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ABSTRACT&100(150&WORDS&

Whole exome and genome sequencing have transformed the discovery of genetic 
variants that cause human Mendelian disease, but discriminating pathogenic from 
benign variants remains a daunting challenge. Rarity is recognised as a necessary, 
although not sufficient, criterion for pathogenicity, but frequency cutoffs used in 
Mendelian analysis are often arbitrary and overly lenient. Recent very large reference 
datasets, such as the Exome Aggregation Consortium (ExAC), provide an 
unprecedented opportunity to obtain robust frequency estimates even for very rare 
variants. Here we present a statistical framework for the frequency-based filtering of 
candidate disease-causing variants, accounting for disease prevalence, genetic and 
allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference 
datasets. Using the example of cardiomyopathy, we show that our approach reduces by 
two-thirds the number of candidate variants under consideration in the average exome, 
and identifies 43 variants previously reported as pathogenic that can now be 
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reclassified. We present precomputed allele frequency cutoffs for all variants in the 
ExAC dataset. 

INTRODUCTION&

Whole exome and whole genome sequencing have been instrumental in identifying 
causal variants in Mendelian disease patients1. As every individual harbors ~12,000-
14,000 predicted protein-altering variants2, distinguishing disease-causing variants from 
benign bystanders is perhaps the principal challenge in contemporary clinical genetics. 
A variant's low frequency in, or absence from, reference databases is now recognised 
as a necessary, but not sufficient, criterion for variant pathogenicity3,4. The recent 
availability of very large reference databases, such as the Exome Aggregation 
Consortium (ExAC)2 dataset, which has characterised the population allele frequencies 
of 10 million genomic variants through the analysis of exome sequencing data from over 
60,000 humans, provides an opportunity to obtain robust frequency estimates even for 
rare variants, improving the theoretical power for allele frequency filtering in Mendelian 
variant discovery efforts. 

In practice, there exists considerable ambiguity around what allele frequency should be 
considered "too common", with the lenient values of 1% and 0.1% often invoked as 
conservative frequency cutoffs for recessive and dominant diseases respectively5. 
Population genetics, however, dictates that severe disease-causing variants must be 
much rarer than these cutoffs, except in cases of bottlenecked populations, balancing 
selection, or other special circumstances6,7. 

It is intuitive that when assessing a variant for a causative role in a dominant Mendelian 
disease, the frequency of a variant in a reference sample, not selected for the condition, 
should not exceed the prevalence of the condition8,9. This rule must, however, be 
refined to account for different inheritance modes, genetic and allelic heterogeneity, and 
reduced penetrance. In addition, for rare variants, estimation of true population allele 
frequency is clouded by considerable sampling variance, even in the largest samples 
currently available. These limitations have encouraged the adoption of very lenient 
approaches when filtering variants by allele frequency10,11, and recognition that more 
stringent approaches that account for disease-specific genetic architecture are urgently 
needed8. 

Here we present a statistical framework for assessing whether rare variants are 
sufficiently rare to cause penetrant Mendelian disease, while accounting for both 
architecture and sampling variance in observed allele counts. We demonstrate that 
allele frequency cutoffs well below 0.1% are justified for a variety of human disease 
phenotypes and that such filters can remove an additional two-thirds of variants from 
consideration when compared to traditionally lenient frequency cutoffs. We present pre-
computed allele frequency filtering values for all variants in the Exome Aggregation 
Consortium database, which are now available through the ExAC data browser and for 
download, to assist others in applying our framework. 
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RESULTS&

Defining'the'statistical'framework&

For a penetrant dominant Mendelian allele to be disease causing, it cannot be present 
in the general population more frequently that the disease it causes. Furthermore, if the 
disease is genetically heterogeneous, it must not be more frequent than the proportion 
of cases attributable to that gene, or indeed to any single variant. We can therefore 
define the maximum credible population allele frequency (for a pathogenic allele) as: 

maximum credible population AF = prevalence x maximum allelic contribution x 
1/penetrance 

where maximum allelic contribution is the maximum proportion of cases potentially 
attributable to a single allele, a measure of heterogeneity. 

We do not know the true population allele frequency of any variant, having only an 
observed allele frequency in a finite population sample. Moreover, confidence intervals 
around this observed frequency are problematic to estimate given our incomplete 
knowledge of the frequency spectrum of rare variants, which appears to be skewed 
towards very rare variants. For instance, a variant observed only once in a sample of 
10,000 chromosomes is much more likely to have a frequency < 1:10,000 than a 
frequency >1:10,000.2 

If we turn the problem around, and begin instead from allele frequency, specifying a 
maximum true allele frequency value we are willing to consider in the population (using 
the equation above), then we can estimate the probability distribution for allele counts in 
a given sample size. This follows a binomial distribution, and can be satisfactorily 
approximated with a Poisson distribution (see Online Methods). This allows us to set 
an upper limit on the number of alleles in a sample that is consistent with a given 
population frequency. 

Taking a range of cardiac disorders as exemplars, we use this framework to define the 
maximum credible allele frequency for disease-causing variants in each condition, and 
define and validate a set of maximum tolerated allele counts in the ExAC reference 
population sample. Figure 1 shows the general outline of our approach. 

Figure'1'

A"flow"diagram"of"our"approach,"applied"to"a"dominant"condition."First,"a"disease8
level"maximum"credible"population"allele"frequency"is"calculated,"based"on"disease"
prevalence,"heterogeneity"and"penetrance."This"is"then"used"to"calculate"the"
maximum"tolerated"allele"count"in"a"reference"dataset,"taking"into"acount"the"size"of"
this"dataset."
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Application'and'validation'in'hypertrophic'cardiomyopathy&

We illustrate our general approach using the dominant cardiac disorder hypertrophic 
cardiomyopathy (HCM), which has an estimated prevalence of 1 in 500 in the general 
population12. As there have been previous large-scale genetic studies of HCM, with 
series of up to 6,179 individuals12,13, we can make the assumption that no newly 
identified variant will be more frequent in cases that those identified to date (at least for 
well-studied ancestries). This allows us to define the maximum allelic contribution of any 
single variant to the disorder. In these large case series, the largest proportion of cases 
is attributable to the missense variant MYBPC3 c.1504C>T (p.Arg502Trp), found in 
104/6179 HCM cases (1.7%; 95%CI 1.4-2.0%)12,13. We therefore take the upper bound 
of this proportion (0.02) as an estimate of the maximum allelic contribution in HCM 
(Table 1). Our maximum expected population allele frequency for this allele, assuming 
50% penetrance as previously reported14, is 1/500 x 1/2 (dividing prevalence per 
individual by the number of chromosomes per individual) x 0.02 x 1/0.5 = 4.0x10-5, 
which we take as the maximum credible population AF for any causative variant for 
HCM (Table 1). 

To apply this threshold while remaining robust to chance variation in observed allele 
counts, we ask how many times a variant with population allele frequency of 4.0x10-5 
can be observed in a random population sample of a given size. For a 5% error rate we 
take the 95th percentile of a poisson distribution with λ = expected allele count, which is 
given by: sample size (chromosomes) × expected population allele frequency (Online 
Methods). For HCM this gives us a maximum tolerated allele count of 9, assuming 50% 
penetrance (or 5 for fully penetrant alleles), for variants genotyped in the full ExAC 
cohort (sample size=121,412 chromosomes). The MYBPC3:c.1504C>T variant is 
observed 3 times in ExAC (freq=2.49x10-5; Table 1). 

To facilitate these calculations, we have produced an online calculator 
(https://jamesware.shinyapps.io/alleleFrequencyApp/) that will compute maximum 
credible population allele frequency and maximum sample allele count for a user-
specified genetic architecture, and conversely allow users to dynamically explore what 
genetic architecture(s) might be most compatible with an observed variant having a 
causal role in disease. 

To assess these thresholds empirically, we explored the ExAC allele frequency 
spectrum of 1132 distinct autosomal variants identified in 6179 recently published HCM 
cases referred for diagnostic sequencing, and individually assessed and reported 
according to international guidelines12,13. 477/479 (99.6%) variants reported as 
‘Pathogenic’ or ‘Likely Pathogenic’ fell below our threshold (Figure 2), including all 
variants with a clear excess in cases. 419 of these variants are absent from ExAC. The 
2 variants historically classified as ‘Likely Pathogenic’, but prevalent in ExAC in this 
analysis, were reassessed using contemporary ACMG criteria: there was no strong 
evidence in support of pathogenicity, and they were reclassified in light of these findings 
(Supplementary Table 1). This analysis identifies 66/653 (10.1%) VUS that are unlikely 
to be truly causative for HCM. 
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Table&1&

Details(of(the(most(prevalent(pathogenic(variants(in(case(cohorts(for(five(cardiac(conditions.(Shown(along(with(the(
frequency(in(cases(is(the(estimated(population(allele(frequency((calculated(as:(case(frequency(x(disease(prevalence(x(1/2(
x(1/variant(penetrance)(and(the(observed(frequency(in(the(ExAC(dataset.(*As(penetrance(estimates(for(individual(
variants(are(not(widely(available,(we(have(applied(an(estimate(of(0.5(across(all(disorders((see(Supplementary,
information).(HCM(K(hypertrophic(cardiomyopathy;(DCM(K(dilated(cardiomyopathy;(ARVC(K(arrhythmogenic(right(
ventricular(cardiomyopathy;(LQTS(K(long(QT(syndrome.(Case(cohorts(and(prevalence(estimates(were(obtained(from:(
HCM12,13,(DCM12,13,15,(ARVC13,16,(LQTS17,18(and(Brugada19,20.(

Disease& Prevalence&
Commonest&
causative&variant& Case&count&

Case&frequency&&
(95%&CI)& Penetrance*&

Expected&
population&
frequency&(95%CI)&

Model&predicted&
maximum&ExAC&AC&

Observed&
ExAC&AC&

HCM$ 1/500$
MYBPC3$
c.1504C>T$ 104/6179$

1.7%$$
(1.472.0%)$ 0.5$

3.4x1075$$
(2.774.0x1075)$ 9$ 3$

DCM$ 1/250$
TNNT2$
c.629_631delAGA$ 18/1254$

1.4%$$
(0.7872.1%)$ 0.5$

5.6x1075$$
(3.178.4x1075)$ 16$ 0$

ARVC$ 1/1000$
PKP2$
c.214671G>C$ 24/361$

6.7%$$
(4.179.2%)$ 0.5$

6.7x1075$$
(4.179.2x1075)$ 17$ 6$

LQTS$ 1/2000$
KCNQ1$
c.797T>C$ 30/2500$

1.2%$$
(0.7771.6%)$ 0.5$

6.0x1076$$
(3.978.2x1076)$ 3$ 0$

Brugada$ 1/1000$
SCN5A$
c.5350G>A$ 14/2111$

0.66%$$
(0.3271.0%)$ 0.5$

6.6x1076$$
(0.3271.0x1075)$ 3$ 0$
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Figure'2'

Plot%of%ExAC%allele%count%(all%populations)%against%case%allele%count%for%variants%
classified%as%VUS,%Likely%Pathogenic%or%Pathogenic%in%6179%HCM%cases.%The%dotted%
lines%represent%the%maximum%tolerated%ExAC%allele%counts%in%HCM%for%50%%(dark%
blue)%and%100%%penetrance%(light%blue).%Variants%are%colour%coded%according%to%
reported%pathogenicity.%Where%classifications%from%contributing%laboratories%were%
discordant%the%more%conservative%classification%is%plotted.%The%inset%panel%shows%the%
full%dataset,%while%the%main%panel%expands%the%region%of%primary%interest.%

 
The above analysis applied a single global allele count limit of 9 for HCM, however, as 
allele frequencies differ between populations, filtering based on frequencies in individual 
populations may provide greater power2. For example, a variant relatively common in 
any one population is unlikely pathogenic, even if rare in other populations, provided the 
disease prevalence and architecture is consistent across populations. We therefore 
compute a maximum tolerated AC for each distinct sub-population of our reference 
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sample, and filter based on the highest allele frequency observed in any major 
continental population (see Online Methods). 

To further validate this approach, we examined all 601 variants identified in ClinVar21 as 
"Pathogenic" or "Likely Pathogenic" and non-conflicted for HCM. 558 (93%) were 
sufficiently rare when assessed as described. 43 variants were insufficiently rare in at 
least one ExAC population, and were therefore re-curated. 42 of these had no 
segregation or functional data sufficient to demonstrate pathogenicity in the 
heterozygous state, and we would classify as VUS at most. The remaining variant 
(MYBPC3:c.3330+5G>C) had convincing evidence of pathogenicity, though with 
uncertain penetrance (see Supplementary information), and was observed twice in 
the African/African American ExAC population. This fell outside the 95% confidence 
interval for an underlying population frequency <4x10-5, but within the 99% confidence 
threshold: a single outlier due to stochastic variation is unsurprising given that these 
nominal probabilities are not corrected for multiple testing across 601 variants. In light of 
our updated assessment, 20 variants were reclassified as Benign/Likely Benign and 22 
as VUS according to the American College for Medical Genetics and Genomics (ACMG) 
guidelines for variant interpretation3 (Supplementary Table 1). 

Extending'this'approach'to'other'disorders!

This approach can be readily applied in diseases where large case series are available 
to assess the genetic and allelic architecture, such as the inherited cardiac conditions 
displayed in Table 1. In the absence of large case series, we must estimate the genetic 
architecture parameters by extrapolating from similar disorders and/or variant 
databases. 

Where disease-specific variant databases exist, we can use these to help estimate the 
maximum allelic contribution in lieu of individual case series. For example, Marfan 
syndrome is a rare connective tissue disorder caused by variants in the FBN1 gene. 
The UMD-FBN1 database22 contains 3077 variants in FBN1 from 280 references (last 
updated 28/08/14). The most common variant is in 30/3006 records (1.00%; 95CI 0.53-
1.46%), which likely overestimates its contribution to disease if related individuals are 
not systematically excluded. Taking the upper bound of this frequency as our maximum 
allelic contribution, we derive a maximum tolerated allele count of 2 (Table 2). None of 
the five most common variants in the database are present in ExAC. 

Where no mutation database exists, we can use what is known about similar disorders 
to estimate the maximum allelic contribution. For the cardiac conditions with large cases 
series in Table 1, the maximum proportion of cases attributable to any one variant is 
6.7% (95CI 4.1-9.2%; PKP2:c.2146-1G>C found in 24/361 ARVC cases13). We 
therefore take the upper bound of this confidence interval (rounded up to 0.1) as an 
estimate of the maximum allelic contribution for other genetically heterogeneous cardiac 
conditions, unless we can find disease-specific evidence to alter it. For Noonan 
syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT - an 
inherited cardiac arrhythmia syndrome) with prevalences of 1 in 100023 and 1 in 
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10,00024 respectively, this translates to maximum population frequencies of 5x10-5 and 
5x10-6 and maximum tolerated ExAC allele counts of 10 and 2 (Table 2). 

Finally, if the allelic heterogeneity of a disorder is not well characterised, it is 
conservative to assume minimal heterogeneity, so that the contribution of each gene is 
modelled as attributable to one allele, and the maximum allelic contribution is 
substituted by the maximum genetic contribution (i.e the maximum proportion of the 
disease attributable to single gene). For classic Ehlers-Danlos syndrome, up to 40% of 
the disease is caused by variation in the COL5A1 gene25. Taking 0.4 as our maximum 
allelic contribution, and a population prevalence of 1/20,00025 we derive a maximum 
tolerated ExAC AC of 5 (Table 2). 

Table'2'

Maximum%credible%population%frequencies%and%maximum%tolerated%ExAC%allele%counts%
for%variants%causative%of%exemplar%inherited%cardiac%conditions,%assuming%a%
penetrance%of%0.5%throughout.%CPVT%Q%catecholaminergic%polymorphic%ventricular%
tachycardia;%FH%Q%familial%hypercholesterolaemia.%Prevalence%estimates%were%obtained%
from:%Marfan26,%Noonan23,%CPVT24%and%classical%EhlersQDanlos25.%

Disease&
Maximum&allelic&
contribution& Prevalence& Penetrance*&

Maximum&population&
frequency&

Maximum&tolerated&
ExAC&allele&count&

Marfan& 0.015& 401769& 0.5& 5.0x10E6& 2&
Noonan& 0.100& 1/1000& 0.5& 1.0x10E4& 18&
CPVT& 0.100& 1/10,000& 0.5& 1.0x10E5& 3&
Classic&EhlersE
Danlos& 0.400& 1/20,000& 0.5& 2.0x10E5& 5&

 

Here we have illustrated frequencies analysed at the level of the disease. In some 
cases this may be further refined by calculating distinct thresholds for individual genes, 
or even variants. For example, if there is one common founder mutation but no other 
variants that are recurrent across cases, then it would make sense to have the founder 
mutation as an exception to the calculated threshold. 

Application'to'recessive'diseases!

So far we have considered diseases with a dominant inheritance model. Our framework 
is readily modified for application in recessive disease, and to illustrate this we consider 
the example of Primary Ciliary Dyskinesia (PCD), which has a prevalence of up to 1 in 
10,000 individuals in the general population27. 

Intuitively, if one penetrant recessive variant were to be responsible for all PCD cases, it 
could have a maximum population frequency of (1/10000). The maximum frequency 
of a recessive disease-causing variant in the population can be more completely defined 
as: 
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max credible allele frequency = (!"#$%&#'(#)× maximum allelic contribution ×
(!"#$!%!&'(')$**+(),$-%)$+()×1/ (!"#"$%&#'") 

where maximum genetic contribution represents the proportion of all cases that are 
attributable to the gene under evaluation, and maximum allelic contribution represents 
the proportion of cases attributable to that gene that are attributable to an individual 
variant (full derivation can be found in Online Methods). 

We can refine our evaluation of PCD by estimating the maximum genetic and allelic 
contribution. Across previously published cohorts of PCD cases28–30, DNAI1 
IVS1+2_3insT was the most common variant with a total of 17/358 alleles (4.7% 95CI 
2.5-7.0%). Given that ~9% of all patients with PCD have disease-causing variants in 
DNAI1 and the IVS1+2_3insT variant is estimated to account for ~57% of variant alleles 
in DNAI128, we can take these values as estimates of the maximum genetic and allelic 
contribution for PCD, yielding a maximum expected population AF of (1/10000)×
0.57× 0. 09×1/ 0. 5 = 2.42×10-3 This translates to a maximum tolerated ExAC AC of 
322. DNAI1 IVS1+2_3insT is itself present at 56/121108 ExAC alleles (45/66636 non-
Finnish European alleles). A single variant reported to cause PCD in ClinVar occurs in 
ExAC with AC > 332 (NME8 NM_016616.4:c.271-27C>T; AC=2306/120984): our model 
therefore indicates that this variant frequency is too common to be disease-causing, and 
consistent with this we note that it meets none of the current ACMG criteria for 
assertions of pathogenicity, and have reclassified it as VUS (see Supplementary 
information). 

Pre:computing'threshold'values'for'the'ExAC'populations!

For each ExAC variant, we defined a "filtering allele frequency" that represents the 
threshold disease-specific "maximum credible allele frequency" at or below which the 
disease could not plausibly be caused by that variant. A variant with a filtering allele 
frequency ≥ the maximum credible allele frequency for the disease under consideration 
should be filtered, while a variant with a filtering allele frequency below the maximum 
credible remains a candidate. This value has been pre-computed for all variants in 
ExAC (see Online Methods), and is available via the ExAC VCF and browser 
(http://exac.broadinstitute.org). 

To assess the efficiency of our approach, we calculated the filtering allele frequency 
based on 60,206 exomes from ExAC and applied these filters to a simulated dominant 
Mendelian variant discovery analysis on the remaining 500 exomes (see Online 
Methods). Filtering at allele frequencies lower than 0.1% can substantially reduce the 
number of predicted protein-altering variants in consideration, with the mean number of 
variants per exome falling from 176 at a cutoff of 0.1% to 63 at a cutoff of 0.0001% 
(Figure 3a). Additionally, we compared the prevalence of variants in HCM genes in 
cases and controls across the allele frequency spectrum, and computed disease odds 
ratios for different frequency bins. The odds ratio for disease-association increases 
markedly at very low allele frequencies (Figure 3b) demonstrating that increasing the 
stringency of a frequency filter improves the information content of a genetic result. 
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Figure'3'

The%clinical%utility%of%stringent%allele%frequency%thresholds.%(a)%The%number%of%
predicted%proteinQaltering%variants%(definition%in%Online%Methods)%per%exome%as%a%
function%of%the%frequency%filter%applied.%A%oneQtailed%95%%confidence%interval%is%used,%
meaning%that%variants%were%removed%from%consideration%if%their%AC%would%fall%within%
the%top%5%%of%the%Poisson%probability%distribution%for%the%user's%maximum%credible%
AF%(x%axis).%(b)%The%odds%ratio%for%HCM%diseaseQassociation%against%allele%frequency.%
The%prevalence%of%variants%in%HCMQassociated%genes%(MYH7,%MYBPC3%and%other%
sarcomeric%(TNNT2,%TNNI3,%MYL2,%MYL3,%TPM1%and%ACTC1,%analysed%collectively)%in%
322%HCM%cases%and%60,706%ExAC%controls%were%compared%for%a%range%of%allele%
frequency%bins,%and%an%odds%ratio%computed%(see%Online&Methods).%Data%for%each%bin%
is%plotted%at%the%upper%allele%frequency%cutoff.%Error%bars%represent%95%%confidence%
intervals.%The%probability%that%a%variant%is%pathogenic%is%much%greater%at%very%low%
allele%frequencies.%

 
DISCUSSION!

We have outlined a statistically robust framework for assessing whether a variant is 'too 
common' to be causative for a Mendelian disorder of interest. To our knowledge, there 
is currently no equivalent guidance on the use of variant frequency information, resulting 
in inconsistent thresholds across both clinical and research settings. Furthermore, 
though disease-specific thresholds are recommended8, in practice the same thresholds 
may be used across all diseases, even where they have widely differing genetic 
architectures and prevalences. We have shown the importance of applying stringent AF 
thresholds, in that many more variants can be removed from consideration, and the 
remaining variants have a much higher likelihood of being relevant. We also show, 
using HCM as an example, how lowering this threshold does not remove true dominant 
pathogenic variants. 

In order to assist others in applying our framework, we have precomputed a 'filtering 
allele frequency' for all variants across the ExAC dataset. This is defined such that if the 
filtering allele frequency of a variant is at or above the "maximum credible population 
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allele frequency" for the disease in question, then that variant is not a credible candidate 
(in other words, for any population allele frequency below the threshold value, the 
probability of the observed allele count in the ExAC sample is <0.05). Once a user has 
determined their "maximum credible population allele frequency", they may remove from 
consideration ExAC variants for which the filtering allele frequency is greater than or 
equal to than the chosen value. 

We recognize several limitations of our approach. First, the approach is limited by our 
understanding of the prevalence and genetic architecture of the disease in question: this 
characterisation will vary for different diseases and in different populations, though we 
illustrate approaches to estimation and extrapolation of parameters. In particular, we 
must be wary of extrapolating to or from less-well characterised populations that could 
harbour population-specific founder mutations. It is critical to define the genetic 
architecture in the population under study. Secondly, it is often difficult to obtain 
accurate penetrance information for reported variants, and it is also difficult to know 
what degree of penetrance to expect or assume for newly discovered pathogenic 
variants (see Supplementary information for alternative approaches). 

Thirdly, while we believe that ExAC is depleted of severe childhood inherited conditions, 
and not enriched for cardiomyopathies, it could be enriched relative to the general 
population for some Mendelian conditions, including Mendelian forms of common 
diseases such as diabetes or coronary disease that have been studied in contributing 
cohorts. Where this is possible, the maximum credible population allele frequency can 
be simply computed based on the estimated disease prevalence in the ExAC cohort, 
rather than the population prevalence. Finally, although the resulting allele frequency 
thresholds are more stringent than those previously used, they are likely to still be very 
lenient for many applications. For instance, we base our calculation on the most 
prevalent known pathogenic variant from a disease cohort. For HCM, for which more 
than 6,000 people have been sequenced, it is unlikely that any single newly identified 
variant, not previously catalogued in this large cohort, will explain a similarly large 
proportion of the disease as the most common causal variant, at least in well-studied 
populations. Future work may therefore involve modeling the frequency distribution of all 
known variants for a disorder, to further refine these thresholds. 

The power of our approach is limited by currently available datasets. Increases in both 
the ancestral diversity and size of reference datasets will bring additional power to our 
method over time. We have avoided filtering on variants observed only once, because a 
single observation provides little information about true allele frequency. A ten-fold 
increase in sample size, resulting from projects such as the US Precision Medicine 
Initiative, will separate vanishingly rare variants from those whose frequency really is ~1 
in 100,000. Increased phenotypic information linked to reference datasets will also 
reduce limitations due to uncertain disease status, and improve prevalence estimates, 
adding further power to our approach. 
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DATA!AVAILABILITY!

All data required to reproduce these analyses is available at 
https://github.com/ImperialCardioGenetics/frequencyFilter. The manuscript was 
compiled in R, and source code for the analysis, figures and manuscript, are available at 
the same location. Curated variant interpretations are deposited in ClinVar Accession & 
DOI to be added. ExAC annotations are available at . Our allele frequency calculator 
app is located at https://jamesware.shinyapps.io/alleleFrequencyApp/, and the source 
code available at http://github.com/jamesware/alleleFrequencyApp. 

ONLINE!METHODS!

Calculating'maximum'tolerated'allele'counts'

The maximum frequency of a dominant disease-causing variant in the population was 
defined as: 
maximum credible population AF = prevalence × maximum allelic contribution × 
1/penetrance 

Estimates of disease prevalence were obtained from the literature. Where multiple 
different values were reported, the highest was used in the calculation, which leads to 
lenient filtering. A variant penetrance of 0.5 was used for all analyses, as penetrance 
estimates for individual variants are not widely available. This corresponds to the 
reported penetrance of the HCM variant used to illustrate our approach14 and is the 
minimum found when researching other variants/disorders. 

Determination of the maximum allelic contribution (a measure of heterogeneity) is 
described in the text. Where a large cohort exists for a disorder, the upper confidence 
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interval of the frequency of the most common variant in this cohort, was used as the 
maximum allelic contribution. 

Having established a maximum credible allele frequency (AF), the maximum tolerated 
allele count (AC) was computed as the AC occurring at the upper bound of the one-
tailed 95% confidence interval (95%CI AC) for that allele frequency, given the observed 
allele number (AN). Since the population is drawn without replacement, this would 
strictly be a hypergeometric distribution, but this can be modeled as binomial as the 
sample is much smaller than the population from which it is drawn. For ease of 
computation, we approximate this with a Poisson distribution. In R, this is implemented 
as max_ac&=&qpois(quantile_limit,an*af), where max_ac is the 95%CI AC, 
quantile_limit is 0.95 (for a one-sided 95%CI), an is the observed allele number, and 
af is the maximum credible population allele frequency. 

Application'to'recessive'diseases'

The prevalence of a recessive condition can be related to the allele frequency of 
causative variants by: 
Prevalence = ∑ (allele frequency of causative alleles in each contributing gene)2 x 
penetrance 
approximating to: 
Prevalence = (combined frequency of causative alleles in gene)2 x (number of similar 
genes) x penetrance 
and expanding to: 
Prevalence = (max individual allele frequency x 1/maximum allelic contribution)2 x 
1/maximum genetic contribution x penetrance 

where maximum genetic contribution represents the proportion of all cases that are 
attributable to the gene under evaluation, and maximum allelic contribution represents 
the proportion of cases attributable to that gene that are attributable to an individual 
variant. The maximum frequency of a recessive disease causing variant in the 
population was therefore defined as: 
max credible allele frequency = (!"#$%&#'(#)× maximum allelic contribution ×
(!"#$!%!&'(')$**!"#$%&'#%!")×1/ (!"#"$%&#'") 

Pre:computing'filtering'allele'frequency'values'for'ExAC'

We define the "filtering allele frequency" for a variant, or af_filter, as the highest true 
population allele frequency for which the upper bound of the 95% confidence interval of 
allele count under a Poisson distribution is still less than the variant's observed allele 
count in the reference sample. It functions as equivalent to a lower bound estimate for 
the true allele frequency of an observed variant: if the filtering allele frequency of a 
variant is at or above the maximum credible allele frequency for a disease, then the 
variant is considered too common to be causative of the disease. 
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Consider, for example, a variant with an observed AC=3 and AN=100,000. If a user's 
maximum credible allele frequency for their disease is 1 in 100,000, then this variant 
should be kept in consideration as potentially pathogenic, because the upper bound of 
the Poisson 95%CI is AC=3. On the other hand, if the user's credible tolerated allele 
frequency is 1 in 200,000 then this variant should be filtered out, as the 95%CI upper 
bound is only AC=2. We define af_filter as the highest AF value for which a variant 
should be filtered out. 

In the example, the highest allele frequency that gives a 95%CI AC of 2 when 
AN=100,000 is approximately 8.17e-6. Instead of solving exactly for such values, which 
would require solving the inverse cumulative distribution function of the Poisson 
distribution, we derive a numerical approximation in two steps: 

1. For each variant in consideration, we use R's uniroot function to find an AF value 
(though not necessarily the highest AF value) for which the 95%CI AC is one less 
than the observed AC. 

2. We then loop, incrementing by units of millionths, and return the highest AF value 
that still gives a 95%CI AC less than the observed AC. 

In order to pre-compute af_filter values for all of ExAC (verson 0.3.1), we apply this 
procedure to the AC and AN values for each of the five major continental populations in 
ExAC, and take the highest result from any population. Usually, this is from the 
population with the highest nominal allele frequency. However, because the tightness of 
a 95% confidence interval in the Poisson distribution depends upon sample size, the 
stringency of the filter depends upon the allele number (AN). The stringency of the filter 
therefore varies appropriately according the the size of the sub-population in which the 
variant is observed, and sequencing coverage at that site, and af_filter is 
occasionally derived from a population other than the one with the highest nominal allele 
frequency. 

For this analysis, we used adjusted AC and AN, meaning variant calls with GQ≥20 and 
DP≥10. 

Treatment!of!singletons!and!other!populations!

It is worth considering whether a single observation in a reference sample should ever 
be treated as incompatible with disease. Using the approach outlined above, it can be 
inferred that an ExAC AC=1 would be considered incompatible with a true population 
allele frequency <2.9x10-6 (with 95% confidence). For a penetrant disease with a 
prevalence of 1:1,000,000, the probability of observing a specific causative allele in 
ExAC is <0.01, even if the disease is genetically homogeneous with just one causative 
variant. In practice however, we feel that there are few, if any, diseases that are 
extremely rare yet have sufficiently well-characterized genetic architecture to discard 
singleton variants from a reference sample. Therefore, for singletons (variants observed 
exactly once in ExAC), we set the filtering allele frequency to zero. 
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We also note that occasionally a variant is seen in individuals falling under the Finnish 
or "Other" population categories in ExAC, and is a singleton or absent in all five 
continental populations. For these variants, the filtering allele frequency is set to zero. 
Because the Finnish are a bottlenecked population, disease-causing alleles may reach 
frequencies that would be impossible in large outbred populations. Similarly, because 
we have not assigned ancestry for the "Other" individuals, it is difficult to assess the 
population frequency of variants seen only in this set of individuals. Users are left to 
judge whether variants that would not be filtered on the basis of frequency in the five 
continental populations, but that are recurrent in Finnish or "Other" populations, should 
be removed from consideration according to the specific circumstances. 

Simulated!Mendelian!variant!discovery!analysis!

To simulate Mendelian variant discovery, we randomly selected 100 individuals from 
each of five major continental populations and filtered their exomes against filtering 
allele frequencies derived from the remaining 60,206 ExAC individuals. The subset of 
individuals was the same as that previously reported2. Predicted protein-altering 
variants are defined as missense and equivalent (including in-frame indels, start lost, 
stop lost, and mature miRNA-altering), and protein-truncating variants (nonsense, 
essential splice site, and frameshift). 

Variant'curation'

We utilized the July 9, 2015 release of ClinVar, extracting variants from XML and TXT 
releases into a single tab-delimited file through use of a Python implementation of vt 
normalize31, as described previously2. Only variants annotated as pathogenic and non-
conflicted were investigated. ExAC counts were determined by matching on 
chromosome, position, reference, and alternate alleles. For all variants above the 
proposed maximum tolerated allele count for HCM, all HGMD annotated literature was 
reviewed and the level of evidence supporting disease pathogenicity was curated 
according to ACMG criteria3. 

Calculating'odds'ratios'for'HCM'variant'burden'

We used a cohort of 322 patients recruited to the Royal Brompton Hospital cardiac 
Biomedical Research Unit with diagnosis of HCM confirmed by cardiac MRI. These 
samples were sequenced using the IlluminaTruSight Cardio Sequencing Kit32 on 
theIlluminaMiSeq and NextSeq platforms. This study was subject to ethical approval 
(REC: 09/H0504/104+5) and informed consent was obtained for all subjects. The 
number of rare variants in MYBPC3, MYH7 and the six other sarcomeric genes 
associated with HCM (TNNT2, TNNI3, MYL2, MYL3, TPM1 and ACTC1) were 
calculated for this HCM cohort, and for reference population samples from ExAC. 
Case/control variant frequencies were calculated for all protein altering variants 
(frameshift, nonsense, splice donor/acceptor, missense and in-frame 
insertions/deletions), with frequencies and case/control odds ratios calculated 
separately for non-overlapping ExAC allele frequency bins with the following 
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breakpoints: 1x10-5, 5x10-5, 1x10-4, 5x10-4 and 1x10-3. Odds Ratios were calculated as 
OR = (cases with variant / cases without variant) / (ExAC samples with variant / ExAC 
samples without variant) along with 95% confidence intervals. In the absence of sample-
level genotype data for ExAC, the number of samples with a variant was approximated 
by the total number of variant alleles - i.e. assuming that each rare variant was found in 
a distinct sample. 

CODE!AVAILABILITY!

The manuscript was compiled in R, and source code for the analysis, figures and 
manuscript, are available at https://github.com/ImperialCardioGenetics/frequencyFilter. 
The source code for our allele frequency calculator app is located at 
http://github.com/jamesware/alleleFrequencyApp. 

SUPPLEMENTARY!INFORMATION!

Supplementary note 1 - Curation of a high frequency PCD variant 

Supplementary note 2 - Dealing with penetrance 

Supplementary table 1 
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