will also be useful for the prediction of protein-protein and 112 

protein-RNA interfacial contacts. 113 

Results 114 

Deep learning model for contact prediction 115 

 116 

Figure 1. Illustration of our deep learning model for contact prediction. Meanwhile, L is the sequence 117 

length of one protein under prediction.  118 

Figure 1 illustrates our deep neural network model for contact prediction (29). Different from previous 119 

supervised learning approaches(9, 13) for contact prediction that employ only a small number of 120 

hidden layers (i.e., a shallow architecture), our deep neural network employs dozens of hidden layers. 121 

By using a very deep architecture, our model can automatically learn the complex relationship between 122 

sequence information and contacts and also implicitly model the interdependency among contacts and 123 

thus, improve contact prediction (17). Our model consists of two major modules, each being a residual 124 

neural network. The first module conducts a series of 1-dimensional (1D) convolutional 125 

transformations of sequential features (sequence profile, predicted secondary structure and solvent 126 

accessibility). The output of this 1D convolutional network is converted to a 2-dimensional (2D) matrix 127 

by an operation similar to outer product and then fed into the 2nd module together with pairwise 128 

features (i.e., co-evolution information, pairwise contact and distance potential). The 2nd module is a 129 

2D residual network that conducts a series of 2D convolutional transformations of its input. Finally, the 130 

output of the 2D convolutional network is fed into a logistic regression, which predicts the probability 131 

of any two residues form a contact. In addition, each convolutional layer is also preceded by a simple 132 

nonlinear transformation called rectified linear unit (30). Mathematically, the output of 1D residual 133 

network is just a 2D matrix with dimension L×m where m is the number of new features (or hidden 134 
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neurons) generated by the last convolutional layer of the network. Biologically, this 1D residual 135 

network learns the sequential context of a residue. By stacking multiple convolution layers, the 136 

network can learn information in a very large sequential context. The output of a 2D convolutional 137 

layer has dimension L×L×n where n is the number of new features (or hidden neurons) generated by 138 

this layer for one residue pair. The 2D residual network mainly learns contact occurring patterns or 139 

high-order residue correlation (i.e., 2D context of a residue pair). The number of hidden neurons may 140 

vary at each layer. 141 

Our test data includes the 150 Pfam families described in (5), 105 CASP11 test proteins (31), 398 142 

membrane proteins (Supplementary Table 1) and 76 CAMEO hard targets released from 10/17/2015 to 143 

04/09/2016 (Supplementary Table 2). The tested methods include PSICOV (5), Evfold (6), CCMpred 144 

(4), plmDCA(7), Gremlin(8), and MetaPSICOV (9). The former 5 methods conducts pure DCA while 145 

MetaPSICOV (9) is a supervised learning method that performed the best in CASP11 (31). All the 146 

programs are run with parameters set according to their respective papers. We cannot evaluate PconsC2 147 

(17) since we failed to obtain any results from its web server. PconsC2 did not outperform 148 

MetaPSICOV in CASP11 (31), so it may suffice to just compare our method with MetaPSICOV.  149 

Overall Performance 150 

We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts where L is protein sequence 151 

length (10). We define that a contact is short-, medium- and long-range when the sequence distance of 152 

the two residues in a contact falls into [6, 11], [12, 23], and ≥24, respectively. The prediction 153 

accuracy is defined as the percentage of native contacts among the top L/k predicted contacts. When a 154 

protein has no L/k native (short- or medium-range) contacts, we replace the denominator by L/k in 155 

calculating accuracy. This may make the short- and medium-range accuracy look small although it is 156 

easier to predict short- and medium-range contacts than long-range contacts. 157 

Table 1. Contact prediction accuracy on the 150 Pfam families. 158 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.50 0.40 0.26 0.17 0.64 0.52 0.34 0.22 0.74 0.68 0.53 0.39 

PSICOV 0.58 0.43 0.26 0.17 0.65 0.51 0.32 0.20 0.77 0.70 0.52 0.37 

CCMpred 0.65 0.50 0.29 0.19 0.73 0.60 0.37 0.23 0.82 0.76 0.62 0.45 

plmDCA 0.66 0.50 0.29 0.19 0.72 0.60 0.36 0.22 0.81 0.76 0.61 0.44 

Gremlin 0.66 0.51 0.30 0.19 0.74 0.60 0.37 0.23 0.82 0.76 0.63 0.46 

MetaPSICOV 0.82 0.70 0.45 0.27 0.83 0.73 0.52 0.33 0.92 0.87 0.74 0.58 

Our method 0.93 0.81 0.51 0.30 0.93 0.86 0.62 0.38 0.98 0.96 0.89 0.74 

 159 

Table 2. Contact prediction accuracy on 105 CASP11 test proteins.  160 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 
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EVfold 0.25 0.21 0.15 0.12 0.33 0.27 0.19 0.13 0.37 0.33 0.25 0.19 

PSICOV 0.29 0.23 0.15 0.12 0.34 0.27 0.18 0.13 0.38 0.33 0.25 0.19 

CCMpred 0.35 0.28 0.17 0.12 0.40 0.32 0.21 0.14 0.43 0.39 0.31 0.23 

plmDCA 0.32 0.26 0.17 0.12 0.39 0.31 0.21 0.14 0.42 0.38 0.30 0.23 

Gremlin 0.35 0.27 0.17 0.12 0.40 0.31 0.21 0.14 0.44 0.40 0.31 0.23 

MetaPSICOV 0.69 0.58 0.39 0.25 0.69 0.59 0.42 0.28 0.60 0.54 0.45 0.35 

Our method 0.82 0.70 0.46 0.28 0.85 0.76 0.55 0.35 0.81 0.77 0.68 0.55 

 161 

Table 3. Contact prediction accuracy on 76 past CAMEO hard targets. 162 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.17 0.13 0.11 0.09 0.23 0.19 0.13 0.10 0.25 0.22 0.17 0.13 

PSICOV 0.20 0.15 0.11 0.08 0.24 0.19 0.13 0.09 0.25 0.23 0.18 0.13 

CCMpred 0.22 0.16 0.11 0.09 0.27 0.22 0.14 0.10 0.30 0.26 0.20 0.15 

plmDCA 0.23 0.18 0.12 0.09 0.27 0.22 0.14 0.10 030 0.26 0.20 0.15 

Gremlin 0.21 0.17 0.11 0.08 0.27 0.22 0.14 0.10 0.31 0.26 0.20 0.15 

MetaPSICOV 0.56 0.47 0.31 0.20 0.53 0.45 0.32 0.22 0.47 0.42 0.33 0.25 

Our method 0.67 0.57 0.37 0.23 0.69 0.61 0.42 0.28 0.69 0.65 0.55 0.42 

 163 

Table 4. Contact prediction accuracy on 398 membrane proteins. 164 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.16 0.13 0.09 0.07 0.28 0.22 0.13 0.09 0.44 0.37 0.26 0.18 

PSICOV 0.22 0.16 0.10 0.07 0.29 0.21 0.13 0.09 0.42 0.34 0.23 0.16 

CCMpred 0.27 0.19 0.11 0.08 0.36 0.26 0.15 0.10 0.52 0.45 0.31 0.21 

plmDCA 0.26 0.18 0.11 0.08 0.35 0.25 0.14 0.09 0.51 0.42 0.29 0.20 

Gremlin 0.27 0.19 0.11 0.07 0.37 0.26 0.15 0.10 0.52 0.45 0.32 0.21 

MetaPSICOV 0.45 0.35 0.22 0.14 0.49 0.40 0.27 0.18 0.61 0.55 0.42 0.30 

Our method 0.60 0.46 0.27 0.16 0.66 0.53 0.33 0.22 0.78 0.73 0.62 0.47 

 165 

As shown in Tables 1-4, our method outperforms all tested DCA methods and MetaPSICOV by a very 166 

large margin on the 4 test sets regardless of how many top predicted contacts are evaluated and no 167 

matter whether the contacts are short-, medium- or long-range. These results also show that two 168 

supervised learning methods greatly outperform the pure DCA methods and the three 169 

pseudo-likelihood DCA methods plmDCA, Gremlin and CCMpred perform similarly, but outperform 170 

PSICOV (Gaussian model) and Evfold (maximum-entropy method). The advantage of our method is 171 
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the smallest on the 150 Pfam families because many of them have a pretty large number of sequence 172 

homologs. In terms of top L long-range contact accuracy on the CASP11 set, our method exceeds 173 

CCMpred and MetaPSICOV by 0.32 and 0.20, respectively. On the 76 CAMEO hard targets, our 174 

method exceeds CCMpred and MetaPSICOV by 0.27 and 0.17, respectively. On the 398 membrane 175 

protein set, our method exceeds CCMpred and MetaPSICOV by 0.26 and 0.17, respectively. Our 176 

method uses a subset of protein features used by MetaPSICOV, but performs much better than 177 

MetaPSICOV due to our deep architecture and that we predict contacts of a protein simultaneously. 178 

Since the Pfam set is relatively easy, we will not present its result any more in the following sections. 179 

Prediction accuracy with respect to the number of sequence homologs 180 

 

Figure 2. Top L/5 accuracy of our method (green), CCMpred (blue) and MetaPSICOV (red) with 

respect to the amount of homologous information measured by ln(Meff). The accuracy on the union of 

the 105 CASP and 76 CAMEO targets is displayed in (A) medium-range and (B) long-range. The 

accuracy on the membrane protein set is displayed in (C) medium-range and (D) long-range. 

To examine the performance of our method with respect to the amount of homologous information 181 

available for a protein under prediction, we measure the effective number of sequence homologs in 182 

multiple sequence alignment (MSA) by Meff (19) (see Method for its formula). A protein with a smaller 183 

Meff has fewer non-redundant sequence homologs (70% sequence identity is used as cutoff). We divide 184 

all the test proteins into 10 bins according to ln(Meff) and then calculate the average accuracy of the 185 

test proteins in each bin. We merge the first 3 bins for the membrane protein set since they contain a 186 

small number of proteins. 187 

Fig. 2 shows that the top L/5 contact prediction accuracy increases with respect to Meff, i.e., the 188 

number of effective sequence homologs, and that our method outperforms both MetaPSICOV and 189 

CCMpred regardless of Meff. Our long-range prediction accuracy is even better when ln(Meff)≤7 190 

(equivalently Meff<1100), i.e., when the protein under prediction does not have a very large number of 191 
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non-redundant sequence homologs. Our method has a large advantage over the other methods even 192 

when Meff is very big (>8000). This indicates that our method indeed benefits from some extra 193 

information such as inter-contact correlation or high-order residue correlation. 194 

Contact-assisted protein folding 195 

One of the important goals of contact prediction is to perform contact-assisted protein folding (11). To 196 

test if our contact prediction can lead to better 3D structure modeling than the others, we build structure 197 

models for all the test proteins using the top predicted contacts as restraints of ab initio folding. For 198 

each test protein, we feed the top predicted contacts as restraints into the CNS suite (32) to generate 3D 199 

models. We measure the quality of a 3D model by TMscore (33) , which ranges from 0 to 1, with 0 200 

indicating the worst and 1 the best, respectively. 201 

 

Figure 3. Quality comparison (measured by TMscore) of contact-assisted models generated by our 

method, CCMpred and MetaPSICOV on the 105 CASP11 targets (red square), 76 CAMEO targets 

(blue diamond) and 398 membrane protein targets (green triangle), respectively. (A) and (B): 

comparison of top 1 and the best of top 5 models between our method (X-axis) and CCMpred (Y-axis). 

(C) and (D): comparison of top 1 and the best of top 5 models between our method (X-axis) and 

MetaPSICOV (Y-axis). 

As shown in Fig. 3, our predicted contacts can generate much better 3D models than CCMpred and 202 

MetaPSICOV. On average, the 3D models generated by our method are better than MetaPSICOV and 203 

CCMpred by ~0.12 TMscore unit and ~0.15 unit, respectively. The average TMscore of the top 1 204 

models generated by CCMpred, MetaPSICOV, and our method is 0.333, 0.377, and 0.518, respectively 205 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2016. ; https://doi.org/10.1101/073239doi: bioRxiv preprint 

https://doi.org/10.1101/073239
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

on the CASP dataset. On the 76 CAMEO targets, the average TMsore of the top 1 models generated by 206 

CCMpred, MetaPSICOV and our method is 0.256, 0.305 and 0.407, respectively. On the membrane 207 

protein set, the average TMscore of the top 1 models generated by CCMpred, MetaPSICOV and our 208 

method is 0.354, 0.387, and 0.493, respectively. On the CASP set, the average TMscore of the best of 209 

top 5 models generated by CCMpred, MetaPSICOV, and our method is 0.352, 0.399, and 0.543, 210 

respectively. On the 76 CAMEO proteins, the average TMscore of the best of top 5 models generated 211 

by CCMpred, MetaPSICOV, and our method is 0.271, 0.334, and 0.431, respectively. On the 212 

membrane protein set, the average TMscore of the best of top 5 models generated by CCMpred, 213 

MetaPSICOV, and our method is 0.385, 0.417, and 0.516, respectively. In particular, when the best of 214 

top 5 models are considered, our predicted contacts can result in correct folds (i.e., TMscore>0.6) for 215 

203 of the 579 test proteins, while MetaPSICOV- and CCMpred-predicted contacts can do so for only 216 

79 and 62 of them, respectively. 217 

Our method also generates much better contact-assisted models for the test proteins without many 218 

non-redundant sequence homologs. When the 219 of 579 test proteins with Meff≤500 are evaluated, the 219 

average TMscore of the top 1 models generated by our predicted contacts for the CASP11, CAMEO 220 

and membrane sets is 0.426, 0.365, and 0.397, respectively. By contrast, the average TMscore of the 221 

top 1 models generated by CCMpred-predicted contacts for the CASP11, CAMEO and membrane sets 222 

is 0.236, 0.214, and 0.241, respectively. The average TMscore of the top 1 models generated by 223 

MetaPSICOV-predicted contacts for the CASP11, CAMEO and membrane sets is 0.292, 0.272, and 224 

0.274, respectively. 225 

Contact-assisted models vs. template-based models 226 

To compare the quality of our contact-assisted models and template-based models (TBMs), we built 227 

TBMs for all the test proteins using our training proteins as candidate templates. To generate TBMs for 228 

a test protein, we first run HHblits (with the UniProt20_2016 library) to generate an HMM file for the 229 

test protein, then run HHsearch with this HMM file to search for the best templates among the 6767 230 

training proteins, and finally run MODELLER to build a TBM from each of the top 5 templates. Fig. 4 231 

shows the head-to-head comparison between our contact-assisted models and the TBMs on these three 232 

test sets. When only the first models are evaluated, our contact-assisted models for the 76 CAMEO test 233 

proteins have an average TMscore 0.407 while the TBMs have an average TMscore 0.317. On the 105 234 

CASP11 test proteins, the average TMscore of our contact-assisted models is 0.518 while that of the 235 

TBMs is only 0.393. On the 398 membrane proteins, the average TMscore of our contact-assisted 236 

models is 0.493 while that of the TBMs is only 0.149. When the best of top 5 models are evaluated, on 237 

the 76 CAMEO test proteins, the average TMscore of our contact-assisted models is 0.431 while that of 238 

the TBMs is only 0.366. On the 105 CASP11 test proteins, the average TMscore of our contact-assisted 239 

models is 0.543 while that of the TBMs is only 0.441. On the 398 membrane proteins, the average 240 

TMscore of our contact-assisted models is 0.516 while that of the TBMs is only 0.187. The low quality 241 

of TBMs further confirms that there is not much redundancy between our training and test proteins.  242 
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Figure 4. Comparison between our contact-assisted models of the three test sets and their 

template-based models. The top 1 models (A) and the best of top 5 models (B) are evaluated. 

 243 

Further, when the best of top 5 models are considered for all the methods, our contact-assisted models 244 

have TMscore>0.5 for 24 of the 76 CAMEO targets while TBMs have TMscore>0.5 for only 18 of 245 

them. Our contact-assisted models have TMscore >0.5 for 67 of the 105 CASP11 targets while TBMs 246 

have TMscore>0.5 for only 44 of them. Our contact-assisted models have TMscore>0.5 for 208 of the 247 

398 membrane proteins while TBMs have TMscore >0.5 for only 10 of them. Our contact-assisted 248 

models for membrane proteins are much better than their TBMs because the similarity between the 249 

6767 training proteins and the 398 test membrane proteins is small. When the 219 test proteins with 250 

≤500 non-redundant sequence homologs are evaluated, the average TMscore of the TBMs is 0.254 251 

while that of our contact-assisted models is 0.421. Among these 219 proteins, our contact-assisted 252 

models have TMscore>0.5 for 72 of them while TBMs have TMscore>0.5 for only 17 of them. 253 

The above results imply that 1) when a query protein has no close templates, our contact-assisted 254 

modeling may work better than template-based modeling; 2) contact-assisted modeling shall be 255 

particularly useful for membrane proteins; and 3) our deep learning model does not predict contacts by 256 

simply copying contacts from the training proteins since our predicted contacts may result in much 257 

better 3D models than homology modeling. 258 

Blind test in CAMEO 259 

We have implemented our algorithm as a contact prediction web server 260 

(http://raptorx.uchicago.edu/ContactMap/) and in September 2016 started to blindly test it through the 261 

weekly live benchmark CAMEO (http://www.cameo3d.org/ ). CAMEO is operated by the Schwede 262 

group, with whom we have never collaborated. CAMEO can be interpreted as a fully-automated CASP, 263 

but has a smaller number (>20) of participating servers since many CASP-participating servers are not 264 

fully automated and thus, cannot handle the large number of test targets used by CAMEO. Nevertheless, 265 

the CAMEO participants include some well-known servers such as Robetta(34), Phyre(35), 266 

RaptorX(36), Swiss-Model(37) and HHpred(38). Meanwhile Robetta employs both ab initio folding 267 

and template-based modeling while the latter four employ mainly template-based modeling. Every 268 
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weekend CAMEO sends test sequences to participating servers for prediction and then evaluates 3D 269 

models collected from servers. The test proteins used by CAMEO have no publicly available native 270 

structures until CAMEO finishes collecting models from participating servers.  271 

During the past 2 months (9/3/2016 to 10/31/2016), CAMEO in total released 41 hard targets 272 

(Supplementary Table 3). Although classified as hard by CAMEO, some of them may have 273 

distantly-related templates. Table 5 lists the contact prediction accuracy of our server in the blind 274 

CAMEO test as compared to the other methods. Again, our method outperforms the others by a very 275 

large margin no matter how many contacts are evaluated. The CAMEO evaluation of our 276 

contact-assisted 3D models is available at the CAMEO web site. You will need to register CAMEO in 277 

order to see all the detailed results of our contact server (ID: server60). Although our server currently 278 

build 3D models using only 2L-3L predicted contacts without any force fields and fragment assembly 279 

procedures, our server predicts 3D models with TMscore>0.5 for 28 of the 41 targets and TMscore>0.6 280 

for 16 of them. The average TMscore of the best of top 5 models built from the contacts predicted by 281 

our server, CCMpred and MetaPSICOV is 0.535, 0.316 and 0.392, respectively. See Fig. 5 for the 282 

detailed comparison of the 3D models generated by our server, CCMpred and MetaPSICOV. Our 283 

server has also successfully folded 4 targets with a new fold. See Table 6 for a summary of our 284 

prediction results of these 4 targets and the below subsections for a detailed analysis.  285 

Table 5. Contact prediction accuracy on 41 recent CAMEO hard targets. 286 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.20 0.15 0.11 0.08 0.25 0.19 0.12 0.09 0.33 0.29 0.21 0.15 

PSICOV 0.21 0.16 0.11 0.08 0.26 0.20 0.11 0.08 0.33 0.30 0.21 0.15 

plmDCA 0.26 0.19 0.12 0.09 0.28 0.23 0.13 0.09 0.38 0.33 0.24 0.17 

Gremlin 0.25 0.18 0.12 0.08 0.29 0.22 0.13 0.09 0.37 0.34 0.25 0.17 

CCMpred 0.24 0.18 0.12 0.08 0.29 0.22 0.13 0.09 0.37 0.34 0.24 0.17 

MetaPSICOV 0.53 0.43 0.27 0.17 0.51 0.42 0.28 0.19 0.60 0.54 0.40 0.30 

Our server 0.67 0.52 0.32 0.20 0.68 0.58 0.38 0.24 0.82 0.75 0.62 0.46 

 287 
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(A) (B) 

Figure 5. Quality comparison (measured by TMscore) of contact-assisted models generated by our 

server, CCMpred and MetaPSICOV on the 41 CAMEO hard targets. (A) our server (X-axis) vs. 

CCMpred and (B) our server (X-axis) vs. MetaPSICOV. 

 288 

Table 6. A summary of our blind prediction results on 4 CAMEO hard targets with a new fold.  289 

Target CAMEO ID Type Len Meff Method RMSD(Å) TMscore 

2nc8A 2016-09-10_00000002_1 β 182 250 Our server 6.5 0.61 

Best of the others  12.18 0.47 

5dcjA 

 

2016-09-17_00000018_1 α+β 125 180 Our server 7.9 0.52 

Best of the others 10.0 0.53 

5djeB 

 

2016-09-24_00000052_1 α 140 330 Our server 5.81 0.65 

Best of the others  14.98 0.34 

5f5pH 

 

2016-10-15_00000047_1 α 217 65 Our server 4.21 0.71 

Best of the others >40.0 0.48 

 290 

Among these 41 hard targets, there are five multi-domain proteins: 5idoA, 5hmqF, 5b86B, 5b2gG and 291 

5cylH. Table 7 shows that the average contact prediction accuracy of our method on these 5 292 

multi-domain proteins is much better than the others. For multi-domain proteins, we use a 293 

superposition-independent score lDDT instead of TMscore to measure the quality of a 3D model. As 294 

shown in Table 8, the 3D models built by our server from predicted contacts have much better lDDT 295 

score than those built from CCMpred and MetaPSICOV. 296 

Table 7. The average contact prediction accuracy of our method and the others on 5 multi-domain 297 

proteins among the 41 CAMEO hard targets. 298 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.17 0.13 0.09 0.07 0.18 0.12 0.08 0.06 0.54 0.40 0.26 0.18 

PSICOV 0.27 0.18 0.10 0.07 0.26 0.17 0.11 0.07 0.62 0.49 0.31 0.20 

plmDCA 0.29 0.23 0.11 0.07 0.32 0.22 0.11 0.08 0.66 0.51 0.34 0.22 

Gremlin 0.30 0.24 0.12 0.08 0.32 0.22 0.12 0.07 0.67 0.52 0.36 0.23 

CCMpred 0.30 0.23 0.12 0.08 0.32 0.22 0.12 0.08 0.66 0.51 0.35 0.23 

MetaPSICOV 0.52 0.37 0.21 0.14 0.32 0.26 0.16 0.11 0.72 0.58 0.41 0.26 

Our method 0.74 0.58 0.33 0.19 0.68 0.55 0.33 0.20 0.96 0.91 0.76 0.57 

 299 

Table 8. The lDDT score of the 3D models built for the 5 multi-domain proteins using predicted 300 

contacts. 301 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2016. ; https://doi.org/10.1101/073239doi: bioRxiv preprint 

https://doi.org/10.1101/073239
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Targets Length CCMpred MetaPSICOV Our 

5idoA 512 21.96 24.24 36.83 

5hmqF 637 21.55 25.91 33.16 

5b86B 600 28.49 32.85 42.58 

5b2gG 364 22.38 30.47 47.91 

5cylH 370 20.79 23.37 30.62 

Study of CAMEO target 2nc8A (CAMEO ID: 2016-09-10_00000002_1, PDB ID:2nc8) 302 

On September 10, 2016, CAMEO released two hard test targets for structure prediction. Our contact 303 

server successfully folded the hardest one (PDB ID: 2nc8), a mainly-beta protein of 182 residues. Table 304 

9 shows that our server produced a much better contact prediction than CCMpred and MetaPSICOV. 305 

CCMpred has very low accuracy since HHblits detected only ~250 non-redundant sequence homologs 306 

for this protein, i.e., its Meff=250. Fig. 6 shows the predicted contact maps and their overlap with the 307 

native. MetaPSICOV fails to predict many long-range contacts while CCMpred introduces too many 308 

false positives. 309 

Table 9. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 310 

CCMpred on the CAMEO target 2nc8A. 311 

 Long-range accuracy Medium-range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.764  0.923 0.972 1.0   0.450  0.769  0.972  1.0 

MetaPSICOV 0.258  0.374 0.556  0.667 0.390  0.626  0.806  0.944 

CCMpred 0.165  0.231 0.389  0.333 0.148  0.187  0.167  0.222 

 312 

  

(A) (B) 

Figure 6. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 
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 313 

The 3D model submitted by our contact server has TMscore 0.570 (As of September 16, 2016, our 314 

server submits only one 3D model for each test protein) and the best of our top 5 models has TMscore 315 

0.612 and RMSD 6.5Å. Fig. 7 shows that the beta strands of our predicted model (red) matches well 316 

with the native (blue). To examine the superimposition of our model with its native structure from 317 

various angles, please see http://raptorx.uchicago.edu/DeepAlign/75097011/. By contrast, the best of 318 

top 5 models built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.206 319 

and 0.307, respectively, and RMSD 15.8Å and 14.2Å, respectively. The best TMscore obtained by the 320 

other CAMEO-participating servers is only 0.47 (Fig. 8). Three top-notch servers HHpred, RaptorX  321 

and Robetta  only submitted models with TMscore≤0.30. According to Xu and Zhang (39), a 3D 322 

model with TMscore<0.5 is unlikely to have a correct fold 323 

while a model with TMscore≥0.6 surely has a correct fold. 324 

That is, our contact server predicted a correct fold for this test 325 

protein while the others failed to.  326 

 This test protein represents almost a novel fold. Our in-house 327 

structural homolog search tool DeepSearch(40) cannot identify 328 

structurally very similar proteins in PDB70 (created right 329 

before September 10, 2016) for this test protein. PDB70 is a 330 

set of representative structures derived from clustering all the 331 

proteins in PDB by 70% sequence identity. Two weakly 332 

similar proteins are 4kx7A and 4g2aA, which have TMscore 333 

0.521 and 0.535 with the native structure of the test protein, 334 

respectively, and TMscore 0.465 and 0.466 with our best model, respectively. This is consistent with 335 

the fact that none of the template-based servers in CAMEO submitted a model with TMscore>0.5. We 336 

cannot find structurally similar proteins in PDB70 for our best model either; the best TMscore between 337 

PDB70 and our best model is only 0.480. That is, the models predicted by our method are not simply 338 

copied from the solved structures in PDB, and our method can indeed fold a relatively large beta 339 

protein with a novel fold. 340 

 341 

Figure 8. The list of CAMEO-participating servers (only 12 of 20 are displayed) and their 342 

 

Figure 7. Superimposition between 

our predicted model (red) and its 

native structure (blue) for the 

CAMEO test protein (PDB ID 2nc8 

and chain A). 
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model scores. The rightmost column displays the TMscore of submitted models. Server60 is our 343 

contact web server. 344 

Study of CAMEO target 5dcjA (CAMEO ID: 2016-09-17_00000018_1, PDB ID:5dcj) 345 

On September 17, 2016, our contact web server successfully folded one of the hard CAMEO targets 346 

(PDB ID: 5dcj). This target is an alpha+beta sandwich protein of 125 residues. The four beta sheets of 347 

this protein are wrapped by one and three alpha helixes at two sides. Table 10 shows that our server 348 

produced a much better contact prediction than CCMpred and MetaPSICOV. Specifically, the contact 349 

map predicted by our method has L/2 long-range accuracy 0.645 while that by CCMpred and 350 

MetaPSICOV has L/2 accuracy only 0.05 and 0.194, respectively. CCMpred has very low accuracy 351 

since HHblits can only find ~180 non-redundant sequence homologs for this protein, i.e., its Meff=180.  352 

Fig. 9 shows the predicted contact maps and their overlap with the native. Both CCMpred and 353 

metaPSICOV failed to predict some long-range contacts. 354 

Table 10. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 355 

CCMpred on the CAMEO target 5dcjA. 356 

 Long range  Medium range  

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.456 0.645 0.88 0.833 0.36 0.645 0.92 1.0 

metaPSICOV 0.144 0.194 0.32 0.25 0.344 0.532 0.8 1.0 

CCMpred 0.05 0.05 0.08 0.08 0.1 0.129 0.12 0.25 

 357 

  

(A) (B) 

Figure 9. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 358 

The first 3D model submitted by our contact server has TMscore 0.50 and the best of our 5 models has 359 
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TMscore 0.52 and RMSD 7.9Å. The best of top 5 models built by CNS from CCMpred- and 360 

MetaPSICOV-predicted contacts have TMscore 0.243 and 0.361, respectively.  Fig. 10(A) shows that 361 

all the beta strands and the three surrounding alpha helices of our predicted model (in red) matches well 362 

with the native  structure (blue), while the models from CCMpred (Fig.10(B)) and MetaPSICOV 363 

(Fig.10(C)) do not have a correct fold. To examine the superimposition of our model with its native 364 

structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/92913404/ . 365 

   

(A) (B) (C) 

Figure 10. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO test protein (PDB ID 5dcj and chain A). The models are built by CNS from the contacts 

predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV. 

 366 

In terms of TMscore, our models have comparable quality to Robetta, but better than the other servers 367 

(Fig. 11). In terms of lDDT-Cα score, our models are better than all the others. In particular, our 368 

method produced better models than the popular homology modeling server HHpredB and our own 369 

template-based modeling server RaptorX, which submitted models with TMscore≤0.45. 370 

This test protein represents a novel fold. Similar structure search through PDB70 created right before 371 

September 17, 2016 by our in-house structural homolog search tool DeepSearch cannot identify 372 

structurally similar proteins for this test protein. The most structurally similar proteins are 3lr5A and 373 

5ereA, which have TMscore 0.431 and 0.45 with the test protein, respectively. This is consistent with 374 

the fact that none of the template-based servers in CAMEO can predict a good model for this test 375 

protein. By contrast, our contact-assisted model has TMscore 0.52, which is higher than all the 376 

template-based models.  377 
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 378 

Figure 11. The list of CAMEO-participating servers (only 14 of 20 are displayed) and their model 379 

scores, sorted by lDDT-Cα. The rightmost column displays the TMscore of submitted models. Server60 380 

is our contact web server. 381 

Study of CAMEO target 5djeB (CAMEO ID: 2016-09-24_00000052_1, PDB ID: 5dje) 382 

On September 24, 2016, our contact web server successfully folded one of the hardest CAMEO targets 383 

(PDB ID: 5dje and chain B). This target is an all alpha protein of 140 residues with a novel fold. Table 384 

11 shows that our server produced a much better contact prediction than CCMpred and MetaPSICOV. 385 

Specifically, the contact map predicted by our method has L/5 and L/10 long-range accuracy 50.0% 386 

and 71.4%, respectively, while that by CCMpred and MetaPSICOV has L/5 and L/10 accuracy less 387 

than 30%. CCMpred has low accuracy since HHblits can only find ~330 non-redundant sequence 388 

homologs for this protein, i.e., its Meff=330. Fig. 12 shows the predicted contact maps and their 389 

overlap with the native. Both CCMpred and metaPSICOV failed to predict some long-range contacts. 390 

Table 11. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 391 

CCMpred on the CAMEO target 5djeB. 392 

 Long range accuracy Medium range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.300 0.357 0.500 0.714 0.186 0.229 0.357 0.357 

metaPSICOV 0.193 0.200 0.286 0.286 0.100 0.143 0.214 0.286 

CCMpred 0.079 0.114 0.107 0.214 0.036 0.029 0.071 0.143 

 393 
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(A) (B) 

Figure 12. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 394 

The first 3D model submitted by our contact server has TMscore 0.65, while the best of our 5 models 395 

has TMscore 0.65 and RMSD 5.6Å. By contrast, the best of top 5 models built by CNS from 396 

CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.404 and 0.427, respectively. Fig. 397 

13(A) shows that all the four alpha helices of our predicted model (in red) matches well with the native 398 

structure (blue), while the models from CCMpred (Fig. 13(B)) and MetaPSICOV (Fig. 13(C)) fail to 399 

predict the 3rd long helix correctly. To examine the superimposition of our model with its native 400 

structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/26652330/. Further, all 401 

other CAMEO registered servers, including the top-notch servers such as HHpred, RaptorX, 402 

SPARKS-X, and RBO Aleph (template-based and ab initio folding) only submitted models with 403 

TMscore≤0.35, i.e., failed to predict a correct fold (Fig. 14). 404 

   

(A) (B) (C) 

Figure 13. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO test protein (PDB ID 5dje and chain B). The models are built by CNS from the contacts 

predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV. 

 405 
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This test protein represents a novel fold. Similar structure search through PDB70 created right before 406 

September 24, 2016 by our in-house structural homolog search tool DeepSearch cannot identify 407 

structurally similar proteins for this test protein. The most structurally similar proteins are 1u7lA and 408 

4x5uA, which have TMscore 0.439 and 0.442 with the test protein, respectively. This is consistent with 409 

the fact that none of the template-based CAMEO-participating servers predicted a good model for this 410 

test protein. By contrast, our contact-assisted model has TMscore 0.65, much higher than all the 411 

template-based models. 412 

 413 

Figure 14. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model 414 

scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web 415 

server. 416 

Study of CAMEO target 5f5pH (CAMEO ID: 2016-10-15_00000047_1, PDB ID: 5f5p) 417 

On October 15, 2016, our contact web server successfully folded a very hard CAMEO target 418 

(PDB ID: 5f5pH, CAMEO ID: 2016-10-15_00000047_1). This target is an all alpha protein 419 

of 217 residues with four helices. Table 12 shows that our server produced a much better 420 

long-range contact prediction than CCMpred and MetaPSICOV. Specifically, our contact 421 

prediction has L/5 and L/10 long-range accuracy 76.7% and 95.2%, respectively, while 422 

MetaPSICOV has L/5 and L/10 accuracy less than 40% and CCMpred has much smaller 423 

accuracy. CCMpred has very low accuracy since this target has only ~65 non-redundant 424 

sequence homologs, i.e., its Meff=65. The three methods have low L/k (k=1, 2) medium-range 425 

accuracy because there are fewer than L/k native medium-range contacts while we use L/k as the 426 

denominator in calculating accuracy. As shown in Fig. 15, CCMpred predicts too many false 427 

positives while MetaPSICOV predicts very few correct long-range contacts. 428 

Table 12. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 429 

CCMpred on the CAMEO target 5f5pH. 430 

 Long-range accuracy Medium-range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.382 0.602 0.767 0.952 0.041 0.083 0.209 0.381 
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metaPSICOV 0.161 0.250 0.326 0.476 0.041 0.083 0.163 0.190 

CCMpred 0.032 0.037 0.047 0.048 0.009 0.019 0.023 0.032 

 431 

  

(A) (B) 

Figure 15. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 432 

Our submitted 3D model has TMscore 0.71 and RMSD 4.21Å. By contrast, the best of top 5 models 433 

built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.280 and 0.472, 434 

respectively. Fig. 16(A) shows that our predicted model (in red) match well with the native structure 435 

(blue), while the model from CCMpred (Fig. 16(B)) is completely wrong and the model from 436 

MetaPSICOV (Fig. 16(C)) fails to place the 1st and 4th helices correctly. Please see 437 

http://raptorx6.uchicago.edu/ContactMap/myjobs/80735808_106702/ for the animated superimposition 438 

of our model with its native structure.  439 

As shown in the ranking list (see Fig. 17), all the other CAMEO-participating servers, including 440 

Robetta, HHpred, RaptorX, SPARKS-X (template-based modeling), and RBO Aleph (template-based 441 

and ab initio folding) only submitted models with TMscore≤0.48 and RMSD>43.82Å. A 3D model 442 

with TMscore<0.5 may have a wrong fold while a model with TMscore≥0.7 surely has a correct fold. 443 

That is, our contact server is the only one that predicted a correct fold for this target. 444 
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(A) (B) (C) 

Figure 16. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO target 5f5pH. The models are built by CNS from the contacts predicted by (A) our method, 

(B) CCMpred, and (C) MetaPSICOV. 

 445 

 446 

Figure 17. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model 447 

scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web 448 

server. 449 

To make sure our best model is not simply copied from the database of solved structures, we search our 450 

best model against PDB70 created right before October 15, 2016 using our in-house structural homolog 451 

search tool DeepSearch, which yields two weakly similar proteins 2yfaA and 4k1pA. They have 452 

TMscore 0.536 and 0.511 with our best model, respectively. This implies that our model is not simply 453 

copied from a solved structure in PDB. 454 

To see if there is a good template in PDB70 for this target, we ran BLAST on this target against PDB70 455 

and surprisingly, found one protein 3thfA with E-value 3E-16 and sequence identity 35%. In fact, 3thfA 456 

and 5f5pH are two SD2 proteins from Drosophila and Human(41), respectively. Although they are 457 

homologous, they adopt different conformations and oligomerizations. In particular, 3thfA is a dimer 458 

and each monomer adopts a fold consisting of three segmented anti-parallel coiled-coil(42), whereas 459 

5f5pH is a monomer that adopts a two segmented antiparallel coiled-coil(41) Superimposing the 460 

Human SD2 monomer onto the Drosophila SD2 dimer shows that the former structure was located 461 

directly in between the two structurally identical halves of the latter structure (see Fig. 18(A)). That is, 462 
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if our method predicts the contacts of 5f5pH by simply copying from 3thfA, it will produce a wrong 3D 463 

model. 464 

Since SD2 protein may have conformational change when docking with Rock SBD protein, we check 465 

if the Drosophila SD2 monomer would change to a similar fold as the Human SD2 monomer. 466 

According to(41), the Human SD2 adopts a similar fold no matter whether it docks with the Rock SBD 467 

or not. According to the paper(42), although the Drosophila SD2 dimer may have conformational 468 

change in the presence of Rock, the change only occurs in the hinge regions, but not at the adjacent 469 

identical halves. That is, even conformational change happens, the Drosophila SD2 monomer would 470 

not resemble the Human SD2 monomer (shown in Fig. 18(B)). 471 

  

Figure 18. (A) Structure superimposition of Drosophila SD2 and Human SD2. (B) Conformation 

change of Drosophila SD2 in binding with Rock-SBD. 

 472 

Conclusion and Discussion 473 

In this paper we have presented a new deep (supervised) learning method that can greatly improve 474 

protein contact prediction. Our method distinguishes itself from previous supervised learning methods 475 

in that we employ a concatenation of two deep residual neural networks to model sequence-contact 476 

relationship, one for modeling of sequential features (i.e., sequence profile, predicted secondary 477 

structure and solvent accessibility) and the other for modeling of pairwise features (e.g., coevolution 478 

information). Ultra-deep residual network is the latest breakthrough in computer vision and has 479 

demonstrated the best performance in the computer vision challenge tasks (similar to CASP) in 2015. 480 

Our method is also unique in that we model a contact map as an individual image and predict contacts 481 

of a protein simultaneously, which allows us to take into consideration high-order residue correlation. 482 

By contrast, existing supervised learning methods predict if two residues form a contact or not 483 

independent of the other residue pairs. Our experimental results show that our method dramatically 484 

improves contact prediction, exceeding currently the best methods (e.g., CCMpred, Evfold, PSICOV 485 

and MetaPSICOV) by a very large margin. Even without using any force fields, ab initio folding using 486 

our predicted contacts as restraints can yield 3D structural models of correct fold for many test proteins. 487 

Further, our experimental results also show that our contact-assisted models are much better than 488 

template-based models built from the training proteins of our deep model. We expect that our contact 489 

prediction methods can help reveal much more biological insights for those protein families without 490 

solved structures and close structural homologs.  491 

Our method outperforms ECA due to a couple of reasons. First, ECA predicts contacts using 492 
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information only in a single protein family, while our method learns sequence-structure relationship 493 

from thousands of protein families. Second, ECA does not consider contact occurring patterns or 494 

higher-order correlation, while our deep architecture can capture high-order residue correlation very 495 

well. Our method uses a subset of protein features used by MetaPSICOV, but performs much better 496 

than MetaPSICOV mainly because we explicitly model contact patterns (or high-order correlation) by 497 

predicting contacts of a single protein simultaneously. MetaPSICOV predicts contacts by a 2-stage 498 

approach. In the 1st stage, MetaPSICOV predicts if there is a contact between a pair of residues 499 

independent of the other residues. In the 2nd stage, MetaPSICOV considers the correlation between one 500 

contact and its neighboring contacts (and non-contacts), but not in a very good way. In particular, the 501 

prediction errors in the 1st stage of MetaPSICOV cannot be corrected in the 2nd stage since two stages 502 

are trained separately. By contrast, we train all 2D convolution layers simultaneously (each convolution 503 

layer is equivalent to one stage) so that later stages can correct prediction errors in early stages. In 504 

addition, our deep network enables us to model much higher-order correlation than a shallow network 505 

employed by MetaPSICOV and thus, make use of information in a much larger context. 506 

Our deep model does not predict contact maps by simply recognizing them from PDB. We remove 507 

redundancy by a rigorous criterion so that there are no training proteins with sequence identity >25% or 508 

BLAST E-value <0.1 with any test proteins. Our contact-assisted models also have better quality than 509 

homology models, so it is unlikely that our predicted contact maps are simply copied from the training 510 

proteins. We also did one more experiment to further test this. In particular, we trained a deep model 511 

using only non-membrane proteins and then test this model by the 398 membrane proteins. The 512 

non-membrane proteins used in training have sequence identity <25% and BLAST E-value>0.1 with 513 

the test membrane proteins, so there is little redundancy between the training and test proteins. Such a 514 

model performs very well on membrane protein contact prediction even in transmembrane regions and 515 

can correctly fold about half of the test membrane proteins. By contrast, if we use the training 516 

non-membrane proteins to build homology models for the 398 test membrane proteins, the average 517 

TMscore of the homology models is no more than 0.17, which is the expected TMscore of any two 518 

randomly-chosen proteins.  519 

We did a few experiments by using different combinations of input features. First of all, the 520 

co-evolution strength produced by CCMpred is the most important input features. Without it, the top 521 

L/10 long-range prediction accuracy may drop significantly (0.15 or more). The depth of our deep 522 

model is also very important, as evidenced by the fact that our deep method has much better accuracy 523 

than MetaPSICOV although we use a subset of protein features used by MetaPSICOV. We also tested a 524 

deep model with 9 and 30 layers, respectively. A 9-layer and 30-layer model has top L/10 accuracy 525 

~0.1 and ~0.03 worse than a 60-layer model, respectively. The pairwise contact potential and mutual 526 

information may impact the accuracy by 0.02-0.03. The secondary structure and solvent accessibility 527 

do not impact the accuracy much maybe because our deep model can implicitly learn them from 528 

sequence profile. 529 

An interesting finding is that although our training set contains only ~100 membrane proteins, our 530 

model works well for membrane proteins, much better than CCMpred and MetaPSICOV. Even without 531 
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using any membrane proteins in our training set, our deep models have almost the same accuracy on 532 

membrane proteins as those trained with membrane proteins (data not shown). This implies that the 533 

sequence-structure relationship learned by our model from non-membrane proteins can generalize well 534 

to membrane protein contact prediction. We are going to study if we can further improve contact 535 

prediction accuracy of membrane proteins by including many more membrane proteins in the training 536 

set.  537 

We may further improve contact prediction accuracy by enlarging the training set. First, currently there 538 

are more than 10,000 proteins in PDB25, so we can obtain many more training proteins by using the 539 

latest PDB25. Second, in removing redundancy we may relax the BLAST E-value cutoff to 0.001 or 540 

simply drop it to obtain more training proteins. This will help improve the top L/k (k=1,2,5,10) contact 541 

prediction accuracy by 1-3% and accordingly the quality of the resultant 3D models by 0.01-0.02 in 542 

terms of TMscore. We may also improve the 3D model quality by combining our predicted contacts 543 

with energy function and fragment assembly. For example, we may feed our predicted contacts to 544 

Rosetta to build 3D models. Compared to CNS, Rosetta makes use of energy function and more local 545 

structural restraints through fragment assembly and thus, shall result in much better 3D models. Finally, 546 

instead of predicting contacts, our deep learning model actually can predict inter-residue distance 547 

distribution (i.e., distance matrix), which provides finer-grained information than contact maps and thus, 548 

shall benefit 3D structure modeling more than predicted contacts. 549 

Our model achieves pretty good performance when using around 60-70 convolutional layers. A natural 550 

question to ask is can we further improve prediction accuracy by using many more convolutional layers? 551 

In computer vision, it has been shown that a 1001-layer residual neural network can yield better 552 

accuracy for image-level classification than a 100-layer network (but no result on pixel-level labeling is 553 

reported). Currently we cannot apply more than 100 layers to our model due to insufficient memory of 554 

a GPU card (12G). We plan to overcome the memory limitation by extending our training algorithm to 555 

run on multiple GPU cards. Then we will train a model with hundreds of layers to see if we can further 556 

improve prediction accuracy or not.  557 
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Method 558 

Deep learning model details  559 

Residual network blocks. Our network consists of two 560 

residual neural networks, each in turn consisting of some 561 

residual blocks concatenated together. Fig. 19 shows an 562 

example of a residual block consisting of 2 convolution 563 

layers and 2 activation layers. In this figure, Xl and Xl+1 564 

are the input and output of the block, respectively. The 565 

activation layer conducts a simple nonlinear 566 

transformation of its input without using any parameters. 567 

Here we use the ReLU activation function (30) for such a 568 

transformation. Let f(Xl) denote the result of Xl going 569 

through the two activation layers and the two convolution 570 

layers. Then, Xl+1 is equal to Xl + f(Xl). That is, Xl+1 is a 571 

combination of Xl and its nonlinear transformation. Since 572 

f(Xl) is equal to the difference between Xl+1 and Xl, f is 573 

called residual function and this network called residual 574 

network. In the first residual network, Xl and Xl+1 575 

represent sequential features and have dimension L×nl and 576 

L×nl+1, respectively, where L is protein sequence length 577 

and nl (nl+1) can be interpreted as the number of features or hidden neurons at each position (i.e., 578 

residue). In the 2nd residual network, Xl and Xl+1 represent pairwise features and have dimension L × L 579 

× nl and L × L× nl+1, respectively, where nl (nl+1) can be interpreted as the number of features or hidden 580 

neurons at one position (i.e., residue pair). Typically, we enforce nl ≤ nl+1 since one position at a higher 581 

level is supposed to carry more information. When nl < nl+1, in calculating Xl + f(Xl) we shall pad zeros 582 

to Xl so that it has the same dimension as Xl+1 . To speed up training, we also add a batch normalization 583 

layer (43) before each activation layer, which normalizes its input to have mean 0 and standard 584 

deviation 1. The filter size (i.e., window size) used by a 1D convolution layer is 17 while that used by a 585 

2D convolution layer is 3×3 or 5×5. By stacking many residual blocks together, even if at each 586 

convolution layer we use a small window size, our network can model very long-range 587 

interdependency between input features and contacts as well as the long-range interdependency 588 

between two different residue pairs. We fix the depth (i.e., the number of convolution layers) of the 1D 589 

residual network to 6, but vary the depth of the 2D residual network. Our experimental results show 590 

that with ~60 hidden neurons at each position and ~60 convolution layers for the 2nd residual network, 591 

our model can yield pretty good performance. Note that it has been shown that for image classification 592 

a convolutional neural network with a smaller window size but many more layers usually outperforms 593 

a network with a larger window size but fewer layers. Further, a 2D convolutional neural network with 594 

a smaller window size also has a smaller number of parameters than a network with a larger window 595 

 

Figure 19. A building block of our 

residual network with Xl and Xl+1 being 

input and output, respectively. Each 

block consists of two convolution layers 

and two activation layers.  
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size. 596 

Our deep learning method for contact prediction is unique in at least two aspects. First, our model 597 

employs two multi-layer residual neural networks, which have not been applied to contact prediction 598 

before. Residual neural networks can pass both linear and nonlinear information from end to end (i.e., 599 

from the initial input to the final output). Second, we do contact prediction on the whole contact map 600 

by treating it as an individual image. In contrast, previous supervised learning methods separate the 601 

prediction of one residue pair from the others. By predicting contacts of a protein simultaneously, we 602 

can easily model long-range contact correlation and high-order residue correlation and long-range 603 

correlation between a contact and input features. 604 

Convolutional operation. Here we briefly describe the convolution procedure. All popular deep 605 

learning development toolkits such as Theano (http://deeplearning.net/software/theano/) and 606 

Tensorflow (https://www.tensorflow.org/) have provided an API (application programming interface) 607 

for convolution so that we do not need to implement it by ourselves. There are also some good tutorials 608 

about convolutional neural networks. See http://deeplearning.net/tutorial/lenet.html, 609 

https://www.nervanasys.com/convolutional-neural-networks/, and paper (44) for an example. Briefly 610 

speaking, a 1D convolution operation is de facto matrix-vector multiplication and 2D convolution can 611 

be interpreted similarly. Let X and Y (with dimensions L×m and L×n, respectively) be the input and 612 

output of a 1D convolutional layer, respectively. Let the window size be 2w+1 and s=(2w+1)m. The 613 

convolutional operator that transforms X to Y can be represented as a 2D matrix with dimension n×s, 614 

denoted as C. Each convolutional layer may have a different C, but C is protein length-independent. 615 

Let Xi be a submatrix of X centered at residue i (1≤ i ≤L) with dimension (2w+1)×m, and Y i be the i-th 616 

row of Y. We may calculate Yi by first flattening Xi to a vector of length s and then multiplying C and 617 

the flattened Xi. 618 

Conversion of sequential features to pairwise features. We convert the output of the first module of 619 

our model (i.e., the 1-d residual neural network) to a 2D representation using an operation similar to 620 

outer product. Simply speaking, let v={v1, v2, …, vi, …, vL} be the final output of the first module 621 

where L is protein sequence length and vi is a feature vector storing the output information for residue i. 622 

For a pair of residues i and j, we concatenate vi , v(i+j)/2 and vj to a single vector and use it as one input 623 

feature of this residue pair. The input features for this pair also include mutual information, the EC 624 

information calculated by CCMpred and pairwise contact potential (45, 46). 625 

Loss function. We use maximum-likelihood method to train model parameters. That is, we maximize 626 

the occurring probability of the native contacts (and non-contacts) of the training proteins. Therefore, 627 

the loss function is defined as the negative log-likelihood averaged over all the residue pairs of the 628 

training proteins. Since the ratio of contacts among all the residue pairs is very small, to make the 629 

training algorithm converge fast, we assign a larger weight to the residue pairs forming a contact. The 630 

weight is assigned such that the total weight assigned to contacts is approximately 1/8 of the number of 631 

non-contacts in the training set. 632 

Regularization and optimization. To prevent overfitting, we employ L2-norm regularization to reduce 633 
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the parameter space. That is, we want to find a set of parameters with a small L2 norm to minimize the 634 

loss function, so the final objective function to be minimized is the sum of loss function and the L2 635 

norm of the model parameters (multiplied by a regularization factor). We use a stochastic gradient 636 

descent algorithm to minimize the objective function. It takes 20-30 epochs (each epoch scans through 637 

all the training proteins exactly once) to obtain a very good solution. The whole algorithm is 638 

implemented by Theano (47) and mainly runs on GPU. 639 

Training and dealing with proteins of different lengths. We train our deep network in a minibatch 640 

mode, which is routinely used in deep learning. That is, at each iteration of our training algorithm, we 641 

use a minibatch of proteins to calculate gradient and update the model parameters. A minibatch may 642 

have one or several proteins. We sort all training proteins by length and group proteins of similar 643 

lengths into minibatches. Considering that most proteins have length up to 600 residues, proteins in a 644 

minibatch often have the same length. In the case that they do not have the same length, we add zero 645 

padding to shorter proteins. Our convolution operation is protein-length independent, so two different 646 

minibatches can have different protein lengths. We have tested minibatches with only a single protein 647 

or with several proteins. Both work well. However, it is much easier to implement minibatches with 648 

only a single protein. 649 

Since our convolutional operation is protein length-independent, we do not need to cut a long protein 650 

into segments in predicting contact maps. Instead we predict contacts in the whole chain 651 

simultaneously. There is no need to use zero padding when only a single protein is predicted. When 652 

several proteins are predicted simultaneously, zero padding is needed to make them have the same 653 

length.  654 

Training and test data  655 

We test our method using some public datasets, including the 150 Pfam families (5), the 105 CASP11 656 

test proteins, 76 recently-released hard CAMEO test proteins (Supplementary Table 1) and 398 657 

membrane proteins (Supplementary Table 2). For the CASP test proteins, we use the official domain 658 

definitions, but we do not parse a CAMEO or membrane protein into domains.  659 

Our training set is a subset of PDB25 created in February 2015, in which any two proteins share less 660 

than 25% sequence identity. We exclude a protein from the training set if it satisfies one of the 661 

following conditions: (i) sequence length smaller than 26 or larger than 700, (ii) resolution worse than 662 

2.5Å, (iii) has domains made up of multiple protein chains, (iv) no DSSP information, and (v) there is 663 

inconsistency between its PDB, DSSP and ASTRAL sequences (48). Finally, we also exclude the 664 

proteins sharing >25% sequence identity or having a BLAST E-value <0.1 with any of our test proteins. 665 

In total there are 6767 proteins in our training set, from which we have trained 7 different models. For 666 

each model, we randomly sampled ~6000 proteins from the training set to train the model and used the 667 

remaining proteins to validate the model and determine the hyper-parameters (i.e., regularization 668 

factor). The final model is the average of these 7 models. 669 
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Protein features 670 

We use similar but fewer protein features as MetaPSICOV. In particular, the input features include 671 

protein sequence profile (i.e., position-specific scoring matrix), predicted 3-state secondary structure 672 

and 3-state solvent accessibility, direct co-evolutionary information generated by CCMpred, mutual 673 

information and pairwise potential (45, 46). To derive these features, we need to generate MSA 674 

(multiple sequence alignment). For a training protein, we run PSI-BLAST (with E-value 0.001 and 3 675 

iterations) to search the NR (non-redundant) protein sequence database dated in October 2012 to find 676 

its sequence homologs, and then build its MSA and sequence profile and predict other features (i.e., 677 

secondary structure and solvent accessibility). Sequence profile is represented as a 2D matrix with 678 

dimension L×20 where L is the protein length. Predicted secondary structure is represented as a 2D 679 

matrix with dimension L×3 (each entry is a predicted score or probability), so is the predicted solvent 680 

accessibility. Concatenating them together, we have a 2D matrix with dimension L×26, which is the 681 

input of our 1D residual network.  682 

For a test protein, we generate four different MSAs by running HHblits (38) with 3 iterations and 683 

E-value set to 0.001 and 1, respectively, to search through the uniprot20 HMM library released in 684 

November 2015 and February 2016. From each individual MSA, we derive one sequence profile and 685 

employ our in-house tool RaptorX-Property (49) to predict the secondary structure and solvent 686 

accessibility accordingly. That is, for each test protein we generate 4 sets of input features and 687 

accordingly 4 different contact predictions. Then we average these 4 predictions to obtain the final 688 

contact prediction. This averaged contact prediction is about 1-2% better than that predicted from a 689 

single set of features (detailed data not shown). Although currently there are quite a few packages that 690 

can generate direct evolutionary coupling information, we only employ CCMpred to do so because it 691 

runs fast on GPU (4). 692 

Programs to compare and evaluation metrics 693 

We compare our method with PSICOV (5), Evfold (6), CCMpred (4), plmDCA, Gremlin, and 694 

MetaPSICOV (9). The first 5 methods conduct pure DCA while MetaPSICOV employs supervised 695 

learning. MetaPSICOV (9) performed the best in CASP11 (31). CCMpred, plmDCA, Gremlin perform 696 

similarly, but better than PSICOV and Evfold. All the programs are run with parameters set according 697 

to their respective papers. We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts 698 

where L is protein sequence length. The prediction accuracy is defined as the percentage of native 699 

contacts among the top L/k predicted contacts. We also divide contacts into three groups according to 700 

the sequence distance of two residues in a contact. That is, a contact is short-, medium- and long-range 701 

when its sequence distance falls into [6, 11], [12, 23], and ≥24, respectively.  702 

Calculation of Meff  703 

Meff measures the amount of homologous information in an MSA (multiple sequence alignment). It 704 

can be interpreted as the number of non-redundant sequence homologs in an MSA when 70% sequence 705 

identity is used as cutoff. To calculate Meff, we first calculate the sequence identity between any two 706 
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proteins in the MSA. Let a binary variable Sij denote the similarity between two protein sequences i and 707 

j. Sij is equal to 1 if and only if the sequence identity between i and j is at least 70%. For a protein i, we 708 

calculate the sum of Sij over all the proteins (including itself) in the MSA and denote it as Si. Finally, 709 

we calculate Meff as the sum of 1/Si over all the protein sequences in this MSA.  710 

3D model construction by contact-assisted folding 711 

We use a similar approach as described in (11) to build the 3D models of a test protein by feeding 712 

predicted contacts and secondary structure to the Crystallography & NMR System (CNS) suite (32). 713 

We predict secondary structure using our in-house tool RaptorX-Property (49) and then convert it to 714 

distance, angle and h-bond restraints using a script in the Confold package (11). For each test protein, 715 

we choose top 2L predicted contacts (L is sequence length) no matter whether they are short-, medium- 716 

or long-range and then convert them to distance restraints. That is, a pair of residues predicted to form a 717 

contact is assumed to have distance between 3.5Å and 8.0 Å. In current implementation, we do not use 718 

any force fields to help with folding. We generate twenty 3D structure models using CNS and select top 719 

5 models by the NOE score yielded by CNS(32). The NOE score mainly reflects the degree of violation 720 

of the model against the input constraints (i.e., predicted secondary structure and contacts). The lower 721 

the NOE score, the more likely the model has a higher quality. When CCMpred- and 722 

MetaPSICOV-predicted contacts are used to build 3D models, we also use the secondary structure 723 

predicted by RaptorX-Property to warrant a fair comparison. 724 

Template-based modeling (TBM) of the test proteins 725 

To generate template-based models (TBMs) for a test protein, we first run HHblits (with the 726 

UniProt20_2016 library) to generate an HMM file for the test protein, then run HHsearch with this 727 

HMM file to search for the best templates among the 6767 training proteins of our deep learning model, 728 

and finally run MODELLER to build a TBM from each of the top 5 templates. 729 
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