Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections

Chao Tian,^{1*} Bethann S Hromatka,¹ Amy K Kiefer,¹ Nicholas Eriksson,¹ Joyce Y Tung, ¹ David A.

Hinds,1**

¹23andMe, Mountain View, California, United States of America.

*Corresponding authors

Email address:

*CT: <u>ctian@23andme.com</u> **DAH: <u>dhinds@23andme.com</u>

ABSTRACT

We performed 23 genome-wide association studies for common infections, including chickenpox, shingles, cold sores, mononucleosis, mumps, hepatitis B, plantar warts, positive tuberculosis test results, strep throat, scarlet fever, pneumonia, bacterial meningitis, yeast infections, urinary tract infections, tonsillectomy, childhood ear infections, myringotomy, measles, hepatitis A, rheumatic fever, common colds, rubella and chronic sinus infection, in more than 200,000 individuals of European ancestry. For the first time, genome-wide significant associations ($P < 5 \ge 10^{-8}$) were identified for many common infections. The associations were mapped to genes with key roles in acquired and innate immunity (HLA, IFNA21, FUT2, ST3GAL4, ABO, IFNL4, LCE3E, DSG1, LTBR, MTMR3, TNFRSF13B, TNFSF13B, NFKB1, CD40) and in regulation of embryonic developmental process (TBX1, FGF, FOXA1 and FOXN1 etc). Several missense mutations were also identified (in LCE5A, DSG1, FUT2, TBX1, CDHR3, PLG, TNFRSF13B, FOXA1, SH2B3, ST5 and *FOXN1*). Missense mutations in *FUT2* and *TBX1* were implicated in multiple infections. We applied fine-mapping analysis to dissect associations in the human leukocyte antigen region, which suggested important roles of specific amino acid polymorphisms in the antigen-binding clefts. Our findings provide an important step toward dissecting the host genetic architecture of response to common infections.

Introduction

Infectious diseases, the second leading cause of death worldwide, represent persistent challenges to human health due to increasing resistance to established treatments, lack of life-saving vaccines and medications in developing countries, and increasing distribution¹. Studies have linked susceptibility to infectious agents to cancers, autoimmune diseases, and drug hypersensitivity. Human papillomaviruses are associated with multiple cancers²; rubella and mumps infection have been linked to development of type 1 diabetes (T1D) in children³; and risk of developing multiple sclerosis (MS) was greater among patients with herpes zoster (shingles) than in matched controls ⁴. Reactivation of chronic persistent human herpesviruses has been linked to drug-induced hypersensitivity ⁵. Thus, infectious diseases have a profound impact on our health, both directly as well as through connections with other diseases. Nevertheless, genetic studies of common infectious diseases of lower mortality or for infectious diseases for which vaccines are available ⁶.

In this study, we conducted 23 imputed GWASs with more than 200,000 European research participants who were genotyped on the 23andMe platform and were asked to report on their history of infections (Table 1 and Supplementary note). Classical human leukocyte antigen (HLA) loci have been prototypical candidate genetic susceptibility to multiple infectious diseases⁷. We further imputed and tested the HLA classical alleles and amino acid polymorphisms to dissect independent HLA signals for multiple common infections that have significant HLA associations in our GWASs.

Results

In total, 59 genome-wide significant (GWS) regions (P < 5 x 10⁻⁸) were discovered (Table 2, see also Supplementary Figure 1 and Supplementary Figure 2 for GWAS Manhattan plots and regional plots). The HLA region is significantly associated with 17 of the infections that we studied and we dissected independent signals in each association (Figure 1 and Table 3, see also Supplementary Figure 3 for HLA regional plots). In the later sections, we describe the result for each phenotype in detail.

Genetic correlations

The pairwise LD score correlation on GWAS statistics (Figure 2, Supplementary Table 2) showed significant positive genetic correlations between strep throat and tonsillectomy (rg = 0.85, se = 0.09, P = 1.89 x 10^{-21}), between childhood ear infection and myringotomy (r_g = 0.88, se = 0.14, P = 1.27×10^{-9}), and between chickenpox and shingles (r_g = 0.56, se = 0.16, P = 4×10^{-4}), which are pairs of related phenotypes. A highly significant genetic correlation was found between tonsillectomy and childhood ear infections ($r_g = 0.42$, se = 0.05, P=8.19 x 10^{-15}). Tonsillitis and ear infections are sometimes comorbid symptoms. A previous twin study suggested a substantial overlap in genetic factors influencing variations in liability to ear infection and tonsillitis⁸. In our GWASs, we identified the missense mutation (N397H) in *TBX1* as a significant susceptibility locus for both. Significant positive correlations were also observed for pneumonia with chronic sinus infections (rg = 0.72, se = 0.19, P = 1.0 x 10^{-4}), childhood ear infections (rg = 0.39, se = 0.07, P = 1.47 x 10^{-8}), colds last year (rg = 0.57, se = 0.12, P = 2.66 x 10⁻⁶) and strep throats (rg = 0.69, se = 0.13, P=1.0 x 10⁻⁷). These are all upper respiratory infections. The same viruses that cause colds and sore throat (if these infect the throat, sinuses and upper respiratory tract) can also cause pneumonia (if these reach the lungs). We also saw a high genetic correlation between urinary tract

infection (UTI) and yeast infections (rg = 0.68, se = 0.08, P = 4.30 x 10⁻¹⁶). There was a phenotypic correlation (Pearson r = 0.41, P < 2.2×10^{-16}) among women who reported both UTI and yeast infections in our cohort. These two infections can have similar symptoms and both cause discomfort in vaginal area, but different infectious agents cause them. The genetic correlation from LD score regression removes the correlation in GWAS summary statistics due to the correlation in phenotypes and thus suggests a shared host genetic susceptibility to UTI and yeast infections in females.

Chickenpox (Varicella-zoster virus, Herpesviruses family)

Chickenpox, characterized by red, itchy bumps on the skin, is a highly contagious disease caused by primary infection with varicella-zoster virus (VZV). After the initial chickenpox infection, the virus remains dormant in the nervous system, though in approximately 20% of people it reactivates and manifests as shingles (see below). We identified independent associations in HLA-A and HLA–B in the class I region. On conditional analysis within HLA-A, the amino acid polymorphism HLA-A-Gly107 (P = 3.77×10^{-10}) accounted for the HLA allele association (HLA-A*02:01, P = 1.08×10^{-9} , conditional p-value is 0.90) in this interval. Although HLA-A-Gly107 is not located in the peptide-binding cleft, it is in high LD with HLA-A-Asp74, HLA-A-Gly62 and HLA-A-V95 (r² > 0.95), which are all in the peptide-binding cleft. In HLA-B, only rs9266089 (P = 1.00×10^{-10}) met the threshold for GWS.

Shingles (Varicella-zoster virus, Herpesviruses family)

Shingles, also known as herpes zoster, is characterized by a painful band-shaped rash ⁹ and is caused by reactivation of the VZV (see above). We identified multiple independent HLA signals for shingles. Within HLA-A, the amino acid polymorphism HLA-A-Arg97 (P = 2.75×10^{-22}), located in the peptide-binding groove, accounted for most of the SNP effect (rs2523815, P = 1.83×10^{-22} , conditional p-value is 0.04) and the HLA allele effect (HLA-

A*02:01, P = 8.91 x 10⁻²⁰, conditional p-value is 0.06). HLA-A*02:01 is implicated in both our chickenpox and shingles GWASs. The amino acid associations are different, but HLA-A-Arg97 is in high LD with HLA-A-Gly107 (r^2 = 0.73). Within HLA-B, rs2523591 (P = 1.74 x 10⁻²⁷) had a stronger association than HLA classical variants. There was a significant residual effect for rs2523591 after conditioning on HLA allele (conditional p-value is 1.71 x 10⁻⁹) or amino acid (conditional p-value is 3.13 x 10⁻⁵) associations in HLA-B region. The SNP rs2523591 is in LD with rs9266089 (r^2 = 0.24, D' = 0.98), which is a GWS signal in chickenpox GWAS, suggesting potential shared genetic factors for chickenpox and shingles. After adjusting for the signals in HLA-A and HLA-B regions, we observed independent secondary signals in the class III region (rs41316748, P=1.44 x 10⁻¹²) and in the class II region index by DRB1-PheSerHis13 (P= 5.9 x 10⁻¹⁰), which is in the peptide-binding cleft of HLA-DRB1.

We identified a variant upstream of *IFNA21* (rs7047299, P = 1.67 x 10⁻⁸) as a GWS association with shingles. None of the variants within 500kb and in moderate LD ($r^2 > 0.6$) with the index SNP rs7047299 were coding, nor were they reported as expression quantitative trait loci (eQTL). *IFNA21*, a member of the alpha interferon gene cluster at band 9p21, encoded type I interferon and is mainly involved in innate immune response against viral infection. It have been shown to be involved in the pathogenesis of rubella¹⁰, and may also influence susceptibility to asthma and atopy¹¹.

Cold sores (type 1 herpes simplex virus, Herpesviruses family)

Over half of the US population suffers from cold sores (herpes simplex labialis), which are most commonly caused by the herpes simplex virus type I (HSV-1) ¹². Once someone has been infected, the virus usually cannot be eliminated and lies dormant in nerve cells where it may reactivate years later. Although most people are infected with HSV at some point in their lives, it is not clear why only some people suffer from cold sore outbreaks and reactivation ¹³. We identified two independent GWS SNP associations in the HLA class I region. One is 2kb upstream of *POU5F1* indexed by rs885950 (P = 7.47 x 10⁻¹³) and the other is upstream of *HCP5* indexed by rs4360170 (P = 3.41×10^{-9}). We also found a GWS association with HLA-B-ThrGly45 in the peptide-binding cleft of the HLA-B protein (*P* = 4.91×10^{-12}). Upon conditioning on HLA-B-ThrGly45, the two SNPs had significant residual effects (conditional p-values are 6.28×10^{-9} and 1.32×10^{-5}). However, the effect of HLA-B-ThrGly45 was largely removed (conditional p-value is 0.001) after conditioning on the two SNPs.

Mononucleosis (Epstein-Barr virus, Herpesvirus family)

Over 90% of the world's adult population is chronically infected with Epstein-Barr virus (EBV). Primary infection at childhood is usually asymptomatic or with only mild symptoms. Primary infection later in life is often accompanied by infectious mononucleosis (IM) ¹⁴, commonly referred to as "mono" and characterized by fever, tonsillitis, and fatigue. A longitudinal study of IM in a cohort of 2,823,583 Danish children found evidence of familial aggregation of IM that warrants GWAS on IM disease etiology ¹⁴. We identified the HLA class I region upstream of *HCP5* as a GWS association (indexed by rs2596465, P = 2.48 x 10⁻⁹). No GWS HLA allele or amino acid variant was identified.

Mumps (mumps virus)

Mumps is an illness caused by the mumps virus. There is no disease modifying treatment for mumps infection. It is a rare disease in developed countries since the introduction of routine vaccination; however, outbreaks can still occur and mumps remains a significant health threat in developing countries ¹⁵. We identified four independent GWS associations with mumps.

Variation in HLA-A, in the class I region, was significantly associated with mumps. The amino acid polymorphism HLA-A-Gln43 (P = 2.51×10^{-17}) accounted for most of the SNP association (rs114193679, P = 2.23×10^{-17} , conditional p-value is 0.19) and the HLA allele association (HLA-A*02:05, P = 1.73×10^{-17} , conditional p-value is 0.26) in the HLA-A region.

We identified *FUT2* (indexed by rs516316, $P = 9.63 \times 10^{-72}$) and *ST3GAL4* (indexed by rs3862630, $P = 1.21 \times 10^{-8}$) as highly significant associations with mumps. Both belong to the glycosphingolipid (GSL) biosynthesis pathway, which was the most significant MAGENTA-analyzed pathway (Table 4: $P = 1 \times 10^{-4}$ and FDR = 0.003) identified using mumps GWAS data. This pathway also includes the ABO gene (indexed by rs8176643, P =5.81 x 10⁻⁵). Glycosphingolipids (GSLs), found in the cell membranes of bacteria all the way to humans, play important biological roles in membrane structure, host-pathogen interactions, cell-cell recognition, and modulation of membrane protein function. Genetic variation in the human *FUT2* gene determines whether ABO blood group antigens are secreted into body fluids¹⁶. Detailed functional annotations of the genes identified in our mumps GWAS are provided in Supplementary table 3. The high-risk allele rs516316 (C) is in complete LD with rs601338 (A), a nonsense variant in *FUT2* that encodes the "nonsecretor" (se) allele, which has been reported to provide resistance to Norovirus ¹⁷ and susceptibility to Crohn's disease ^{18,19} and T1D ²⁰. The surface glycoprotein of mumps virus, hemagglutinin-neuraminidase, attaches to sialic acid receptors and promotes fusion and viral entry into host cells ²¹. ABO antigens can modulate the interaction between pathogens and cell surface sialic acid receptors ²²; this presents a plausible mechanism by which secretor status could modify susceptibility to mumps infections. ST3GAL4 encodes a member of the glycosyltransferase 29 family, a group of enzymes involved in protein glycosylation.

We also identified a significant association between mumps and a variant on chromosome 14 (rs11160318, $P = 4.56 \times 10^{-12}$) that is located in the intergenic region upstream of *BDKRB2*. The role of *BDKRB2* in mumps susceptibility is not clear, but the *BDKRB2* product has high affinity for intact kinins, which mediate a wide spectrum of biological effects including inflammation, pain, vasodilation, and smooth muscle contraction and relaxation ²³.

Hepatitis B (hepatitis B virus)

Chronic hepatitis B virus (HBV) infection is a challenging global health problem. Several GWASs have been carried out to identify genetic loci involved in HBV susceptibility and immune response to hepatitis B vaccine, and the HLA-DRB1- HLA-DQB1 region has been consistently shown to be GWS^{24-26} . In our GWAS of HBV infection we identified a GWS association with rs9268652 (P = 3.14×10^{-9} , in HLA-DRA), consistent with the association of the HLA class II region with HBV susceptibility. Fine mapping analysis failed to identify GWS associations with HLA classical variants, but DQB1*06:02 was moderately associated with hepatitis B (P = 5.47×10^{-6}). HLA-DQB1*06:02 is protective against HBV in our data, which is consistent with previous studies that the DRB1*15:01-DQB1*06:02 haplotype is associated with protection from type 1 autoimmune hepatitis and development of hepatocellular carcinoma²⁷. Although chronic infection with the HBV has been linked to the development of hepatocellular carcinoma for more than 30 years²⁸, the mechanism by which HBV infection leads to hepatocellular carcinoma is unclear.

Hepatitis A (hepatitis A virus)

Infection with hepatitis A virus (HAV) can be asymptomatic or result in an acute illness characterized by flu-like symptoms and jaundice. Serious complications are rare and the hepatitis A vaccine is effective for prevention²⁹. No large cohort study has been done for

HAV infection. Our GWAS showed a suggestive association with *IFNL4*, indexed by rs66531907 (P = 5.7 x 10⁻⁸, OR = 1.23, 1kb upstream of *IFNL4*). *IFNL4* is located upstream of *IFNL3* (also known as *IL28B*). The high-risk allele rs66531907 (C) in our hepatitis A GWAS is in almost complete LD with rs8099917 (T) ($r^2 = 0.992$), which has been associated with progression to chronic hepatitis C infection (HCV) and poor response to HCV therapy in multiple studies³⁰.

Plantar warts (human papillomavirus)

The human papillomavirus (HPV) causes plantar warts, which occur on the soles of the feet. Some strains of HPV are also associated with certain forms of cancer ². We identified two GWS associations with plantar wart. Our first association was with the HLA-DRB1 in class II region. The amino acid polymorphism DRB1_PheSerTyr13 (P = $1.84 \times 10-39$), in the peptide binding clefts of HLA-DRB1, was highly significant. Conditioning on it, the effects of HLA-DRB1*15:01 (P=4.48e-14, conditional p-value is 0.36), HLA- DRB1*04:01 (P = 4.88×10^{-18} , conditional p-value is 0.001), and rs9272050 (P = 9.66×10^{-31} , conditional p-value is 0.06) were largely removed, but a small residual effect remained for rs28752534 (P = 1.50×10^{-30} , conditional p-value is 2.15×10^{-8}).

We also identified a GWS association with rs6692209 (P = 5.25 x 10⁻⁹) near *LCE3E* in the Epidermal Differentiation Complex (EDC) on 1q21. The EDC comprises a remarkable density of gene families that determine differentiation of the human epidermis³¹. The high-risk allele rs6692209 (T) is in high LD ($r^2 = 0.86$) with rs2105117 (A) (P = 2.98 x 10⁻⁸ in our GWAS), a missense variant in *LCE5A*. Variants in late cornified envelope (LCE) genes have been implicated in GWASs of atopic dermatitis (rs3126085-A, P = 6 x10⁻¹², $r^2 = 0.047$ with rs6692209) ³² and psoriasis (rs4085613-A, P = 7 x 10⁻³⁰, $r^2 = 0.002$ with rs6692209) ³³, although the index SNPs identified in those GWASs were in low LD with our identified

region. The skin is the primary interface with the external environment and provides a critical first barrier of the innate immune defense to infections³⁴. While studies have linked the epidermal differentiation genes to various skin diseases, the role of the LCE proteins in epidermal biology has not been extensively studied. One study suggested that LCE proteins of groups 1, 2, 5 and 6 are involved in normal skin barrier function, while *LCE3* genes encode proteins that are involved in barrier repair after injury or inflammation³⁵.

Positive TB test (Mycobacterium tuberculosis)

Tuberculosis is a common and, in many cases, lethal infectious disease caused by various strains of mycobacteria, usually Mycobacterium tuberculosis. A chest x-ray and a sample of sputum are needed for a diagnosis of active TB disease ³⁶. The phenotype used in our GWAS was defined by asking customers whether they had had a positive response (red bumps) to a tuberculosis (TB) skin test. A positive TB test indicates that a person has at some time been exposed to and infected with TB bacteria. A negative TB test indicates that latent TB infection or TB disease is unlikely. In our GWAS of positive TB tests, the cases have either active TB disease, latent tuberculosis infections, or were vaccinated against TB, while controls may or may not have been exposed to TB bacteria and have never been infected.

We identified multiple independent HLA associations. In the most significant HLA-DRA-DQA1 region, conditioning on HLA-DRB1-Leu67 (P = 1.14×10^{-29}) and HLA-DQA1-His129 (P = 1.56×10^{-13}) removed the effect of DQA1*01:02 (P = 7.04×10^{-22} , conditional p-value is 0.54), DQA1*03:01 (P = 3.99×10^{-10} , conditional p-value is 0.36), and rs3135359 (P = 8.82×10^{-21} , conditional p-value is 0.06); however, the effect of rs2894257 (P = 8.16×10^{-36} , conditional p-value is 1.2×10^{-7}) remained significant. Upon conditioning on the signals in the HLA-DRA-DQA1 region, secondary signals were detected in the class I (HLA-B*08:01, P= 8.43×10^{-14}) and class III regions (rs148844907 in C6orf47, P= 2.21×10^{-12}).

Strep throat (group A streptococcus bacteria)

Strep throat (also called streptococcal tonsillitis or streptococcal pharyngitis) is characterized by fever, headache, severe sore throat, swollen tonsils and lymph nodes, and is caused by group A streptococcus (GAS) bacteria ³⁷. It is routinely treated with antibiotics. The symptoms of untreated strep throat typically resolve within a few days, but can sometimes cause complications such as rheumatic fever and kidney inflammation. We found a HLA-B class I region (index SNP rs1055821, P = 7.69 x 10⁻¹¹) as a GWS association with strep throat. HLA-B*57:01 was almost GWS ($P = 5.06 \times 10^{-8}$). HLA-DRB1_CysTyr30 in class II region also showed a significant effect (P = 2.14 x 10⁻⁹). Conditioning on rs1055821, the effect of HLA-B*57:01 was removed (conditional p-value is 0.84) and the effect of HLA-DRB1_CysTyr30 was substantially decreased (conditional p-value is 0.005).

We also found an GWS association with a small insertion, rs35395352, in 1p36.23 (P = 3.90×10^{-8} , effect = 0.03). None of the variants within 500kb and in moderate LD (r² > 0.6) with this SNP were coding. However, two variants have been reported as cis-eQTLs: rs7548511 (P = 7.84×10^{-8} , effect = 0.03, risk allele A, r² = 0.96 with rs35395352) is an eQTL for *ENO1* (eQTL p-value is 8×10^{-5}) in lymphoblastoid³⁸ and rs11121129 (P = 9.62×10^{-8} , effect = 0.03, risk allele G, r² = 0.96 with rs35395352) is an eQTL for *TNFRSF9* (eQTL p-value is 4.4×10^{-4}) in lymphoblastoid³⁹. The product of ENO1, Alpha enolase, has been identified as an autoantigen in Hashimoto's encephalopathy ⁴⁰and a putative autoantigen in severe asthma⁴¹ and Behcet's disease⁴². The *TNFRSF9*-encoded protein is a member of the TNF-receptor superfamily, which contributes to the clonal expansion, survival, and development of T cells. The same 1p36.23 region has been implicated in GWASs of psoriasis (rs11121129, risk allele A, P = 1.7×10^{-8} , r² = 0.96 with rs35395352)⁴³

Studies found that exacerbation of chronic psoriasis can be associated with streptococcal throat infections, and the T-cells generated by palatine tonsils can recognize skin keratin determinants in patients' blood⁴⁴.

Scarlet fever (group A streptococcus bacteria)

Scarlet fever (also known as scarlatina) is caused by group A streptococcus (GAS) and is characterized by a bright red rash that covers most of the body, sore throat, and fever. It was a major cause of death before the discovery of effective antibiotics. We found a GWS association between scarlet fever and the HLA class II region. The amino acid polymorphism HLA-DQB1-Gly45 (P = 6.35×10^{-14}), located in the peptide-binding cleft of HLA-DQB1, accounted for the SNP association (rs36205178, P = 9.49×10^{-14} , conditional pvalues is 0.83) and the HLA allele association (HLA-DQB1*03:01, P = 2.98×10^{-14} , conditional p-values is 0.14) in this region. Although scarlet fever develops in some people with strep throat, we did not observe any cross disease effect between 'scarlet fever' and 'strep throat' in our analysis.

Pneumonia (multiple origins)

Pneumonia is characterized by inflammation of the alveoli in the lungs and can be caused by a variety of organisms, including bacteria, viruses, and fungi. The most common cause of bacterial pneumonia in adults – isolated in nearly 50% of community-acquired cases -- is Streptococcus pneumonia ⁴⁵. We found a GWAS association between pneumonia and a HLA class I region indexed by rs3131623 (P = 1.99 x 10⁻¹⁵). Conditioning on rs3131623, the residual effects of HLA-B-SerTrpAsn97 (P = 2.37 x 10⁻¹², conditional p-value is 9.33 x10⁻⁴) and HLA-DRB1-LS11 (P = 4.10 x 10⁻¹¹, conditional p-value is 3.89 x 10⁻⁶), both in the peptide-binding cleft, remained significant. There was also a residual effect left for

rs3131623 (conditional p-value is 6.94 x 10⁻⁵) after conditioning on the two amino acid associations.

Bacterial meningitis (Streptococcus pneumoniae, Group B Streptococcus bacteria and many other bacteria)

Bacterial meningitis is a severe infection causing substantial neurological morbidity and mortality worldwide. Streptococcus pneumoniae is the leading cause of bacterial meningitis and is associated with a 30% mortality rate ⁴⁶. We identified a GWS association with *CA10* (carbonic anhydrase X) indexed by rs1392935 (P = 1.19×10^{-8} , intronic of *CA10*). None of the variants within 500kb and in moderate LD (r² > 0.6) with rs1392935 were coding, nor were they reported as an eQTL. However, rs1392935 falls within an enhancer that is defined in the fetal brain. The protein encoded by *CA10* is an acatalytic member of the alpha-carbonic anhydrase subgroup and it is thought to play a role in the central nervous system, especially in brain development⁴⁷.

Yeast infection (Candida spp.)

A yeast infection, also called candidiasis, is usually a localized fungal infection of the skin or mucosal membranes, typically affecting the oral cavity, esophagus, gastrointestinal tract, urinary bladder, toenails, or genitalia⁴⁸. Most yeast infections are caused by species of *Candida*, often *Candida albicans*. We found GWS associations between yeast infections and variants in *DSG1* (rs200520431, P = 1.87 x 10⁻¹⁶). The index SNP rs200520431 is intronic and in high LD ($r^2 > 0.8$) with multiple missense mutations (rs8091003, rs8091117, rs16961689, rs61730306, rs34302455) in *DSG1*. The *DSG1* gene product is a calciumbinding transmembrane glycoprotein component of desmosomes in vertebrate epithelial cells. It connects the cell surface to the keratin cytoskeleton and plays a key role in maintaining epidermal integrity and barrier function⁴⁹. This glycoprotein has been

identified as the autoantigen of the autoimmune skin blistering disease pemphigus foliaceus⁵⁰ and homozygous mutations in *DSG1* have been showed to result in severe dermatitis, multiple allergies, and metabolic wasting syndrome⁴⁹. A variant downstream of *PRKCH* (indexed by rs2251260, P = 3.46×10^{-10}) was also significantly associated with yeast infections. None of the variants within 500kb and in moderate LD (r² > 0.6) with the index SNP rs2251260 were coding, nor were they reported as an eQTL. However, rs2251260 falls within strong enhancers defined in hepatocellular carcinoma. *PRKCH* is a member of a family of serine- and threonine-specific protein kinase and is predominantly expressed in epithelial tissues. The *PRKCH* protein kinase can regulate keratinocyte differentiation ⁵¹. We also found a significant association with a variant in the 14q32.2 gene desert (rs7161578-T, p = 4.04×10^{-8}). The index SNP is in high LD with many enhancer sequences defined in epidermal keratinocytes. A variant in the same region (rs7152623-A, p = 3×10^{-15} , r² = (+) 0.98 with rs7161578-T) was implicated in aortic stiffness⁵².

Urinary Tract Infection (Escherichia coli, Staphylococcus saprophyticus, rarely viral or fungal)

About 80%-85% of urinary tract infections (UTIs) are caused by Escherichia coli (E. coli), and 5-10% are caused by Staphylococcus saprophyticus ⁵³. Very rarely, viruses or fungi may cause UTIs ⁵⁴. UTIs occur more commonly in women than men ⁵⁵ and in our dataset, significantly more female than male customers reported having two or more UTIs. We found an association between UTIs and variants in *PSCA* (indexed by rs2976388, *P* = 3.27×10^{-10}). The index SNP rs2976388 falls within strong enhancers defined in epidermal keratinocytes. It is also in high LD (r2 = 0.95) with rs2294008 (P = 1.01×10^{-9}), which is in the 5'-UTR promoter sequence of *PSCA* and can cause changes in transcriptional repressor CTCF motif. The PSCA gene variants conferred risk of UTI only in female when we further

tested the effect in female and male cohort separately (P < 1e-11 in female, and P >0.1 in male). Prior GWASs have found associations between the *PSCA* gene and duodenal ulcer (rs2294008-C, p = 2e-33) and bladder cancer (rs2294008-T, p = 4 x 10⁻¹¹) ^{56,57}. *PSCA* encodes a glycosylphosphatidylinositol-anchored cell membrane glycoprotein of unknown function. This glycoprotein was initially identified as a prostate-specific cell-surface marker ⁵⁸ and is overexpressed in a large proportion of prostate cancers, but also detected in bladder and pancreatic cancers ⁵⁷.

We also identified a variant intronic of *FRMD5* (rs146906133, P = 2.02×10^{-8}) that is in LD with rs138763871 (r² = 0.8, p = 1.75×10^{-6} in our GWAS), a missense variant in *STRC* (R1521W). The role of FRMD5 or STRC in UTIs is unclear.

Tonsillectomy (multiple origins)

Tonsils are considered the first line of defense against respiratory infections. Previous twin studies have suggested a substantial genetic predisposition for recurrent tonsillitis⁵⁹. Tonsillectomy is a surgery to remove the tonsils typically due to repeated occurrence of tonsillitis or tonsil hypertrophy. Our tonsillectomy GWAS revealed 35 independent chromosome regions reaching GWS. We observed strong HLA associations at HLA-B in the class I region. The amino acid polymorphism HLA-B-Val97 (P = 1.44×10^{-21}), in the peptidebinding cleft of the HLA-B protein, accounted for most of the SNP effect (rs41543314, P = 5.36×10^{-21} , conditional p value is 0.06) and HLA allele effect (HLA-B*57:01, P = 6.29×10^{-22} , conditional p value is 0.05) in this interval. We also noted additional independent signals in the class II and class III regions. Within HLA-DRB1 in the class II region, the effect of rs140177540 (P = 5.02×10^{-15} , conditional p-value is 0.001) was largely removed after conditioning on DRB1_LeuValGly11 (P = 1.02×10^{-12}) in the peptide-binding cleft of the HLA-DRB1 protein.

We detected 34 additional GWS associations (Table 2 and Supplementary Table 4), including signals from genes encoding tumor necrosis factors/receptors superfamily members (LTBR, TNFRSF13B, TNFSF13B, CD40, TNFAIP3), myotubularin (MTMR3), chemokines (CXCL13), mitogen-activated protein kinases/regulators (IGFBP3, SPRED2, DUSP10, ST5, MAPK3), SRC homology domain binding proteins (SBK1, ST5, SH2B3), disintegrins (ADAM23, ADAMTS10), various transcription factors (NFKB1, HOXA2, FOXA1, *IKZF1, MDFIC, TFEC, RERE, TBX1, FOXN1*, and signaling molecules (*WNT2, GNA12, ITSN1*). Many of these genes map to pathways involved in immune and inflammatory processes. while others are important regulators of embryonic development (e.g. most of the transcription factors), and a few are potentially involved in platelet production or hemostasis (GNA12, SH2B3, RAP1GAP2, ADAM23, ADAMTS10). When we tested the significant loci for enrichment in canonical pathways, the top over-represented pathway was 'Intestinal immune network for IgA production' (Table5, $P = 2 \times 10^{-6}$ and FDR = 3.5e-3). The genes that contributed significantly in this pathway include LTBR (rs10849448, P = 2.35 x 10⁻³⁵), *TNFRSF13B* (rs34557412, missense variant, P = 2.66 x 10⁻²¹), *TNFSF13B* $(rs200748895, P = 1.20 \times 10^{-17})$ and *CD40* $(rs6032664, P = 7.31 \times 10^{-12})$. IgA is an antibody that plays a critical role in mucosal immunity. Tonsils belong to nasopharyngeal-associated lymphoid tissues and the generation of B cells is considered one of the major tonsillar functions; secretory dimeric IgA produced by the B cells is capable of preventing absorption and penetration of bacteria and/or viruses into the upper respiratory tract mucosa⁶⁰. Tonsillectomy has been shown to significantly decrease levels of serum IgA and salivary secretory IgA levels ⁶¹. Other identified significant signaling pathways include 'TACI and BCMA stimulation of B cell immune system' ($P = 9 \times 10^{-4}$ and FDR = 0.078), 'ceramide signaling pathway' ($P = 3 \times 10^{-4}$ and FDR = 0.08) and 'Glucocorticoid receptor

regulatory network' (P = 5 x 10⁻⁴ and FDR = 0.099). The contributing genes are *TNFSF13B* (rs200748895, P = 1.2×10^{-17}), *TNFRSF13B* (rs34557412, P = 2.66×10^{-21}), *NFKB1* (rs23052, P = 4.54×10^{-14}) and *MAPK3* (rs12931792, P = 4.06×10^{-8}).

Although tonsillectomy has been performed for over 100 years, possible immunological effects of this procedure remain controversial. Many reports have demonstrated that in certain patients tonsillectomy is an effective therapy for psoriasis⁴⁴ and rheumatoid arthritis (RA)⁶²; the rationale for this effect is unknown. The 'Intestinal immune network for IgA production' pathway was also identified as the most significant pathway in a recent GWAS of IgAN⁶³. In that study, they also linked the intestinal mucosal inflammatory disorders and inflammatory bowel disease (IBD) with risk of IgAN. Our tonsillectomy GWAS showed significant overlap of the identified loci with those autoimmune and inflammatory disorders⁶⁴. We found five risk loci that are also associated with RA (*HLA*, TNFIP3, CD40, SPRED2 and SH2B3); four risk loci that are also associated with IBD (HLA, MTMR3, TNFAIP3 and CD40) and ulcerative colitis (HLA, GNA12, MAPK3 and NFKB1); three risk loci that are also associated with psoriasis (*HLA, SLC12AB and 1p36.23*); and two risk loci (*HLA* and *MTMR3*) that are shared with IgAN. We observed both concordant and opposing effects compared to these immune-mediated diseases. Our results may help to elucidate the connection between tonsillectomy and these diseases and may provide insight into clinical markers that could be used as indicators of tonsillectomy as a therapy for these diseases.

Childhood ear infection (multiple origins)

Although ear infections can have a bacterial origin, they are often secondary to an upper respiratory infection such as a cold or sore throat, which can be caused by viruses or bacteria⁶⁵. Children are more likely than adults to have ear infections because their

Eustachian tubes are less effective at draining fluid and their immune systems are not fully developed. In our GWAS, we identified 14 regions that were significantly associated with childhood ear infection. Signals in the HLA region mapped to HLA-DRB1 in class II region. Our strongest association within HLA-DRB1 was with HLA-DRB1-Gln96 in the peptide-binding groove. After conditioning on HLA-DRB1-Gln96 (P = 2.11×10^{-12}), the effects of rs4329147 (P = 9.55×10^{-12} , conditional p value is 0.27) and DQB1*06:02 (P = 5.79×10^{-10} , conditional p value is 0.85) were eliminated.

We found 13 additional GWS signals (Table 2 and Supplementary Table 5). Although MAGENTA pathway analysis did not identify significant pathways (Table 6), variants in *FUT2* and *ABO*, which were involved in the glycosphingolipid biosynthesis pathway and were implicated in our mumps GWAS, were also significantly associated with childhood ear infection. The risk allele rs681343(C) ($P = 3.51 \times 10^{-30}$) is a synonymous mutation in *FUT2* and is in almost complete LD with rs601338(G) ($r^2 = 0.9993$), the 'secretor' (se) allele is associated with higher risk of childhood ear infection in our data. This is consistent with a previous report in which secretors were over-represented among patients with upper respiratory infections ⁶⁶. Our second most significant association was with a variant in *TBX1* (rs1978060, $P = 1.17 \times 10^{-19}$). The low-risk allele rs1978060 (A) is in LD (r² = 0.45) with rs72646967 (C), a missense (N397H) mutation in *TBX1* that was also implicated in our tonsillectomy GWAS. T-box genes encode transcription factors that play important roles in tissue and organ formation during embryonic development. In mice, TBX1 haploinsufficiency in the DiGeorge syndrome (22g11.2 deletion syndrome) region has been showed to disrupt the development of the pharyngeal arch arteries⁶⁷ and the middle and outer ear ^{68,69}. We also identified other genes involved in developmental processes, including *MKX* (rs2808290, P = 5.09×10^{-16}), *FGF3* (rs72931768, P = 2.63×10^{-9}) and *AUTS2*

 $(rs35213789, P = 3.75 \times 10^{-9})$. The *MKX* product is an IRX family-related homeobox transcription factor and has been shown to play a critical role in tendon differentiation by regulating type I collagen production in tendon cells⁷⁰. *FGF3* is a member of the fibroblast growth factor family, which is involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair and invasion. Study of similar genes in mouse and chicken suggested the role in inner ear formation⁷¹.. *AUTS2* has been implicated in neurodevelopment and is a candidate gene for autism spectrum disorders and developmental delay^{72,73}. Finally, we identified missense mutations in *CDHR3* (rs114947103, P = 5.40 x 10⁻⁹) and *PLG* (rs73015965, P = 3.78 x 10⁻⁸). The index SNP rs114947103 is in almost complete LD with rs6967330 (r2=0.97), a missense variant in *CDHR3, that* was recently identified in a GWAS as a susceptibility locus for asthma⁷⁴. The biological role of *CDHR3* is not clear, but it is highly expressed in airway epithelium and belongs to the cadherin family that is involved in cell adhesion and epithelial polarity⁷⁴. Mutations in the *PLG* gene could cause congenital plasminogen deficiency, which results in inflamed growths on the mucous membranes. Studies in mice have showed that *PLG* plays an essential role in protecting against the spontaneous development of chronic otitis media (middle ear infection) and have also suggested the possibility of using *PLG* for clinical therapy of certain types of otitis media⁷⁵.

Myringotomy (multiple causes)

Myringotomy is a surgical procedure in which a tiny incision is created in the eardrum to allow the release of middle-ear fluid. Before the invention of antibiotics, myringotomy without tube placement was a common treatment for severe or frequent acute otitis media⁷⁶. The same variant in *TBX1* that was associated with tonsillectomy and childhood

ear infection (see earlier) was also found to be significantly associated with myringotomy

 $(rs1978060, P = 3.34 \times 10^{-10}).$

Discussion

We identified the greatest number of independent associations for tonsillectomy (n=35)and childhood ear infection (n=14), two relatively nonspecific phenotypes. For many of the infections, we only identified HLA associations. These findings may be due to our relatively larger sample sizes for the two traits and may also be due to the fact that tonsillectomy and childhood ear infections are heterogeneous phenotypes, influenced by a variety of pathogens and also by anatomical abnormalities. People undergo tonsillectomy for different reasons, including recurrent tonsillitis, obstructive sleep apnea, and nasal airway obstruction⁷⁷. The causes of childhood ear infections are also diverse, involving different types of bacteria and viruses, and ear developmental defects⁷⁸. Variants in the *TBX1* gene, which is essential for inner ear development^{68,69}, were associated with both tonsillectomy and inner ear infections. Many genes that are involved in embryotic development were also identified in our tonsillectomy and childhood ear infection GWASs. The vulnerability to tonsillectomy and childhood ear infections may also be largely inherited. There were earlier studies calculated that heredity account for over 70% of susceptibility to recurrent ear infections in children^{79,80}. Previous twin studies had suggested a substantial genetic predisposition for recurrent tonsillitis⁵⁹ and sleep-disordered breathing⁸¹. According to the LD score regression on our GWAS data, tonsillectomy and childhood ear infections have relatively higher heritability on the observed scale than most of the other infections we studies. We did not calculate the liability scale heritability due to the lack of population prevalence information.

In the HLA region, we found that viral diseases — e.g., chicken pox, shingles, cold sores, mononucleosis (all caused by herpesvirus) as well as mumps (caused by mumps virus) — were mainly associated with variation in class I molecules (Figure 1). The bacterial

diseases — specifically having a positive TB test (caused by Mycobacterium tuberculosis), scarlet fever (caused by GAS), and childhood ear infection (mostly caused by bacteria) — were mainly associated with variation in class II molecules. Tonsillectomy and pneumonia, caused by either bacteria or viruses, were associated with both class I and class II molecules. These observations are consistent with previous knowledge about antigen presentation; viruses mostly replicate within nucleated cells in the cytosol and produce endogenous antigens that are presented by class I MHC molecules, while bacteria grow extracellularly and are taken up by endosomal compartments where they are processed for presentation by class II MHC molecules ⁸². These two intracellular pathways of protein processing may not be completely separate. Activation of CD8+, HLA class I-restricted T-cells by exogenous antigens has been reported ⁸³ and HLA class II-restricted CTLs that recognize endogenously synthesized antigen, such as HBV envelope antigens, have also been described ^{84,85}.

Some diseases, however, do not follow the common principles of antigen presentation. Plantar warts (caused by HPV) are different from other virus-causing diseases. HPV infections are exclusively intraepithelial and there is no viraemia or cytolysis in the infection cycle ⁸⁶. The primary response to HPV antigens is more likely to be initiated by the antigen-presenting cells (APCs) of squamous epithelia, the Langerhans cells (LCs). LCs capture antigens by macropinocytosis and receptor-mediated endocytosis, and then initiate class II processing of exogenous antigens ⁸⁷, which explains why our plantar warts GWAS mainly identified associations with MHC class II molecules. In other cases, our results suggest even more complex interactions. Strep throat (caused by GAS bacteria) has both MHC class I and class II associations. Some of our reported strep throat cases may represent secondary bacterial infections in response to a viral upper respiratory infection,

meaning that the discovered MHC class I associations are actually with the virus infection that initiated the process ⁸⁸. Since most sore throats are caused by viruses ⁸⁹, another possibility is that some of the reported strep throat cases actually had a misdiagnosed or misreported viral infection. A final possibility is that HLA class I molecules can bind bacterial peptides derived from exogenous proteins that are internalized by endocytosis or phagocytosis, a process called cross-presentation ^{85,90}.

We failed to detect any GWS association for certain infectious diseases, including rubella, measles, chronic sinus infection, the common cold, or rheumatic fever. It is known that HLA affects responses to measles and rubella vaccinations ^{91,92} and may thus also be associated with susceptibility. One limitation of our study that might affect findings with respect to measles and rubella is our lack of data on vaccination status. Since there is now a common vaccination for measles and rubella, misclassifying vaccinated people as controls would theoretically reduce our power to detect associations. This limitation might also affect the power of our shingles GWAS. The controls used for the shingles GWAS were not filtered for a positive history of chickenpox, though having chickenpox is a prerequisite for shingles. Another reason might be the heterogeneity of the phenotype. Colds are caused by several different viruses (mostly rhinoviruses and coronaviruses), and larger sample sizes may be required to identify alleles only associated with specific pathogens.

Although additional studies will be required to validate our associations, our findings are an important step towards dissecting the host genetic contribution to variation in response to infections. Research insights into infectious diseases will help to derive new diagnostic approaches and perhaps new therapies and preventions. This study may also help us to understand some of the autoimmune disorders that are associated with various infection triggers. Many of the identified associations were also found in autoimmune

diseases. One postulated connection between infectious diseases and immunological disorders is that the immune cells that are activated in response to a pathogen epitope are also cross-reactive to self and lead to direct damage and further activation of other arms of the immune system⁹³.

Methods

Subjects

We conducted GWASs of 23 infectious diseases. All participants were drawn from the customer base of 23andMe, Inc., a personal genetics company. All individuals included in the analyses provided informed consent and answered surveys online according to our human subjects protocol, which was reviewed and approved by Ethical & Independent Review Services, a private institutional review board (http://www.eandireview.com). All participants were of primarily European ancestry (>97% European ancestry) as determined through an analysis of local ancestry⁹⁴. A maximum set of unrelated individuals was chosen using a segmental identity-by-descent (IBD) estimation algorithm ⁹⁵. Individuals were defined as related if they shared more than 700 cM of IBD, including regions where the two individuals share either one or both genomic segments IBD. This level of relatedness (involving ~20% of the human genome) corresponds approximately to the minimal expected sharing between first cousins in an outbred population.

Table 1 shows our discovery sample sizes, drawn from more than 650,000 genotyped customers who reported via web-based questionnaires whether they had been diagnosed with one or more infectious diseases. (For more detail on survey questions used to collect the phenotype data, see the Supplementary Notes).

Genotyping and SNP imputation

DNA extraction and genotyping were performed on saliva samples by National Genetics Institute (NGI), a CLIA-certified laboratory that is a subsidiary of Laboratory Corporation of America. Samples were genotyped on one of four genotyping platforms. The V1 and V2 platforms were variants of the Illumina HumanHap550+ BeadChip and contained a total of

about 560,000 SNPs, including about 25,000 custom SNPs selected by 23andMe. The V3 platform was based on the Illumina OmniExpress+ BeadChip and contained a total of about 950,000 SNPs and custom content to improve the overlap with our V2 array. The V4 platform in current use is a fully custom array of about 950,000 SNPs and includes a lower redundancy subset of V2 and V3 SNPs with additional coverage of lower-frequency coding variation. Samples that failed to reach 98.5% call rate were re-analyzed. Individuals whose analyses failed repeatedly were re-contacted by 23andMe customer service to provide additional samples, as is done for all 23andMe customers.

Participant genotype data were imputed using the March 2012 "v3" release of the 1000 Genomes Project reference haplotypes ⁹⁶. We phased and imputed data for each genotyping platform separately. First, we used BEAGLE ⁹⁷ (version 3.3.1) to phase batches of 8,000 to 9,000 individuals across chromosomal segments of no more than 10,000 genotyped SNPs, with overlaps of 200 SNPs. We excluded SNPs with minor allele frequency (MAF) < 0.001, Hardy-Weinberg equilibrium $P < 1 \times 10^{-20}$, call rate < 95%, or large allele frequency discrepancies compared to the European 1000 Genomes Project reference data. Frequency discrepancies were identified by computing a 2x2 table of allele counts for European 1000 Genomes samples and 2000 randomly sampled 23andMe customers with European ancestry, and identifying SNPs with a chi squared P < 10⁻¹⁵. We imputed each phased segment against all-ethnicity 1000 Genomes haplotypes (excluding monomorphic and singleton sites) using Minimac2 ⁹⁸ with five rounds and 200 states for parameter estimation.

For the non-pseudoautosomal region of the X chromosome, males and females were phased together in segments, treating the males as already phased; the pseudoautosomal regions were phased separately. We then imputed males and females together using

Minimac as with the autosomes, treating males as homozygous pseudo-diploids for the non-pseudoautosomal region.

GWAS analysis

For case control comparisons, we tested for association using logistic regression, assuming additive allelic effects. For quantitative traits, association tests were performed using linear regression. For tests using imputed data, we use the imputed dosages rather than best-guess genotypes. We included covariates for age, gender, and the top five principal components to account for residual population structure. The association test pvalue was computed using a likelihood ratio test, which in our experience is better behaved than a Wald test on the regression coefficient. Results for the X chromosome were computed similarly, with men coded as if they were homozygous diploid for the observed allele.

Genetic correlations

We computed LD scores as previously described⁹⁹ using the samples in the 1000 Genomes Project reference panel (phase 3 verion 5a) with a MAF cutoff of 5%. We calculated the pairwise genetic correlation (r_g) on the GWAS summary statistics (including MHC region) using LD score regression⁹⁹. The cluster map of genetic correlation, base on the lower bound of the 95% confident interval of calculated r_g, was plotted using 'Nearest Point Algorithm' implemented in python "Searborn" package

(https://stanford.edu/~mwaskom/software/seaborn/index.html). We found no significant negative correlations in our data, thus we set all negative values to zero.

SNP Function Annotation

To explore whether any of the significant SNPs identified might link to functional mutations or have potential regulatory functions, we used the online tools HaploReg

(http://www.broadinstitute.org/mammals/haploreg/haploreg.php) to confirm the location of each SNP in relation to annotated protein-coding genes and/or non-coding regulatory elements. We queried only the variants that were within 500kb of and in moderate LD ($r^2>0.6$) with the index SNP.

Imputation of HLA classical alleles and respective amino acid variations

HLA imputation was performed with HIBAG ¹⁰⁰, an attribute bagging based statistical method that comes as a freely available R package and includes a pre-fit classifier. This classifier was trained from a large database of individuals with known HLA alleles and SNP variation within the HLA region. Over 98% of the tagging SNPs used in HIBAG were genotyped and passed quality control on 23andMe's platform. We imputed allelic dosage for HLA-A, B, C, DPB1, DQA1, DQB1, and DRB1 loci at four-digit resolution. We used the default settings of HIBAG and the run time for 100,000 samples was about 10 hours on our cluster.

Using an approach suggested by P. de Bakker ¹⁰¹, we downloaded the files that map HLA alleles to amino acid sequences from <u>https://www.broadinstitute.org/mpg/snp2hla/</u> and mapped our imputed HLA alleles at four-digit resolution to the corresponding amino acid sequences; in this way we translated the imputed HLA allelic dosages directly to amino acid dosages. We encoded all amino acid variants in the 23andMe European samples as biallelic markers, which facilitated downstream analysis. For example, position 45 of HLA-B protein had five different alleles (E: Glu, M: Met, T: Thr, K: Lys, G: Gly), we first encoded the position using five binary markers, each corresponding to the presence or absence of each allele (e.g. HLA-B-Gly45 tags Gly at position 45 of HLA-B protein). For positions having three or more alleles, we also created markers that tag multiple alleles, each corresponding to the presence or absence of the multiple alleles (e.g. HLA-B-ThrGly45 tags Thr and Gly at

position 45 of HLA-B protein). Thus, we created binary indicators for all possible combinations of amino acid variants. We use this naming convention for amino acid polymorphisms throughout this paper.

We imputed 292 classical HLA alleles at four-digit resolution and 2395 bi-allelic amino acid polymorphisms. Similar to the SNP imputation, we measured imputation quality using r^2 , which is the ratio of the empirically observed variance of the allele dosage to the expected variance assuming Hardy-Weinberg equilibrium. The imputation quality (r^2) of the top associated HLA alleles and amino acids are in Supplementary Table 6.

HLA region fine mapping

To test associations between imputed HLA allele/amino acid dosages and phenotypes, we performed logistic or linear regression using the same set of covariates used in the SNP-based GWAS for that phenotype. We applied a forward stepwise strategy, within each type of variant, to establish statistically independent signals in the HLA region. Within each variant type(e.g. SNP, HLA allele, and HLA amino acid), we first identified the most strongly associated signals (lowest p-value) for each disease and performed forward iterative conditional regression to identify other independent signals if the conditional p-value was < 5 x 10⁻⁸. All analyses controlled for sex and five principal components of genetic ancestry. The p-values were calculated using a likelihood ratio test. The iterative conditional regression dissected HLA signal into independent HLA associations. Within each identified HLA locus (HLA-A, B, C, DPB1, DQA1, DQB1, and DRB1), We further carried out reciprocal analyses, which are the conditional analyses across variants types, to see if the association can be attributed to the amino acid polymorphism within each HLA locus.

Pathway analysis

In order to better understand how multiple genes in the same pathway may contribute to certain infections, we performed pathway analysis using Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA)¹⁰², which tests for enrichment of genetic associations in predefined biological processes or sets of functionally related genes, using GWAS results as input. We used gene sets of 1320 canonical pathways from the Molecular Signatures Database (MsigDB) compiled by domain experts¹⁰³ and default settings of MAGENTA tool.

Acknowledgements:

We thank the customers of 23andMe for participating in this research and the

employees of 23andMe for their contributions to this work.

Conflict of interest:

All authors listed were/are employed by 23andMe, and own stock or stock options in

23andMe.

REFERENCE:

- Becker, K., Hu, Y. & Biller-Andorno, N. Infectious diseases a global challenge. *Int. J. Med. Microbiol. IJMM* **296**, 179–185 (2006).
- Mighty, K. K. & Laimins, L. A. The role of human papillomaviruses in oncogenesis. *Recent Results Cancer Res. Fortschritte Krebsforsch. Prog. Dans Rech. Sur Cancer* 193, 135–148 (2014).
- Filippi, C. M. & von Herrath, M. G. Viral trigger for type 1 diabetes: pros and cons.
 Diabetes 57, 2863–2871 (2008).
- Kang, J.-H., Sheu, J.-J., Kao, S. & Lin, H.-C. Increased risk of multiple sclerosis following herpes zoster: a nationwide, population-based study. *J. Infect. Dis.* 204, 188–192 (2011).
- Pavlos, R., Mallal, S., Ostrov, D., Pompeu, Y. & Phillips, E. Fever, rash, and systemic symptoms: understanding the role of virus and HLA in severe cutaneous drug allergy.
 J. Allergy Clin. Immunol. Pract. 2, 21–33 (2014).
- Blackwell, J. M., Jamieson, S. E. & Burgner, D. HLA and infectious diseases. *Clin. Microbiol. Rev.* 22, 370–385, Table of Contents (2009).
- Cooke, G. S. & Hill, A. V. S. Genetics of susceptibitlity to human infectious disease. *Nat. Rev. Genet.* 2, 967–977 (2001).
- 8. Kvestad, E. *et al.* Recurrent otitis media and tonsillitis: common disease predisposition. *Int. J. Pediatr. Otorhinolaryngol.* **70**, 1561–1568 (2006).
- 9. Weinberg, J. M. Herpes zoster: epidemiology, natural history, and common complications. *J. Am. Acad. Dermatol.* **57**, S130–135 (2007).

- Mo, X. *et al.* Microarray analyses of differentially expressed human genes and biological processes in ECV304 cells infected with rubella virus. *J. Med. Virol.* 79, 1783–1791 (2007).
- 11. Chan, A. *et al.* Variation in the type I interferon gene cluster on 9p21 influences susceptibility to asthma and atopy. *Genes Immun.* **7**, 169–178 (2006).
- 12. Xu, F. *et al.* Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. *JAMA J. Am. Med. Assoc.* **296**, 964–973 (2006).
- Kriesel, J. D. *et al.* C21orf91 genotypes correlate with herpes simplex labialis (cold sore) frequency: description of a cold sore susceptibility gene. *J. Infect. Dis.* 204, 1654–1662 (2011).
- Rostgaard, K., Wohlfahrt, J. & Hjalgrim, H. A genetic basis for infectious mononucleosis: evidence from a family study of hospitalized cases in Denmark. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 58, 1684–1689 (2014).
- 15. *Harrison's principles of internal medicine / editors, Anthony S. Fauci ... [et al.].* (McGraw-Hill Medical, 2008).
- 16. Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. *J. Biol. Chem.* **270**, 4640–4649 (1995).
- Larsson, M. M. *et al.* Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. *J. Infect. Dis.* **194**, 1422–1427 (2006).
- 18. McGovern, D. P. B. *et al.* Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. *Hum. Mol. Genet.* **19**, 3468–3476 (2010).

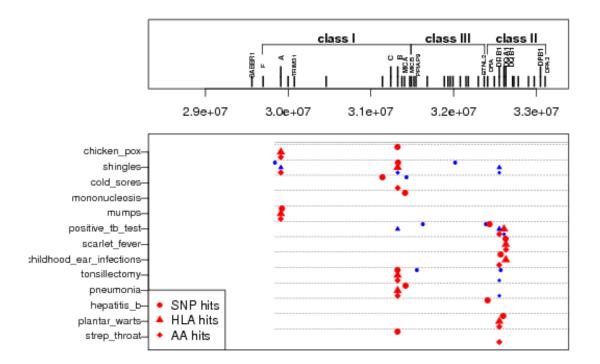
- 19. Franke, A. *et al.* Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. *Nat. Genet.* **42**, 1118–1125 (2010).
- 20. Smyth, D. J. *et al.* FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. *Diabetes* **60**, 3081–3084 (2011).
- 21. Zaitsev, V. *et al.* Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. *J. Virol.* **78**, 3733–3741 (2004).
- 22. Cohen, M., Hurtado-Ziola, N. & Varki, A. ABO blood group glycans modulate sialic acid recognition on erythrocytes. *Blood* **114**, 3668–3676 (2009).
- 23. Ma, J. X. *et al.* Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B2 receptor. *Genomics* **23**, 362–369 (1994).
- 24. Pan, L. *et al.* A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. *Hum. Mol. Genet.* **23**, 2210–2219 (2014).
- 25. Hu, Z. *et al.* New loci associated with chronic hepatitis B virus infection in Han Chinese. *Nat. Genet.* **45**, 1499–1503 (2013).
- 26. Kamatani, Y. *et al.* A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. *Nat. Genet.* **41**, 591–595 (2009).
- Umemura, T. *et al.* Human leukocyte antigen class II haplotypes affect clinical characteristics and progression of type 1 autoimmune hepatitis in Japan. *PloS One* 9, e100565 (2014).
- Sherlock, S., Fox, R. A., Niazi, S. P. & Scheuer, P. J. Chronic liver disease and primary liver-cell cancer with hepatitis-associated (Australia) antigen in serum. *Lancet* 1, 1243–1247 (1970).

- Vogt, T. M., Wise, M. E., Bell, B. P. & Finelli, L. Declining hepatitis A mortality in the United States during the era of hepatitis A vaccination. *J. Infect. Dis.* **197**, 1282–1288 (2008).
- Rauch, A. *et al.* Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. *Gastroenterology* 138, 1338– 1345, 1345.e1–7 (2010).
- Mischke, D., Korge, B. P., Marenholz, I., Volz, A. & Ziegler, A. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex ('epidermal differentiation complex') on human chromosome 1q21. *J. Invest. Dermatol.* 106, 989–992 (1996).
- 32. Sun, L.-D. *et al.* Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. *Nat. Genet.* **43**, 690–694 (2011).
- 33. Zhang, X.-J. *et al.* Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. *Nat. Genet.* **41**, 205–210 (2009).
- Sugita, K. *et al.* Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. *Clin. Exp. Immunol.* 147, 176–183 (2007).
- Bergboer, J. G. M. *et al.* Psoriasis risk genes of the late cornified envelope-3 group are distinctly expressed compared with genes of other LCE groups. *Am. J. Pathol.* **178**, 1470–1477 (2011).
- 36. Learn the Signs and Symptoms of TB Disease.
- Tart, A. H., Walker, M. J. & Musser, J. M. New understanding of the group A Streptococcus pathogenesis cycle. *Trends Microbiol.* 15, 318–325 (2007).

- 38. Montgomery, S. B. *et al.* Transcriptome genetics using second generation sequencing in a Caucasian population. *Nature* **464**, 773–777 (2010).
- 39. Dimas, A. S. *et al.* Common regulatory variation impacts gene expression in a cell typedependent manner. *Science* **325**, 1246–1250 (2009).
- 40. Yoneda, M. *et al.* High prevalence of serum autoantibodies against the amino terminal of alpha-enolase in Hashimoto's encephalopathy. *J. Neuroimmunol.* **185**, 195–200 (2007).
- 41. Nahm, D.-H. *et al.* Identification of alpha-enolase as an autoantigen associated with severe asthma. *J. Allergy Clin. Immunol.* **118**, 376–381 (2006).
- 42. Lee, K. H. *et al.* Human alpha-enolase from endothelial cells as a target antigen of antiendothelial cell antibody in Behçet's disease. *Arthritis Rheum.* **48**, 2025–2035 (2003).
- 43. Tsoi, L. C. *et al.* Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. *Nat. Genet.* **44**, 1341–1348 (2012).
- 44. Thorleifsdottir, R. H. *et al.* Improvement of psoriasis after tonsillectomy is associated with a decrease in the frequency of circulating T cells that recognize streptococcal determinants and homologous skin determinants. *J. Immunol. Baltim. Md* 1950 188, 5160–5165 (2012).
- 45. Pneumococcal Disease.
- Castelblanco, R. L., Lee, M. & Hasbun, R. Epidemiology of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study. *Lancet Infect. Dis.* 14, 813–819 (2014).
- Taniuchi, K. *et al.* Developmental expression of carbonic anhydrase-related proteins
 VIII, X, and XI in the human brain. *Neuroscience* **112**, 93–99 (2002).
- 48. *Medical microbiology*. (University of Texas Medical Branch at Galveston, 1996).

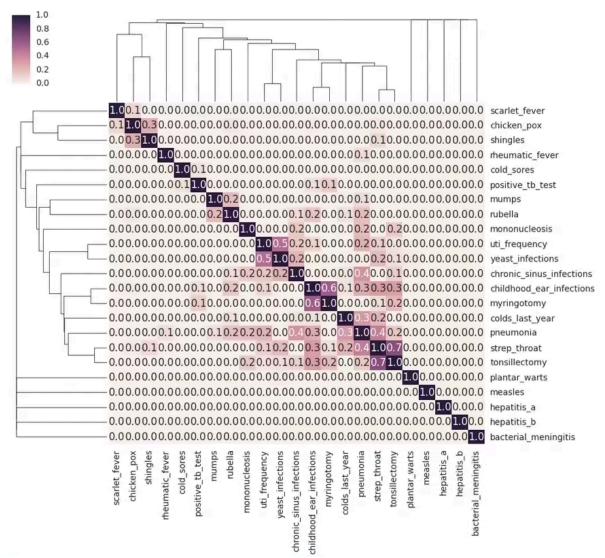
- 49. Samuelov, L. *et al.* Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. *Nat. Genet.* **45**, 1244–1248 (2013).
- Amagai, M. & Stanley, J. R. Desmoglein as a target in skin disease and beyond. *J. Invest. Dermatol.* **132**, 776–784 (2012).
- 51. Kashiwagi, M., Ohba, M., Chida, K. & Kuroki, T. Protein kinase C eta (PKC eta): its involvement in keratinocyte differentiation. *J. Biochem. (Tokyo)* **132**, 853–857 (2002).
- 52. Mitchell, G. F. *et al.* Common genetic variation in the 3'-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: the AortaGen Consortium. *Circ. Cardiovasc. Genet.* **5**, 81–90 (2012).
- 53. Nicolle, L. E. Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. *Urol. Clin. North Am.* **35**, 1–12, v (2008).
- 54. Amdekar, S., Singh, V. & Singh, D. D. Probiotic therapy: immunomodulating approach toward urinary tract infection. *Curr. Microbiol.* **63**, 484–490 (2011).
- 55. Valiquette, L. Urinary tract infections in women. *Can. J. Urol.* 8 Suppl 1, 6–12 (2001).
- 56. Tanikawa, C. *et al.* A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. *Nat. Genet.* **44**, 430–434, S1–2 (2012).
- 57. Wu, X. *et al.* Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. *Nat. Genet.* **41**, 991–995 (2009).
- 58. Reiter, R. E. *et al.* Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 1735–1740 (1998).
- 59. Kvestad, E. *et al.* Heritability of recurrent tonsillitis. *Arch. Otolaryngol. Head Neck Surg.*131, 383–387 (2005).
- 60. Bernstein, J. M. Mucosal immunology of the upper respiratory tract. *Respir. Int. Rev. Thorac. Dis.* **59 Suppl 3,** 3–13 (1992).

- D'Amelio, R., Palmisano, L., Le Moli, S., Seminara, R. & Aiuti, F. Serum and salivary IgA levels in normal subjects: comparison between tonsillectomized and nontonsillectomized subjects. *Int. Arch. Allergy Appl. Immunol.* 68, 256–259 (1982).
- 62. Kawano, M. *et al.* Simultaneous, clonally identical T cell expansion in tonsil and synovium in a patient with rheumatoid arthritis and chronic tonsillitis. *Arthritis Rheum.* **48**, 2483–2488 (2003).
- 63. Gharavi, A. G. *et al.* Genome-wide association study identifies susceptibility loci for IgA nephropathy. *Nat. Genet.* **43**, 321–327 (2011).
- 64. Welter, D. *et al.* The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. *Nucleic Acids Res.* **42**, D1001–1006 (2014).
- 65. Heikkinen, T. & Chonmaitree, T. Importance of respiratory viruses in acute otitis media. *Clin. Microbiol. Rev.* **16**, 230–241 (2003).
- 66. Raza, M. W. *et al.* Association between secretor status and respiratory viral illness. *BMJ***303**, 815–818 (1991).
- 67. Lindsay, E. A. *et al.* Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. *Nature* **410**, 97–101 (2001).
- 68. Raft, S., Nowotschin, S., Liao, J. & Morrow, B. E. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. *Dev. Camb. Engl.* **131**, 1801–1812 (2004).
- Vitelli, F. *et al.* TBX1 is required for inner ear morphogenesis. *Hum. Mol. Genet.* 12, 2041–2048 (2003).
- 70. Ito, Y. *et al.* The Mohawk homeobox gene is a critical regulator of tendon differentiation. *Proc. Natl. Acad. Sci. U. S. A.* **107,** 10538–10542 (2010).
- 71. Sensi, A. *et al.* LAMM syndrome with middle ear dysplasia associated with compound heterozygosity for FGF3 mutations. *Am. J. Med. Genet. A.* **155A**, 1096–1101 (2011).


- 72. Oksenberg, N. & Ahituv, N. The role of AUTS2 in neurodevelopment and human evolution. *Trends Genet. TIG* **29**, 600–608 (2013).
- Jolley, A. *et al.* De novo intragenic deletion of the autism susceptibility candidate 2 (AUTS2) gene in a patient with developmental delay: a case report and literature review. *Am. J. Med. Genet. A.* **161A**, 1508–1512 (2013).
- 74. Bønnelykke, K. *et al.* A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. *Nat. Genet.*46, 51–55 (2014).
- 75. Eriksson, P.-O., Li, J., Ny, T. & Hellström, S. Spontaneous development of otitis media in plasminogen-deficient mice. *Int. J. Med. Microbiol. IJMM* **296**, 501–509 (2006).
- 76. Smith, N. & Greinwald, J. To tube or not to tube: indications for myringotomy with tube placement. *Curr. Opin. Otolaryngol. Head Neck Surg.* **19**, 363–366 (2011).
- 77. Baugh, R. F. *et al.* Clinical practice guideline: tonsillectomy in children. *Otolaryngol.--Head Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg.* **144**, S1–30 (2011).
- 78. Ear Infections in Children.
- 79. Casselbrant, M. L. *et al.* The heritability of otitis media: a twin and triplet study. *JAMA*282, 2125–2130 (1999).
- 80. Kvaerner, K. J., Tambs, K., Harris, J. R. & Magnus, P. Distribution and heritability of recurrent ear infections. *Ann. Otol. Rhinol. Laryngol.* **106**, 624–632 (1997).
- Carmelli, D., Colrain, I. M., Swan, G. E. & Bliwise, D. L. Genetic and environmental influences in sleep-disordered breathing in older male twins. *Sleep* 27, 917–922 (2004).
- Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. *Annu. Rev. Immunol.* **31**, 443–473 (2013).

- Rock, K. L., Gamble, S. & Rothstein, L. Presentation of exogenous antigen with class I major histocompatibility complex molecules. *Science* 249, 918–921 (1990).
- Penna, A. *et al.* Hepatitis B virus (HBV)-specific cytotoxic T-cell (CTL) response in humans: characterization of HLA class II-restricted CTLs that recognize endogenously synthesized HBV envelope antigens. *J. Virol.* 66, 1193–1198 (1992).
- 85. Nuchtern, J. G., Biddison, W. E. & Klausner, R. D. Class II MHC molecules can use the endogenous pathway of antigen presentation. *Nature* **343**, 74–76 (1990).
- 86. Stanley, M. HPV immune response to infection and vaccination. *Infect. Agent. Cancer* 5, 19 (2010).
- 87. Stanley, M. Immune responses to human papillomavirus. *Vaccine* 24 Suppl 1, S16–22 (2006).
- Metzger, D. W. & Sun, K. Immune dysfunction and bacterial coinfections following influenza. *J. Immunol. Baltim. Md* 1950 191, 2047–2052 (2013).
- 89. Sore Throat.
- 90. Rock, K. L. & Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. *Immunol. Rev.* **207**, 166–183 (2005).
- 91. Haralambieva, I. H. *et al.* Genome-wide characterization of transcriptional patterns in high and low antibody responders to rubella vaccination. *PloS One* **8**, e62149 (2013).
- Ovsyannikova, I. G., Pankratz, V. S., Vierkant, R. A., Jacobson, R. M. & Poland, G. A.
 Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. *Vaccine* **30**, 2146–2152 (2012).
- Ercolini, A. M. & Miller, S. D. The role of infections in autoimmune disease. *Clin. Exp. Immunol.* **155**, 1–15 (2009).

- 94. Durand, E. Y., Do, C. B., Mountain, J. L. & Macpherson, J. M. *Ancestry Composition: A Novel, Efficient Pipeline for Ancestry Deconvolution*. (2014).
- 95. Henn, B. M. *et al.* Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. *PloS One* **7**, e34267 (2012).
- 1000 Genomes Project Consortium *et al.* A map of human genome variation from population-scale sequencing. *Nature* 467, 1061–1073 (2010).
- 97. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missingdata inference for whole-genome association studies by use of localized haplotype clustering. *Am. J. Hum. Genet.* **81**, 1084–1097 (2007).
- Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation.
 Bioinforma. Oxf. Engl. (2014). doi:10.1093/bioinformatics/btu704
- 99. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).
- 100. Zheng, X. *et al.* HIBAG--HLA genotype imputation with attribute bagging. *Pharmacogenomics J.* **14,** 192–200 (2014).
- 101. Jia, X. *et al.* Imputing amino acid polymorphisms in human leukocyte antigens. *PloSOne* **8**, e64683 (2013).
- 102. Segrè, A. V. *et al.* Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. *PLoS Genet.* **6**, (2010).
- 103. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–15550 (2005).


Figure Titles and Legends

The strongest associated signals (red) and putative independent secondary signals (blue) are shown for each disease along with their location within the region. Independent secondary signals were defined as those with residual conditional association using the same significant threshold as the primary association signal mentioned in the main text.

Figure 2. Heat map showing the genetic correlations

Each square [i, j] shows the lower bound of the 95% confidence interval of estimated genetic correlation (rg) between trait i and trait j, where i indexes row and j indexes columns. Darker colors represent larger genetic correlations. All negative values to zero. Phenotypes were clustered by 'Nearest Point Algorithm' implemented in python "Seaborn" package.

79,622	71,597	15,720	88,076	217,137	47,279	Control
5,291	12,000	[qt] 43,826	1,115	2,442	38,219	Cases
Chronic sinus infection	Rubella	# of Colds last year ^a	Rheumatic fever	Hepatitis A	Measles	
		Phenotypes with no significant GWAS findings	enotypes with no sig	Ph		
	85,089	74,874	113,323	33,478	10,235	Control
	4,138	46,936	860,098	[qt] 35,000	[qt] 52,218	Cases
	Myringotomy	Childhood ear infection	Tonsillectomy	UTI frequency ^a	Yeast infections ^a	
82,778	90,039	113,837	22,017	84,290	37,451	Control
842	40,600	6,812	[qt] 52,487	4,426	24,994	Cases
Bacterial meningitis	Pneumonia	Scarlet fever	Strep throat ^a	Positive TB	Plantar warts	
218,180	54,153	68,446	63,332	118,152	15,982	Control
1,425	31,227	17,457	25,108	16,711	107,769	Cases
Hepatitis B	Mumps	Mononucleosis	Cold sores	Shingles	Chicken pox	
		Phenotypes with significant GWAS findings	henotypes with sign			

a. Strep throat, yeast infections, urinary tract infection (UTI) frequency and number of colds last year were quantitative traits ([qt]).

bioRxiv preprint doi: https://doi.org/10.1101/073056; this version posted September 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Tables

Table 1 Discovery cohort characteristics

Tonsillectomy	o II li equency	IITI framoncy		reast	Voort	Bacterial meningitis	Pneumonia	Scarlet fever	วน อุป นม บลเ	Stron throat	Positive TB Test		Diantar warte	Hepatitis B	Hepatitis A		cdinna	Mumne		Mononucleosis	Cold sores	carBinnes	Chinaloo	Chickenpox	Phenotype
12p13.31 22q12.2	15q15.3	8q24.3	14q32.2	14q23.1	18q12.1	17q21.33	6p21.33	6p21.32	1p36.23	6p21.33	6p21.32	1q21.3	6p21.32	6p21.32	19q13.2	11q24.2	14q32.2	6p22.1	19q13.33	6p21.33	6p21.33	9p21.3	6p21.33	6p21.33	Cytoband
[LTBR] [MTMR3]	[FRMD5]	JRK-[]-PSCA	[]C14orf177	PRKCH	[DSG1]	[CA10]	[HLA]	[HLA]	ERRFI1[]SLC45A1	[HLA]	[HLA]	CRCT1[]LCE3E	[HLA]	[HLA]	[IFNL4]	[ST3GAL4]	C14orf132[]BDKRB2	[HLA]	[FUT2]	[HLA]	[HLA]	[IFNA21]	[HLA]	[HLA]	Gene context
rs10849448 rs201112509	rs146906133	rs2976388	rs7161578	rs2251260	rs200520431	rs1392935	rs3131623	rs36205178	rs35395352	rs1055821	rs2894257	rs6692209	rs9272050	rs9268652	rs66531907	rs3862630	rs11160318	rs114193679	rs516316	rs2596465	rs885950	rs7047299	rs2523591	rs9266089	Variants
6493351 30324654	44262951	143760256	98586162	62023767	28918197	49939129	31418810	32627938	8266829	31321919	32433276	152506444	32599071	32409056	39740675	126243649	96659919	29925103	49206145	31412948	31140152	21167465	31326960	31320509	Position
A/G I/D	T/C	G/A	T/C	T/C	D/I	G/A	T/A	C/T	D/I	T/G	C/G	T/C	G/A	G/A	A/C	T/C	G/A	G/C	C/G	T/C	C/A	A/G	G/A	G/A	Allelesa
0.25 0.69	1.00	0.56	0.39	0.17	0.07	0.91	0.85	0.81	0.72	0.06	0.53	0.62	0.38	0.74	0.21	0.12	0.68	0.99	0.48	0.47	0.42	0.56	0.58	0.85	Freq
1.13 1.12	0.38	0.04	0.04	0.05	0.11	1.78	1.1	1.24	0.03	0.08	1.36	1.08	1.19	1.32	1.23	1.13	1.1	1.72	1.25	1.08	1.08	1.07	1.14	1.12	OR/effect ^b
(1.12 - 1.14) (1.11 - 1.13)	(0.32 - 0.45)	(0.04 - 0.05)	(0.03 - 0.04)	(0.04 - 0.06)	(0.09-0.12)	(1.6-1.99)	(1.09-1.12)	(1.21 - 1.28)	(0.03 - 0.04)	(0.06 - 0.09)	(1.33-1.39)	(1.06 - 1.09)	(1.17 - 1.21)	(1.25 - 1.38)	(1.14 - 1.33)	(1.1 - 1.15)	(1.08 - 1.11)	(1.62 - 1.84)	(1.24 - 1.27)	(1.06 - 1.09)	(1.07 - 1.09)	(1.06 - 1.09)	(1.13 - 1.16)	(1.1 - 1.14)	(95% CI)
2.35E-35 3.39E-34	2.02E-08	3.27E-10	4.04E-08	3.46E-10	1.87E-16	1.19E-08	1.99E-15	9.49E-14	3.90E-08	7.69E-11	8.16E-36	5.25E-09	9.66E-31	3.14E-09	5.70E-08	1.21E-08	4.56E-12	2.23E-17	9.63E-72	2.48E-09	7.47E-13	1.67E-08	1.74E-27	1.00E-10	P-value

Table 2: Genome-wide Significant Associations for Each Disease

bioRxiv preprint doi: https://doi.org/10.1101/073056; this version posted September 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

46

6q23.3	17q11.2	9q34.2	20q13.33	11p15.4	1p36.23	2q33.3	21q22.11	17p13.3	19p13.2	7q31.2	4q21.1	12q24.12	4p15.2	1q41	16p11.2	3q21.2	7p22.2	13q21.33	7p12.2	20q13.12	2p14	4q24	14q21.1	7p15.2	4q24	7p12.3	13q33.3	6p21.33	17p11.2
OLIG3[]TNFAIP3	[FOXN1]	ABO-[]SURF6	[SAMD10]	[ST5]	RERE[]ENO1	[ADAM23]	[ITSN1]	[RAP1GAP2]	ADAMTS10[]ACTL9	MDFIC[]TFEC	[CXCL13]	[SH2B3]	LGI2[]-SEPSECS	DUSP10[]HHIPL2	[SBK1]	[SLC12A8]	[GNA12]	[KLHL1]	C7orf72[]IKZF1	NCOA5[]-CD40	[SPRED2]	[TET2]	MIPOL1-[]FOXA1	HOXA1-[]-HOXA2	[NFKB1]	IGFBP3[]	[TNFSF13B]	[HLA]	[TNFRSF13B]
rs11757201	rs62066768	rs635634	rs41278232	rs11042055	rs12068123	rs1448903	rs200746495	rs67968065	rs2918308	rs2023703	rs7685785	rs3184504	rs10939037	rs12126292	rs141876325	rs1980080	rs2644312	rs9542155	rs876037	rs6032664	rs201473667	rs1391439	rs148131694	rs6668	rs230523	rs80077929	rs200748895	rs41543314	rs34557412
138003822	26858395	136155000	62606617	8756856	8894346	207308961	35052995	2729247	8789912	114944919	78440425	111884608	25114601	222165909	28330968	124911841	2841164	70579527	50308692	44739419	65562862	106151642	38025098	27138183	103462038	46094089	108960380	31322690	16852187
C/G	A/G	T/C	G/A	A/G	G/A	G/A	D/I	D/I	A/C	C/A	C/T	T/C	A/G	G/T	I/D	C/T	G/A	T/C	T/A	A/T	D/I	G/A	T/C	T/C	T/C	T/C	D/I	G/A	G/A
0.20	0.08	0.20	0.89	0.43	0.45	0.09	0.87	0.52	0.84	0.33	0.89	0.50	0.56	0.12	0.28	0.33	0.71	0.32	0.68	0.26	0.47	0.40	0.44	0.37	0.67	0.11	0.03	0.03	0.01
1.06	1.09	1.06	1.08	1.05	1.05	1.08	1.07	1.05	1.07	1.05	1.09	1.05	1.05	1.09	1.06	1.06	1.06	1.06	1.06	1.07	1.06	1.06	1.07	1.06	1.07	1.11	1.26	1.23	1.59
(1.05-1.07)	(1.07 - 1.11)	(1.05 - 1.07)	(1.06 - 1.09)	(1.04 - 1.06)	(1.04 - 1.06)	(1.07 - 1.1)	(1.06 - 1.09)	(1.04 - 1.06)	(1.06 - 1.08)	(1.05 - 1.06)	(1.07 - 1.1)	(1.04 - 1.06)	(1.05 - 1.06)	(1.07-1.1)	(1.05 - 1.07)	(1.05 - 1.07)	(1.05 - 1.07)	(1.05 - 1.07)	(1.05 - 1.07)	(1.06 - 1.08)	(1.05 - 1.07)	(1.05 - 1.07)	(1.06 - 1.08)	(1.06 - 1.07)	(1.06 - 1.08)	(1.1 - 1.13)	(1.23 - 1.29)	(1.2 - 1.26)	(1.52 - 1.67)
2.97E-08	1.09E-08	8.47E-09	7.54E-09	6.96E-09	5.60E-09	5.13E-09	4.45E-09	2.08E-09	1.10E-09	7.79E-10	4.52E-10	3.07E-10	1.42E-10	7.21E-11	4.72E-11	3.16E-11	2.73E-11	1.92E-11	1.12E-11	7.31E-12	5.39E-12	2.76E-12	7.86E-13	1.71E-13	4.54E-14	1.74E-15	1.20E-17	5.36E-21	2.66E-21

Myringotomy							Infections	Childhood Ear									
22q11.21	6q26	3p21.31	8q22.2	7q22.3	7q11.22	11q13.3	2p24.1	2p16.1	9q34.2	6p21.32	15q26.2	10p12.1	22q11.21	19q13.33	22q11.21	7q31.2	16p11.2
[TBX1]	[PLG]	[BSN]	NIPAL2[]KCNS2	[CDHR3]	[AUTS2]	FGF3[]AN01	NT5C1B-RDH14[] OSR1	[EFEMP1]	[ABO]	[HLA]	SPATA8[]LINC00923	RAB18[]MKX	[TBX1]	[FUT2]	[TBX1]	[WNT2]	MAPK3[]CORO1A
rs1978060	rs73015965	rs67035515	rs13281988	rs114947103	rs35213789	rs72931768	rs5829676	rs1802575	rs8176643	rs4329147	rs7174062	rs2808290	rs1978060	rs681343	rs41298830	rs200608253	rs12931792
19749525	161127501	49656530	99372329	105658927	69268012	69829717	19274784	56093204	136149095	32566577	97452829	27900882	19749525	49206462	19752943	116917244	30156398
G/A	G/A	I/D	C/G	C/T	C/T	G/C	D/I	G/C	D/I	T/C	G/A	C/T	G/A	C/T	A/C	I/D	G/A
0.60	0.01	0.18	0.31	0.18	0.74	0.88	0.40	0.87	0.36	0.83	0.73	0.51	0.60	0.52	0.77	0.52	0.54
1.17	1.43	1.07	1.06	1.07	1.06	1.09	1.06	1.09	1.06	1.11	1.08	1.07	1.09	1.11	1.06	1.05	1.06
(1.14-1.2)	(1.34 - 1.53)	(1.05 - 1.08)	(1.05 - 1.07)	(1.06 - 1.08)	(1.05 - 1.07)	(1.07 - 1.1)	(1.05 - 1.07)	(1.07-1.1)	(1.05 - 1.07)	(1.09 - 1.13)	(1.07 - 1.09)	(1.07 - 1.08)	(1.08-1.1)	(1.1 - 1.12)	(1.05 - 1.07)	(1.04 - 1.05)	(1.05 - 1.07)
3.34E-10	3.78E-08	1.56E-08	9.84E-09	5.40E-09	3.75E-09	2.63E-09	1.78E-10	1.47E-10	3.67E-11	9.55E-12	3.49E-14	5.09E-16	1.17E-19	3.51E-30	4.95E-08	4.07E-08	4.06E-08

The alleles for SNP are represented as high-risk allele/low-risk allele;

<u>а</u>

þ. Strep throat, plantar warts and UTI frequency are quantitative traits, for which we reported the effect size instead of the odds ratio.

	P						M																_		
	Plantar warts		Hepatitis B		Mumps		Mononucleosis		Cold sores							Shingles							Chickenpox		Phenotype
	[HLA-DRB1]		[HLA-DRA]		[HLA-A]		MICA[] MICB	MICA[] MICB	[HLA-B]	POU5F1-[] HCG27			[TNXB]			[HLA-B]				[HLA-A]		[HLA-B]	[ערש-עי]		Gene
6p21.32	6p21.32	6p21.32	6p21.32	6p22.1	6p22.1	6p22.1	6p21.33	6p21.33	6p21.33	6p21.33	6p21.32	6p21.32	6p21.33	6p21.33	6p21.33	6p21.33	6p21.33	6p21.33	6p22.1	6p22.1	6p22.1	6p21.33	6p22.1	6p22.1	Cytoband
DRB1_PheSerTyr13	DRB1*15:01	DRB1*04:01	rs9268652	rs114193679	A*02:05	A_Gln43	rs2596465	rs4360170	B_ThrGly45	rs885950	DRB1_PheSerHis13	DRB1*11:01	rs41316748	rs2523591	B_GluMet45	B_Trp147	B*57:01	B*44:02	A*02:01	A_Arg97	rs2523815	rs9266089	A*02:01	A_Gly107	Variants ^b
32552131	32552079	32552079	32409056	29925103	29911953	29910660	31412948	31430359	31324602	31140152	32552131	32552079	32019512	31326960	31324602	31324051	31323318	31323318	29911953	29911063	29840243	31320509	29911953	29911093	Position
FSHYGR	NA	NA	G/A	G/C	NA	QR	T/C	A/G	EMTKG	C/A	FSHYGR	NA	C/T	G/A	EMTKG	WL	NA	NA	NA	IRM	A/G	G/A	NA	GW	Alleles ^c
0.63	0.13	0.08	0.74	0.99	0.01	0.99	0.47	0.91	0.23	0.42	0.66	0.06	0.04	0.58	0.52	0.95	0.04	0.09	0.27	0.36	0.64	0.85	0.27	0.71	Freq
0.85	1.14	1.21	1.32	1.72	0.56	1.71	1.08	1.13	0.91	1.08	0.92	0.79	1.19	1.14	1.11	0.92	1.22	0.81	0.88	0.88	1.12	1.12	0.92	1.09	OR/ Effect ^d
(0.84-0.86)	(1.12 - 1.15)	(1.19 - 1.24)	(1.25 - 1.38)	(1.62 - 1.84)	(0.52-0.6)	(1.6-1.82)	(1.06 - 1.09)	(1.11 - 1.16)	(0.9-0.92)	(1.07-1.09)	(0.91 - 0.94)	(0.77 - 0.82)	(1.15 - 1.23)	(1.13 - 1.16)	(1.1 - 1.13)	(0.89 - 0.94)	(1.18 - 1.25)	(0.79-0.82)	(0.87 - 0.89)	(0.87-0.9)	(1.11 - 1.14)	(1.1-1.14)	(0.91 - 0.93)	(1.07-1.1)	(95% CI)
1.84E-39	3.50E-19	4.88E-18	3.14E-09	2.23E-17	1.73E-17	2.51E-17	2.48E-09	3.38E-09	4.91E-12	7.47E-13	1.22E-09	9.84E-10	1.02E-08	1.74E-27	9.51E-16	6.67E-10	1.03E-08	3.54E-23	1.72E-12	2.75E-22	6.17E-20	1.00E-10	1.08E-09	3.77E-10	Con. P-value
1.84E-39	4.48E-14	4.88E-18	3.14E-09	2.23E-17	1.73E-17	2.51E-17	2.48E-09	3.41E-12	4.91E-12	7.47E-13	5.90E-10	2.96E-11	1.44E-12	1.74E-27	1.65E-18	1.24E-03	1.81E-10	3.54E-23	8.91E-20	2.75E-22	1.83E-22	1.00E-10	1.08E-09	3.77E-10	P-value

Table 3: HLA Fine-mapping Results for Each Disease

Childhood Ear Infections				Tonsillectomy					Pneumonia				Scarlet fever		Strep throat					LOSITIAE TO TEST	Docitivo TD Toct					
[HLA-DRB1]	GRM4[]- HMGA1		[HLA-DRB1]	[LST1,LST1]		[HLA-B]		[HLA-DRB1]	MICA[] MICB	[ת-איוו]	[HI A_R]		[HLA-DQB1]		[HLA-DRB1]	[HLA-B]			DQA1]	[HLA-DRA-			[C6orf47]	[HLA-B]		
6p21.32	6p21.31	6p21.32	6p21.32	6p21.33	6p21.33	6p21.33	6p21.33	6p21.32	6p21.33	6p21.33	6p21.33	6p21.32	6p21.32	6p21.32	6p21.32	6p21.33	6p21.32	6p21.32	6p21.32	6p21.32	6p21.32	6p21.32	6p21.33	6p21.33	6p21.32	6p21.32
rs4329147	rs201220830	rs140177540	DRB1_LeuValGly11	rs1052248	B_Val97	B*57:01	rs41543314	DRB1_LeuSer11	rs3131623	B_SerTrpAsn97	B*08:01	DQB1_Gly45	DQB1*03:01	rs36205178	DRB1_CysTyr30	rs1055821	DQA1_His129	DQA1*03:01	DQA1*01:02	DRB1_Leu67	rs2894257	rs3135359	rs148844907	B*08:01	rs9272050	rs28752534
32566577	34195176	32569453	32552137	31556581	31324201	31323318	31322690	32552137	31418810	31324201	31323318	32632724	32630853	32627938	32552080	31321919	32609872	32608660	32608660	32551969	32433276	32390578	31628397	31323318	32599071	32585068
T/C	D/I	D/I	LSVGDP	A/T	STWRNV	NA	G/A	LSVGDP	T/A	STWRNV	NA	GE	NA	C/T	CYLGRH	T/G	QHx	NA	NA	LIF	C/G	C/T	A/T	NA	G/A	T/C
0.83	0.05	0.47	0.42	0.28	0.04	0.04	0.03	0.52	0.85	0.34	0.11	0.80	0.20	0.81	0.83	0.06	0.66	0.10	0.20	0.41	0.53	0.71	0.01	0.11	0.38	0.64
0.92 1.11	1.11	1.06	1.06	1.05	1.21	1.22	1.23	0.94	1.1	0.94	0.91	1.19	0.83	1.24	-0.04	0.08	1.19	1.27	0.75	1.3	1.36	1.21	1.92	1.29	1.19	1.11
(1.09-1.13)	(1.09-1.14)	(1.05 - 1.07)	(1.05 - 1.07)	(1.04 - 1.06)	(1.19 - 1.24)	(1.19 - 1.24)	(1.2 - 1.26)	(0.94 - 0.95)	(1.09-1.12)	(0.93-0.95)	(0.9-0.92)	(1.16 - 1.22)	(0.81 - 0.86)	(1.21 - 1.28)	(-0.05 0.04)	(0.06 - 0.09)	(1.16 - 1.22)	(1.22 - 1.32)	(0.73 - 0.78)	(1.27 - 1.33)	(1.33 - 1.39)	(1.18 - 1.24)	(1.74 - 2.12)	(1.24 - 1.33)	(1.17 - 1.21)	(1.1-1.13)
9.55E-12	1.32E-08	2.92E-12	1.67E-09	3.69E-08	1.44E-21	6.29E-22	5.36E-21	1.42E-09	1.99E-15	2.37E-12	2.87E-11	6.35E-14	2.98E-14	9.49E-14	2.14E-09	7.69E-11	2.40E-13	1.59E-09	7.04E-22	1.14E-29	8.16E-36	2.63E-13	4.95E-10	1.73E-11	9.65E-31	9.28E-09
9.55E-12	3.65E-08	5.02E-15	1.02E-12	3.15E-17	1.44E-21	6.29E-22	5.36E-21	4.10E-11	1.99E-15	2.37E-12	2.87E-11	6.35E-14	2.98E-14	9.49E-14	2.14E-09	7.69E-11	1.56E-13	3.99E-10	7.04E-22	1.14E-29	8.16E-36	8.82E-21	2.21E-12	8.43E-14	9.66E-31	1.50E-30

50

- <u>а</u> acid polymorphism is highlighted as 'red' if the signal in that gene region can be attribute to it by reciprocal analysis We identify independent associations for each category of variants: SNP, HLA (classical allele) and AA (HLA amino acid), separately using the name of the HLA protein (A), followed by the three-letter code for the amino acid (Val) and its location in the protein (95). The amino means amino acid Val at position 95 of the HLA-A protein. We use this naming convention throughout the paper, which is composed from iterative conditional regression. For amino acid polymorphism, the label specifies the amino acid and the position. For example, 'A-Val95'
- þ. The alleles for SNP are represented as risk allele/non-risk allele; the allele for HLA classical allele is recorded as 'NA', which means it code) at that position either has or does not has the tested allele; the alleles for HLA amino acid polymorphisms are all the possible amino acids (one-letter
- c. Strep throat, plantar warts and UTI frequency are quantitative traits, for which we reported the effect size instead of the odds ratio.
- d. The 'Cond. P-value' column contains conditional p-values that are after iterative conditional regression within each category of variants (SNP, imputed HLA alleles and imputed HLA amino acid polymorphisms). The 'P-value' column contains the unconditional association

test p-values.

Pathway	Pathway. Pvalue	Pathway .FDR	Gene	Gene.Pvalue	SNP	SNP.Pvalue	
			FUT1	0.00E+00	rs584768	2.38E-62	
			FUT2	0.00E+00	rs516316	9.63E-72	
			ST3GAL4	1.12E-08	rs3862630	1.21E-08	
Glycosphingolipid	1.00E-04	0.0029	B3GNT1	4.20E-02	rs7947391	2.42E-04	
biosynthesis			GCNT2	4.34E-02	rs147839826	7.16E-05	I
			B3GNT2	4.46E-02	rs116508040	2.60E-04	Ι
			ABO	4.97E-02	9:136149709:AC_A	_A 5.81E-05	I
The most significant pathway (gene sets) with a gene s significant SNPs in the GWAS analysis are highlighted red.	ficant pathv 1 the GWAS	vay (gene s analysis ar	ets) with a highlight	gene set enr ed red.	The most significant pathway (gene sets) with a gene set enrichment FDR <0.01 are presented. nificant SNPs in the GWAS analysis are highlighted red.	-	The genes that contain genome-wide
Table 5: MEGANTA Pathway Analysis on Tonsillectomy GWAS	GANTA Pat	hway An	alysis on T	「onsillecto	my GWAS		
Pathway	Pathway. Pvalue						
		Pathway .FDR	0	Gene	Gene.Pvalue	SNP	SNP.Pvalue
		Pathway .FDR		Gene LTBR	Gene.Pvalue 0.00E+00	SNP rs10849448	SNP.Pvalue 2.35E-35
		Pathway .FDR	TNF	Gene LTBR TNFSF13B	Gene.Pvalue 0.00E+00 0.00E+00	SNP rs10849448 rs200748895	SNP.Pvalue 2.35E-35 1.20E-17
		Pathway .FDR	TNF	Gene LTBR TNFSF13B TNFRSF13B	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00	SNP rs10849448 rs200748895 rs34557412	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21
Intestinal immune		Pathway .FDR	TNF C	Gene LTBR JFSF13B FRSF13B FRSF13B	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10	SNP rs10849448 rs200748895 rs34557412 rs6032664	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12
production		Pathway .FDR		Gene LTBR FSF13B FRSF13B FRSF13B CD40 ICOS	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06
	2.00E-06	Pathway .FDR 3.50E-03		Gene LTBR NFSF13B GD40 ICOS CXCR4	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs2680880	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06
	2.00E-06	Pathway .FDR 3.50E-03		Gene LTBR VFSF13B CD40 ICOS ICOS CXCR4 CCL27	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03 7.23E-03	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs2680880 rs12350154	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06 6.71E-06
	2.00E-06	Pathway .FDR 3.50E-03		Gene LTBR TNFSF13B CD40 ICOS CXCR4 CXCR4 CCL27	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03 7.23E-03 8.69E-03	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs2680880 rs12350154 rs456178	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06 6.71E-06 1.13E-05
	2.00E-06	Pathway .FDR 3.50E-03		jene -TBR FSF13B RSF13B CD40 COS COS CCS CCS CC27 CL27 CL27 FRSF17	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03 7.23E-03 8.69E-03 9.25E-03	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs231779 rs2680880 rs12350154 rs456178 rs57561814	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06 6.71E-06 1.13E-05 7.45E-06
TACI and BCMA	2.00E-06	Pathway .FDR 3.50E-03		Gene LTBR VFSF13B FRSF13B CD40 ICOS ICOS ICOS CXCR4 CCL27 CCL27 CCL27 IL6 IL15RA	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03 7.23E-03 8.69E-03 9.25E-03 1.63E-02	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs2680880 rs12350154 rs456178 rs57561814 rs11256464	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06 6.71E-06 1.13E-05 7.45E-06 6.99E-06
	2.00E-06	Pathway .FDR 3.50E-03		Gene LTBR TNFSF13B CD40 ICOS ICOS CXCR4 CCL27 TNFRSF17 IL6 IL15RA	Gene.Pvalue 0.00E+00 0.00E+00 0.00E+00 3.19E-10 1.40E-03 4.75E-03 7.23E-03 8.69E-03 9.25E-03 1.63E-02 0.00E+00	SNP rs10849448 rs200748895 rs34557412 rs6032664 rs231779 rs2680880 rs12350154 rs456178 rs456178 rs57561814 rs11256464 rs11256464	SNP.Pvalue 2.35E-35 1.20E-17 2.66E-21 7.31E-12 1.52E-06 6.91E-06 6.71E-06 1.13E-05 7.45E-06 6.99E-06 1.20E-17

Table 4: MEGANTA Pathway Analysis on Mumps GWAS

				network	regulatory	receptor	Glucocorticoid								0.8	ceramide signaling pathway						responses.	cell immune
					J.000-04											3.00E-04							
	1	l	l	l	9.905-00		l	l	I	I	l		l		I	7.95E-03	l	I	I	I		I	ĺ
PCK2	ICAM1	FKBP5	SPI1	SMARCA4	MAPK11	IL6	BGLAP	SELE	NCOA2	MAPK3	NFKB1	CASP8	CTSD	MADD	TRAF2	MYC	MAP2K2	MAPK3	NFKB1	TNFRSF1A	TRAF2	TNFRSF17	NFKB1
3.34E-02	3.12E-02	3.06E-02	2.48E-02	1.41E-02	1.20E-02	9.25E-03	1.94E-03	1.66E-03	9.50E-04	3.78E-06	9.08E-14	3.15E-02	3.13E-02	3.01E-02	1.21E-02	1.13E-03	4.75E-04	3.78E-06	9.08E-14	0.00E+00	1.21E-02	8.69E-03	9.08E-14
14:24604399:AAC_A	rs74956615	rs74853132	rs11604680	rs9797720	rs4076566	rs57561814	rs2075165	rs6691453	rs1481046	rs12931792	rs230523	rs190209406	rs7929314	rs2856661	rs17250694	rs13279820	rs350906	rs12931792	rs230523	rs10849448	rs17250694	rs456178	rs230523
5.33E-05	4.07E-05	1.68E-05	3.38E-05	1.58E-05	1.23E-05	7.45E-06	2.52E-06	5.38E-07	5.65E-07	4.06E-08	4.54E-14	3.72E-05	3.17E-05	3.76E-05	1.56E-05	1.44E-06	5.34E-07	4.06E-08	4.54E-14	2.35E-35	1.56E-05	1.13E-05	4.54E-14

ontain genome-wide

significant SNPs in the GWAS analysis are highlighted red.

Pathway	Pathway. Pvalue	Pathway .FDR	Gene	Gene.Pvalue	SNP	SNP.Pvalue
Catalysis of the			SLCO1A2	SLCO1A2 1.44E-03	rs10841784	2.76E-06
transfer of			SLCO1B1	3.45E-03	rs2417971	5.67E-06
organic anions	9.00E-04	0.0062	ABCC3	4.74E-03	rs186049592	1.82E-05
membrane to the			SLC22A6	SLC22A6 3.43E-02	rs67754977	1.20E-04
other			SLC22A8	SLC22A8 3.80E-02	rs67754977	1.20E-04

Table 6: MEGANTA Pathway Analysis on Childhood Ear Infections GWAS

significant SNPs in the GWAS analysis are highlighted red. TTO TTO aiguinteant paurway (Sene acto) with a Sene -(7.0 5 The genes that contain genome-wide