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Abstract—In this paper we present a feasibility of using a
data-reductive strategy for analyzing big MS data. The pro-
posed method utilizes our reduction algorithm MS-REDUCE
and peptide deduction is accomplished using Tide with hiXcorr.
Using this approach we were able to process 1 million spectra
in under 3 hours. Our results showed that running peptide
deduction with smaller amount of selected peaks made the
computations much faster and scalable with increasing resolu-
tion of MS data. Quality assessment experiments performed on
experimentally generated datasets showed good quality peptide
matches can be made using the reduced datasets. We anticipate
that the proteomics and systems biology community will widely
adopt our reductive strategy due to its efficacy and reduced
time for analysis.

I. TECHNICAL BRIEF

Modern day proteomics involves the use of Mass Spec-
trometry for correctly sequencing the proteins [1]. This
method involves breaking down of proteins into smaller
peptides which are then fragmented inside a Mass Spec-
trometer [2]. The resultant spectra are then sequenced using
two popular approaches i.e. Denovo Sequencing [3] and
Database search [4]. Over the years the Database search
method has gained much importance and many approaches
have emerged for efficiently deducing peptides from Mass
Spectra. Some of the popular database search approaches
are Sequest [4], Mascot [5] and X!tandem [6]. Recently with
the advent of more powerful Mass Spectrometry instruments
huge number of high resolution spectra can be generated
per second [7] [8]. Processing such huge number of spectra
is a time taking process especially when combined with
increasing resolution of the data. As a possible solution,
numerous techniques have been introduced for reducing
the amount of this data. Some algorithms achieve this by
discarding the prospective noisy or low confidence spectra
[9] [10]. While others take the more popular approach of
discarding the unwanted peaks [11] [12]. True advantage of
these algorithms had not been utilized till now because of
two possible reasons; i) the data/noise reducing algorithms
were very slow and provided too much overhead and ii)
the existing peptide deduction algorithms did not exploit the
reduced number of peaks in each spectrum.

A reimplementation of Sequest known as Tide [13] per-
forms the database search manifolds faster than the orig-
inal Sequest. However when dealing with high resolution
instruments Tide does not provide a scalable performance
[8]. Tide distributes the peaks of a spectrum across several
bins. The size of these bins is defined by user in accordance
with the resolution of the Mass Spectrometry instrument
used. A smaller bin size is used to accommodate a higher
resolution instrument. Smaller bin size corresponds to larger
number of bins. Number of bins increases exponentially with
decreasing bin size.

Like Sequest, Tide makes use of cross correlation or
Xcorr score for determining the similarity between an ex-
perimentally obtained spectrum and a theoretically generated
one (from the database). For Tide time taken for calculating
Xcorr is proportional to the number of bins [8] also most
of time is spent on calculating Xcorr. This an exponential
increase in number of bins with increasing resolution results
in an equivalent increase in time, this is has been presented
in [8]. Number of bins created are independent of number
of peaks in a given spectra. As a consequence a spectrum
from a higher resolution instrument with handful of peaks
will result in creation of large number of bins hence a
larger processing time. To solve this problem a solution was
presented in the form of an algorithm called hiXcorr which
is able to calculate the Xcorr score in a time proportional to
the number of peaks in spectrum. It has been shown that
the time taken for calculating Xcorr using hiXcorr does
not increase significantly when run for higher resolutions[8].
Thus hiXcorr provides an opportunity to exploit the abilities
of data reduction algorithms.

From the above discussion it becomes apparent that pro-
cessing time of hiXcorr is bound to increase with increasing
number of peaks. But as discussed in [11] about 90% of the
peaks in a spectrum do not play any part in correct deduction
of peptide. Removal of these unnecessary peaks will not only
make the data more manageable but will also provide the
much needed speed up while using hiXcorr algorithm for
calculating Xcorr score. We have recently shown that MS-
REDUCE [11] is able to reduce peaks in each spectrum by
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Figure 1: Figure showing the proposed data reductive strat-
egy for peptide deduction.

70% and still give high quality results. Also the data reduc-
tion process by MS-REDUCE is performed in just a fraction
of time of peptide deduction process while performing the
task 100x faster than other similar tools. Thus it makes sense
to use MS-REDUCE on the datasets before running them
through peptide deduction process.

On the basis of above discussion we present a data
reductive strategy for protein deduction, we suggest using
MS-REDUCE in the protein deduction pipeline along with
hiXcorr integrated Tide. As showing in Fig.1, MS-REDUCE
can be used as an integral part of the process. This leads to
much faster and more scalable solution for peptide deduc-
tion. The biggest advantage of this approach is the scalability
it provides for increasing resolution of modern devices. We
performed the quailty assessment analysis on thirteen exper-
imentally generated datasets and for scalablility analysis we
ran our experiments for over 1 million spectra.

We performed quality assessment analysis on thirteen
experimentally genreated datasets generated using different
fragmentation strategies i.e. HCD and CID. We used the
same datasets in [11].

A piece of rat liver, which was freshly isolated was
minced and then sonicated in guanidine-HCL(6M, 3ml). A
peptide standard corresponding to the C-terminal sequence
of the water channel Aquaporin-2 (AQP2) from rat, (Biotin-
LCCEPDTDWEEREVRRRQS*VELHS*PQSLPRGSKA)
phosphorylated at both S256 and S261 were added to
500 g aliquots of liver sample (prior to trypsinization)
and distinct amounts of 0.2 nmol, 20 pmol and 2 pmol
were added. We will further reference these data sets
as DS1, DS2 and DS3 respectively. We repeated the
above procedure for AQP2 peptide standard (Biotin-
LCCEPDTDWEEREVRRRQSVELHSPQS*LPRGSKA)
phosphorylated at S264, with amounts of 0.2 nmol, 20
pmol and 2 pmol.We will further reference these data
sets as DS4, DS5 and DS6 respectively. These samples
were then desalted, and were suspended in 0.1perc formic
acid before being analyzed in Mass Spectrometer using
HCD and CID fragmentation. Name of each dataset will
be preceded by the type of fragmentation for example
HCD-DS5 means DS5 with HCD fragmentation. Spectra
obtained were then searched using Tide. A rat proteome

database was obtained from (http://uniprot.org). Following
static modifications were made while generating the idnexed
database: carbamidomethyl (C: +57.021 Da) and dynamic
modifications: Phospho (S,T,Y: +79.966), Deamidation
(N,Q: +0.984), Oxidation (M: +15.995).

We also made use of Proteomics Dynamic Range Standard
Set (UPS2) from Sigma-Aldrich. UPS2 data set contains
a mixture of 48 individual human sequence recombinant
proteins, each of which was selected to limit heteroge-
neous posttranslational modifications. It is formulated from
6 mixtures of 8 proteins to present a dynamic range of
5 orders of magnitude, ranging from 50pmol to 500amol.
Briefly, 10.6 ug total protein (one vial) was resuspended
in 50 ul of denaturation solution (8M urea, 50 mM Tris-
HCl, 75 mM NaCl) followed by reduction and alkylation.
Samples were then treated with enzyme Trypsin at a 1:20
(w/w) ratio for 16 hours at 37C. Peptides obtained were then
desalted (PepClean C-18 Spin Columns, Thermo Scientific)
and eluted in 0.1perc formic acid. Sample amounts of 10,
50, and 200 ng of digested peptides were analyzed on an
LTQ Orbitrap Velos (Thermo Scientific). Refseq Database
(National Center for Biotechnology Information, March 3,
2010, 30,734 entries) was used for peptide searching. This
database also contains the sequences for all human proteins
included in the standard set UPS2, along with a list of
common contaminating proteins. The indexed database was
generated with following modifications: Carbamidomethy-
lation of cysteine (+57.021 Da) as static modification and
a variable modifications included oxidation of methionine
(+15.995 Da) and deamidation of asparagine and glutamine
(+0.984 Da). The UPS2 dataset was then appended multiple
times to obtain a list of over 1 million spectra, this list of
million spectra was then used for scalability study of this
strategy.

Plots in Fig. 2 show a considerable speed up when using
MS-REDUCE in conjunction with hiXcorr version of Tide.
We performed experiments by varying the reduction ratio
of MS-REDUCE and the bin-width used for Tide. It can
be observed from the figure that for higher reduction factor
i.e. when larger number of peaks are retained the process-
ing time rises with increasing resolution. While for lower
reduction factors it shows a very scalable performance. For
10% reduction factor the processing time almost becomes
constant for larger resolution.

When the above experiments were repeated by using
the original Tide software instead of Tide with hiXcorr,
we observed near exponential rise in processing time with
increasing resolution. It can be observed in Fig. 3, varying
Reduction factor does not have any significant effect on the
processing time. This is because original Tide calculates the
Xcorr score in a time proportional to the number of bins
and smaller bin size results in a very large number of bins
for increasing resolution.

For evaluating the effect of data reduction on the quality
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Figure 2: Figure showing timing plots of peptide deduction
process using Tide with hiXcorr algorithm. Here RF rep-
resents Reduction Factor at which MS-REDUCE was run
while treating the spectra. A decreasing Reduction Factor
makes the process more scalable.

of peptide matches we performed quality assessment exper-
iments using percolator [14] to post process the peptide
spectral matches. We used the same method of quality
assessment as used in [11]. The 4 shows even with reduced
amount of data a large percentage of high quality matches
was obtained. Thus a data reductive strategy can give suffi-
cient high quality peptide matches while making the process
much more scalable especially for modern high resolution
instruments. We anticipate that reductive strategies such as
MS-REDUCE [11] will gain popularity among proteomics
tools developers due to its time-advantages. This will in turn
lead to more scalable solutions even with high resolution MS
data.
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Figure 3: Figure showing timing plots of peptide deduction
process using Tide with original Xcorr algorithm. Here RF
represents Reduction Factor at which MS-REDUCE was run
while treating the spectra. A decreasing Reduction Factor
does not significantly affect the process.
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Figure 4: Figure showing quality assessment plots for MS-
REDUCE. Quality Assessment plots for different Reduction
Factor of MS-REDUCE can be observed. In the legend a
numerical value with MS-REDUCE represents its reduction
factor. X-axis contain the labels for the experimental datasets
while Y-axis represents the percentage of peptide matches
obtained from each dataset after being processed by each
algorithm.
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