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Abstract 

Although genome-wide association studies (GWASs) have identified thousands of risk loci for 

many complex traits and diseases, the causal variants and genes at these loci remain largely 

unknown. We leverage recently introduced methods to integrate gene expression measurements 

from 45 expression panels with summary GWAS data to perform 30 transcriptome-wide 

association studies (TWASs). We identify 1,196 susceptibility genes whose expression is 

associated with these traits; of these, 168 reside more than 0.5Mb away from any previously 

reported GWAS significant variant, thus providing new risk loci. Second, we find 43 pairs of 

traits with significant genetic correlation at the level of predicted expression; of these, 8 are not 

found through genetic correlation at the SNP level.  Third, we use bi-directional regression to 

find evidence for BMI causally influencing triglyceride levels, and triglyceride levels causally 

influencing LDL. Taken together, our results provide insights into the role of expression to 

susceptibility of complex traits and diseases. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 1, 2016. ; https://doi.org/10.1101/072967doi: bioRxiv preprint 

https://doi.org/10.1101/072967


 

Introduction 

Although genome-wide association studies (GWASs) have identified tens of thousands of 

common genetic variants associated with many complex traits1, with some notable exceptions2; 3, 

the causal variants and genes at these loci remain unknown. Multiple lines of evidence show that 

GWAS risk variants co-localize with genetic variants that regulate expression—i.e. expression 

quantitative trait loci (eQTL)4. This suggests that a substantial proportion of GWAS risk variants 

influence complex trait by regulating gene expression levels of their target genes4-7. Analyses of 

genotype, phenotype, and gene expression measurements from multiple tissues in the same set of 

individuals can directly investigate this plausible chain of causality. However, doing so is 

challenging due to cost and tissue availability; therefore, GWAS and eQTL data sets remain 

largely independent (i.e. no overlapping subjects)8; 9. Recent work demonstrated that using eQTL 

data to predict expression into the much larger GWAS followed by association testing can 

identify new susceptibility genes10-12. This approach, referred to as transcriptome-wide 

association study (TWAS), provides testable hypotheses under the molecular cascade of genetic 

variation impacting expression which in turn impacts complex trait. 

In this work we connect TWAS to a test for non-zero genetic covariance between expression and 

trait, and extend it to estimate the genetic correlation between expression and trait. This 

interpretation enables us to develop new methods that characterize the relationship between 

complex traits using gene effects instead of single nucleotide polymorphism (SNP) effects. In 

particular, we estimate the genetic correlation between pairs of traits at the level of predicted 

expression; this is analogous to computing genome-wide genetic correlation between traits13, 

with correlations being determined over gene effects rather than SNP effects. Finally, we use a 

bi-directional regression approach14 to investigate putative causal direction for pairs of traits. 

This approach compares models that regress over estimated effects for identified susceptibility 

genes and is conceptually similar to recent work15 which uses effects of GWAS risk SNPs. 

We analyze 30 GWASs spanning over 2.3 million phenotype measurements16-29 jointly with 45 

expression panels sampled from more than 35 tissues and perform 30 TWASs to gain insights 

into the role of expression in complex trait etiology. First, we identify 1,196 genes associated 

with these complex traits and diseases resulting in 1,789 distinct gene-trait pairs. Of these pairs, 
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168 did not overlap (0.5Mb from TSS) a genome-wide significant SNP for that respective trait, 

which we consider to be novel risk loci. We also find 219 cases where association signal is 

stronger in TWAS suggesting that allelic heterogeneity plays a role in regulating expression. 

Consistent with previous reports11; 12, the vast majority of susceptibility genes were not proximal 

to the GWAS index SNP. Second, we estimate genetic correlation between these traits at the 

level of predicted expression and identify 43 pairs with significantly non-zero estimates; of these, 

35 can be identified through genetic correlation analyses at the SNP level with 8 being identified 

only by analyzing predicted expression. These results suggest that a significant component of 

genetic correlation between complex traits can be explained by predicted expression. Lastly, we 

perform bi-directional analyses to provide evidence for putative causal effects between pairs of 

traits. Using this approach, we find evidence consistent with a causal model where body mass 

index (BMI) influences triglyceride levels, in line with earlier work15. We also report a novel 

result suggesting that triglyceride levels influence low-density lipoprotein (LDL) levels. Overall, 

our results shed light on shared biological mechanisms responsible for susceptibility to disease 

and complex trait, as well as potential downstream effects between traits.  

Methods 

Data Sets 

We used summary association statistics from 30 large-scale (N>20,000 subjects) GWAS 

including various anthropometric16; 28; 29 (BMI, femoral neck bone mineral density (BMD), 

forearm BMD, height, lumbar spine), hematopoietic24; 27 (hemoglobin, HBA1C, mean cell 

hemoglobin (MCH), MCH concentration, mean cell volume, number of platelets, packed cell 

volume, red blood cell count), immune-related18; 20 (Crohn’s disease, inflammatory bowel 

disease, rheumatoid arthritis, and ulcerative colitis), metabolic17; 23 (age of menarche, fasting 

glucose, fasting insulin, high-density lipoprotein, HOMA-B, HOMA-IR, low-density lipoprotein, 

triglycerides, type 2 diabetes, and total cholesterol levels), neurological19 (schizophrenia), and 

social phenotypes22 (college and educational attainment; see Supplementary Table 1). We 

removed SNPs that were strand-ambiguous or those with minor allele frequency  £  1% (see 

Supplementary Table 1).  
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Gene expression data from RNA-Seq data were obtained from the CommonMind Consortium30 

(CMC; brain; N=613), the Genotype-Tissue Expression project8 (GTEx; 41 tissues; see 

Supplementary Table 2 for sample size per tissue), Metabolic Syndrome in Men (METSIM; 

adipose; N=563)31; 32. Expression microarray data were obtained from the Netherlands Twins 

Registry33 (NTR; blood; N=1,247), and the Young Finns Study34; 35 (YFS; blood; N=1,264).  

Performing TWAS using GWAS summary statistics 

We estimated SNP heritability for observed expression levels partitioned into cis-ℎ"# (1 Mb 

region surrounding the gene) and trans-ℎ"# (rest of genome) components. We used the AI-REML 

algorithm implemented in GCTA36, which allows estimates to fall outside of the (0, 1) 

boundaries to maintain unbiasedness. To control for confounding, we included batch variables 

and the top 20 principal components estimated from genome-wide SNPs. Genes with significant 

cis-ℎ"# (p < 0.05 in a likelihood ratio test between the cis-only and joint model) in expression data 

were used for prediction. We performed a prediction-based transcriptome wide association study 

(TWAS) for each of the 30 GWAS using the summary approach described in ref11.  In brief, we 

estimated the strength of association between predicted expression of gene and complex trait 

(𝑧%&'(), as function of the vector of GWAS association summary Z-scores at a given cis locus 

𝒛% and the LD-adjusted weights vector learned from the gene expression data 𝒘+, as 

𝑧%&'( =
𝒘./
0 𝒛1

234(𝒘./
0 𝒛1)

= 𝒘./
0 𝒛1

𝒘./
0 𝑽𝒘./

. 

where 𝑽 is a covariance matrix across SNPs at the locus (i.e. LD). We estimated 𝒘+,	using  

GBLUP37 from eQTL data and computed 𝑧%&'( using GWAS summary data for all 30 traits and 

the ~36k gene expression measurements across all studies. We removed all loci in the human 

leukocyte antigen (HLA) region due to complex LD patterns. We conservatively account for 

multiple tests using trait-specific Bonferroni correction factors (see Supplementary Table 2). 

Estimating the proportion of trait variance explained by predicted expression 

We use an LD-Score38; 39 approach11 to quantify the heritability for a complex trait explained by 

predicted expression (denoted here as ℎ+,# ). The expected 𝜒# statistic under a polygenic trait is 

𝐸 𝜒# = 1 + =1ℓ
?
ℎ+,# + 𝑁%𝑎 where 𝑁% is the number of individuals in the GWAS, 𝑀 is the 
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number of genes, ℓ is the LD-score, and 𝑎 is the effect of population structure. We estimate ℓ for 

each gene by predicting expression for 503 European samples in 1000Genomes40 using the 

BLUP weights (see above) and then computing sample correlation. For each complex trait we 

perform LD-Score regression using 𝑧%&'(
#  (which is asymptotically equivalent to 𝜒#) to infer 

ℎ+,# . We estimate heritability for each expression study separately, to account for varying sample 

sizes and repeated gene measurements. 

Estimating genetic correlation of expression and complex trait from summary data 

Let expression and trait be modeled as a linear function of the genotypes in a  ~1Mb local region 

flanking the gene: 𝒚+, = 𝑿𝜷+, + 𝝐+, and 𝒚% = 𝑿𝜷% + 𝝐% where 𝑿 is the standardized 

genotype matrix, 𝜷+,	(𝜷%) are the standardized effects, and 𝝐+,	(𝝐%) is environmental noise for 

expression (trait). The local covariance between expression and complex trait is 

𝑐𝑜𝑣 𝒚+,, 𝒚% = 	𝑐𝑜𝑣 𝑿𝜷+, + 𝝐+,, 𝑿𝜷% + 𝝐% = 𝜷+,K 𝑐𝑜𝑣 𝑿, 𝑿 𝜷% + 𝑐𝑜𝑣 𝝐+,, 𝝐%
= 	𝜷+,K 𝑽𝜷% + 	𝑐𝑜𝑣 𝝐+,, 𝝐% , 

where 𝑉 is the LD matrix. If no individuals are shared between studies then 𝑐𝑜𝑣 𝝐+,, 𝝐% = 0, 

(as in eQTL and GWAS studies). The local genetic correlation can be computed as 

𝜌",OPQ3O =
𝜷+,K 𝑽𝜷%

ℎ",OPQ3O# (𝐺𝐸) ℎ",OPQ3O# (𝑇)
 

where ℎ",OPQ3O# (𝐺𝐸) is the local SNP-heritability41 for expression (trait) estimated at the locus 

captured by 𝑿; however, this requires knowing the true effect sizes. Previous work41 describes a 

method to obtain unbiased estimates for 𝜷T using genome-wide association summary statistics 

(i.e. Z-scores) and reference LD. Given association statistics 𝒛%, an LD-adjusted effect size 

estimate is computed as 𝜷% =
U
=1
𝑽VU𝒛%. Hence, an estimate of the local genetic covariance42 is 

given by 

𝜷+,K 𝑽𝜷% =
1

𝑁+, 𝑁%
𝒛+,K 𝑽VU 𝑽 𝑽VU𝒛% = 𝒃+,K 𝑽VU𝒃% 

where 𝒃+,	 𝒃%  are the marginal (i.e. LD-unadjusted) effect sizes41; 43. It follows that  
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We standardize this estimate to obtain our final local genetic correlation estimate as 

𝜌",OPQ3O =
a1bcd

=1 Z[,\]^_\
` (%)

. 

In practice we use the variance explained by the local index (i.e. smallest p-value) SNP as proxy 

for ℎ",OPQ3O# (𝑇).  

Local components of genetic correlation characterize the shared SNP effect between complex 

trait and expression; however, we can interpret 𝜌",OPQ3O as the standardized effect of predicted 

expression on trait. Using this definition, we estimate the genetic correlation between two 

complex traits as the Pearson correlation across the vector of 𝝆",OPQ3O across all genes; we term 

this estimate as 𝜌+,. We test for significance assuming that 𝜌+,
?V#
UVf./

` 	~	𝑇 𝑛 − 2   where 𝑀 is 

the number of genes. This procedure is unbiased in principle provided that effects of genes 

within single trait are not correlated. This assumption may be violated; hence, we computed trait 

correlation using one gene per 1Mb locus. To determine if estimates of  𝜌+, were sensitive to 

changes in scale, we recomputed 𝜌+, using non-standardized estimates of genetic covariance. 

We found our estimates to be highly correlated (r = 0.94; p < 2.2 × 10-16), indicating little 

importance in using correlation versus covariance. We report results using standardized effects 

for consistency across figures and tables. 

Estimating putative casual relationships between pairs of traits 

To glean insight into the underlying causal relationship between pairs of traits, we perform a bi-

directional regression14 and estimate two different values of 𝜌+, by varying gene sets. Before 

describing the approach, we first review several causal models that explain non-zero 𝜌+, 

between two traits (see Figure 1). Models A and B depict causal relationships in which the 

effects of a gene set are mediated by one trait on the other. We can formally state model A 

(without loss of generality for B). Let 𝑇U be defined as 𝒚%Y = 𝑮%Y𝜷%Y + 𝝐%Y where 𝑮%Y denotes 

the matrix of predicted expression at the causal genes, 𝜷%Y are the effect sizes, and 𝝐%Y is 

environmental noise. We define 𝑇# as, 
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𝒚%̀ = 𝒚%Y𝜸%Y +	𝑮%̀ 𝜷%̀ + 𝝐%̀ = 𝑮%Y𝜷%Y𝜸%Y +	𝑮%̀ 𝜷%̀ + 𝝐%̀0  

where 𝜸%Y is the causal effect of 𝑇U on 𝑇#, 𝑮%̀ 𝜷%̀  are the remaining causal genes and their 

effects for 𝑇#, and 𝜖%̀0 is the combined environment component. Under model A, the causal gene 

set for 𝑇U	will have a non-zero effect on 𝑇# (i.e. 𝜸%Y ≠ 0); however,  if 𝑇U does not cause 𝑇#, this 

effect will be zero since unrelated genes have no downstream effect. Bi-directional regression 

provides a test to distinguish between models A and B by regressing estimated effect sizes for 

gene sets under model A (i.e. 𝜷%Y	~	𝜷%Y𝜸%Y) and comparing to estimates under model B (i.e. 

𝜷%̀ 	~	𝜷%̀ 𝜸%̀ ). Since the causal gene sets for each trait are unknown, we use their identified 

susceptibility genes as proxy. We estimate 𝜌+, conditional on the gene set for trait 𝑖 and denote 

its value as 𝜌p	|	T. This procedure is repeated by ascertaining the gene set for trait 𝑗 to obtain  𝜌T	|	p. 

We perform a Welch’s t-test44 to determine if estimates of 𝜌T	|	p and 𝜌p	|	T 	are significantly 

different, thus providing evidence consistent with a  causal direction. This approach is 

conceptually similar to bi-directional regression analyses of estimated SNP effects on two 

complex traits15; 45. We stress that while a bi-directional approach is capable of rejecting model A 

in favor of model B (or vice-versa), it cannot rule out model C, in which a shared pathway (or set 

of pathways) drive both traits independently.  

 

Results 

TWAS identifies 1,196 susceptibility genes for 30 complex traits and diseases 

We integrated the 30 GWAS summary data with gene expression to identify 1,196 susceptibility 

genes (i.e. gene with at least one significant trait association) comprising 5,490 total associations 

(after Bonferroni correction; see Methods). Of these associations, we observed 1,789 distinct 

gene-trait pairs with 783 found in anthropometric traits, 423 in metabolic traits, 215 in immune-

related traits, 213 in hematopoietic traits, 137 in neurological traits (i.e. schizophrenia), and 18 in 

social traits (see Table 1; see Supplementary Tables 3-4). For example, the 137 susceptibility 

genes found for schizophrenia included SNX19 (cerebellum; p=2.2 × 10-8) and NMRAL1 (muscle; 

p=9.7 × 10-7); this is consistent with a previously reported study12 that used different methods and 

expression data (see Supplementary Table 5). We did not find susceptibility genes for forearm 
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bone mineral density (BMD), HOMA-B, and mean cell hemoglobin concentration, which is 

consistent with low GWAS signal for these traits (see Table 1). Indeed, the number of GWAS 

risk loci strongly correlated with the number of identified susceptibility genes (r=0.99; p < 2.2 × 

10-16) which reflects the underlying polygenicity of these traits. We explored putative molecular 

function and pathways enriched with identified susceptibility genes using the PANTHER 

database46, but were underpowered to detect molecular function for most individual traits (see 

Supplementary Note). 

Next, we quantified the overlap of susceptibility genes and GWAS signals. Of the 1,789 

identified gene-trait pairs, 168 (9%) were not proximal (more than 0.5Mb from TSS) to any 

genome-wide significant SNP for that respective trait thus yielding new risk loci. Conversely, of 

the 1,526 GWAS risk loci, 1,405 (92%) overlapped with at least one eGene (i.e. gene with 

heritable expression levels in at least one of the considered expression panels) and 551 (36%) 

overlapping at least one susceptibility gene (see Table 1). Focusing on the 1,621 associations that 

overlapped a genome-wide significant SNP, we observed 1,488 (83%) genes that were not 

nearest, suggesting that the traditional heuristic of prioritizing genes closest to GWAS SNPs is 

typically not supported by evidence from eQTL data (see Supplementary Figure 1). While 

GWAS SNPs provide the majority of the power in this approach, the flexibility of TWAS to 

leverage allelic heterogeneity provides a significant gain11. We found 219 instances across 19 

traits where association signal was stronger in TWAS compared to GWAS, with an average 1.2× 

increase in 𝜒# statistics. For example, predicted expression in CCDC88B (a gene involved in T-

cell maturation and inflammation47) exhibited strong association with Crohn’s disease 

(pTWAS=6.32 × 10-8) whereas the index SNP (i.e. top overlapping GWAS SNP) at site rs11231774 

was only suggestive (pGWAS=2.47 × 10-6). This effect was most dramatic for height, with 108 

susceptibility genes having stronger signal than GWAS index SNPs. We observed a 2.6× 

increase in 𝜒# statistics for predicted expression in CRELD1 (pTWAS=1.55 × 10-10) compared to 

the index SNP rs1473183 (pGWAS=6.33 × 10-5). 

Recent work48 applied a similar approach12 using summary eQTL from blood and GWAS data to 

identify 71 genes for 28 complex traits48. Of the investigated traits, 12 overlapped our study. 

Surprisingly, despite using independent methods and expression data we were able to validate 40 

out of 51 associations (see Supplementary Table 6). Overall, we identified 564 genes for these 
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traits in contrast to 63 genes reported in that study. This increase in power can be attributed to 

two reasons. First, we integrate multiple expression panels sampled from many tissues, which 

assays many more genes. Second, we use a method that jointly tests the entire locus, rather than 

index SNPs. We have shown that many identified susceptibility genes contain signals of allelic 

heterogeneity; therefore, using individual SNPs will decrease power. 

Genes associated to multiple traits  

We investigated the degree of pleiotropic susceptibility genes (i.e. gene associated with more 

than one trait) in our data and found 380 (32%) identified genes associated with multiple traits 

(see Supplementary Figure 2). For example, the gene IKZF3 displayed strong associations in 

Crohn’s disease (blood; p=1.6 × 10-9), HDL levels (blood; p=6.6 × 10-15), IBD (blood; p=7.9 × 

10-16), rheumatoid arthritis (blood; p=6.0 × 10-8), and ulcerative colitis (blood; p=9.2 × 10-10). 

Indeed, IKZF3 has been shown to influence lymphocyte development and differentiation49; 50. 

These traits are known to have a strong autoimmune component51; hence, association with 

predicted IKZF3 expression levels is consistent with a model where cis-regulated variation in 

IKZF3 product levels contributes to risk. Similarly, we observed three susceptibility genes shared 

between education years and height (see Figure 2): ABCB9 (heart; pheight=1.38 × 10-15, pey=1.28 × 

10-6), BTN2A3P (adipose; pheight=3.82 × 10-12, pey=1.90 × 10-7), and MPHOSPH9 (thyroid; 

pheight=5.84 × 10-18, pey=1.30 × 10-6). This is consistent with a recent study13 that reported a non-

zero genetic correlation between height and education years (𝜌" = 0.13, p=3.82 × 10-6).   

Effect of cis expression on trait is consistent across tissues 

Having established the importance of individual predicted gene expression levels for these traits, 

we next estimated the amount of trait variance explained by predicted expression using all 

examined genes, including those not significantly associated, using an LD-Score regression 

approach (see Methods). We found 108 tissue-trait pairs across 17 traits and 33 tissues where the 

cumulative effect of all measured genes on trait was significantly greater (p < 0.05 / 45) than the 

significant-only set. For example, in height we estimated ℎ+,# = 0.068 (Jack-knife SE=0.02; 

p=5.6 × 10-4; see Supplementary Table 7) using all 3,733 measured genes in YFS and ℎ+,# =

0.015 (Jack-knife SE=6.9 × 10-3; p=0.026) using the 169 YFS susceptibility genes (pALL>SIG=5.6 

× 10-3). This suggests that there exist additional susceptibility genes for height, which we are 

underpowered to detect. However, for most trait-tissue pairs we did not observe a significant 
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difference at our given sample sizes. Indeed, we measured a significant association between 

expression study sample size and number of eGenes (r=0.2; SE=0.05; p=6.4 × 10-8), which 

indicates that smaller studies lack power to find eGenes, thus underestimating the total ℎ+,# . 

We next asked whether any tissues are burdened with increased levels of risk for a given trait. To 

test this hypothesis, we examined the difference between estimated trait variance explained per 

gene with the average. Our results did not suggest tissue-specific enrichment at current sample 

sizes (see Supplementary Table 8). Given no observable difference in tissue-specific risk, we 

expect local estimates of genetic correlation to be highly similar across tissues. When estimating 

𝜌",OPQ3O, we observed consistent effect size estimates in both sign and magnitude estimates across 

tissues (mean tissue-tissue r=0.82; see Figure 3). These results are compatible with earlier work 

that found cis effects on expression is largely consistent across tissues52. To obtain a meta 

estimate of local genetic correlation for gene-trait pairs with measurements in multiple tissues, 

we use the mean genetic correlation across all expression panels in all following analyses. 

Genetic correlation between traits using predicted expression 

To evaluate the shared contribution of predicted expression on pairs of traits, we computed 

expression correlation (𝜌+,; see Methods) using nominally significant (pTWAS < 0.05) genes. This 

approach is similar to estimating genetic correlation (𝜌") between two complex traits13; however, 

it differs in that correlation is computed through predicted components of gene expression rather 

than SNP effects. For 435 distinct pairs, we discovered 43 significant expression correlations, 22 

of which had previously reported non-zero genetic correlations13 (see Figure 4; see 

Supplementary Table 9). For example, age of menarche and BMI had an estimated 𝜌+, = −0.32 

(95% CI [-0.32, -0.21]; p=7.97 × 10-8). This negative correlation is consistent with estimates 

published in epidemiological studies53 in addition to studies probing genetic correlation across 

complex traits13. Using estimates of 𝜌+,, we clustered traits and observed groups forming 

naturally in the trait-trait matrix (see Figure 4). Interestingly, BMI clustered with insulin-related 

traits (HOMA-B, HOMA-IR, and fasting insulin). Our estimates were highly consistent with LD-

Score regression results (see Figure 4; Supplementary Table 9). Out of 435 pairs of traits, 35 

demonstrated significance for 𝜌+, and 𝜌", whereas 8 and 27 were exclusive for 𝜌+, and 𝜌", 

respectively. Given the high degree of concordance between estimates of  𝜌+, and 𝜌", we tested 

if any were significantly different and found four insulin-related pairs of traits and three blood-
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related pairs with more extreme values for  𝜌+, (see Supplementary Table 9). Differences for 

these pairs of traits can be partially explained by overconfident standard errors in 𝜌+,	(see 

Supplementary Table 10). Overall, we found 𝜌+, to explain the majority of variation in 𝜌" (r2 = 

0.72).  

Bi-directional regression suggests putative causal relationships  

Given pairs of traits with significant estimates of 𝜌+,, we aimed to distinguish among possible 

causal explanations by performing bi-directional regression analyses (see Methods). To 

empirically validate our approach, we regressed HDL, LDL, and triglycerides with total 

cholesterol. Total cholesterol (TC) is the direct consequence of summing over triglyceride, HDL, 

and LDL levels, thus we expect to observe increased signal for 𝜌%w	|	xTyTz compared to 𝜌xTyTz	|	%w . 

Of these three, we found evidence for triglycerides influencing total cholesterol (p=2.34 × 10-3). 

We observed consistent, but not significant, evidence for the effect of LDL on TC (p=6.79 × 10-

2) and HDL on TC (p=5.56× 10-1; see Figure 5). These results suggest that point-estimates from 

the bi-directional approach favor the correct model, but may not have adequate power required 

for significance. 

We tested the 43 pairs of traits identified above (see Table 3) while ascertaining on susceptibility 

genes and observed asymmetric effects at p < 0.05 for BMI-triglycerides and LDL-triglycerides 

(see Figure 6). For example, in the bi-directional analysis on BMI and triglycerides, we observed 

a significant effect for  𝜌%+	|	{?| = 0.62 (95% CI [0.27, 0.83]; p=2.06 × 10-3). By contrast, the 

reverse analysis estimate overlapped with zero at 𝜌{?|	|	%+ = −0.04 (95% CI [-0.49, 0.42]; 

p=0.86). Individual estimates for 𝜌%+	|	{?| and 𝜌{?|	|	%+  were significantly different (p=0.01; 

Welch’s t-test), which is consistent with a model where BMI directly influences triglyceride 

levels. In practice, we used susceptibility genes found through TWAS (p ~ 1 × 10-6), but this may 

be too strict an inclusion threshold for genes which we lack power to detect. We report analyses 

using weaker thresholds and observe similar results (see Supplementary Tables 11, 12). Our 

result reinforces previous estimates of putative causal effect where BMI influences triglyceride 

levels15; 54. 

Discussion 
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In this work we used GWAS summary statistics from 30 complex traits and diseases jointly with 

expression data sampled across 45 expression panels to identify susceptibility genes for complex 

traits. We identified 1,196 susceptibility genes for 27 of the 30 complex traits. We use estimates 

of local genetic correlation between gene expression and trait to compute 𝜌+,, which quantifies 

the shared effect of predicted expression levels between two complex traits. Using this 

definition, we found 43 pairs of traits to be significantly correlated, of which 8 were novel. To 

provide evidence of possible causal direction, we adapted a recently proposed causality test15 to 

operate at the gene level. Our results support triglycerides (TG) influencing LDL, and BMI 

influencing triglycerides. As more GWAS and eQTL summary results become publicly 

available, we expect additional studies to integrate cross-trait information to make inferences 

about mechanistic bases for complex trait.  

Assuming gene expression mediates the effect of genetics on complex trait, testing for 

association between the predicted component of expression and trait is equivalent with a two-

sample Mendelian randomization test for a causal effect of expression on trait55; 56. This test for 

causality is valid provided SNPs do not exhibit pleiotropic effects; therefore, the TWAS 

associations are not proof of causal relationships between expression and complex trait. This set 

of assumptions extends to our bi-directional approach to infer causal direction. A bi-directional 

regression is capable of distinguishing between direction of effect, but cannot rule out pleiotropy.  

We conclude with several caveats. First, we note that using estimates of genetic correlation to 

find susceptibility genes may still be biased due to confounding. The expression weights used for 

TWAS may tag variants that are causal through other genes or non-genic mechanisms. In 

principle, this can be partially remedied by jointly testing multiple genes with trait; however, a 

correctly specified model would require covariance estimates between observed, not predicted, 

expression levels—which is not available in summary data. In this work we combined estimates 

across tissues by taking the mean effect to compute the genetic correlation between trait and 

expression. This approach is unbiased, but may be inefficient. Recent work57 describes a random-

effects model to combine estimates across tissues to increase power. Finally, our method to 

estimate correlation between traits using the genetically predicted component of gene expression 

makes several simplifying assumptions. We remedied the non-independence of genes by 
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sampling single genes within a 1Mb region, an approach which has been used previously45. 

However, a more powerful approach may take correlations across genes into account.  
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Figures 

Figure 1. Illustration of several causal models that explain expression correlation for traits 𝑇U and 

𝑇# given their causal gene sets. Model A) trait 1 directly influences trait 2. In this case, the effect 

of genes 𝐺UU, … , 𝐺yU on trait 2 is mediated by trait 1 which implies 𝐺TU T�U
y ⊊ 𝐺T# T�U

� . Model B) 

trait 2 directly influences trait 1. Similarly, the effect of genes 𝐺U#, … , 𝐺�# on trait 1 is mediated by 

trait 2 which implies 𝐺T# T�U
� ⊊ 𝐺TU T�U

y . Model C) traits 1 and 2 are influenced independently 

through unobserved trait or traits. 

Figure 2. Susceptibility genes shared for education years and height. We indicate –log10 p-values 

for eQTLs in green and trait-specific GWAS in black using separate axes to simplify illustration. 

Their respective TWAS p-values are ABCB9 (heart; pheight=1.38 × 10-15, pey=1.28 × 10-6), 

BTN2A3P (adipose; pheight=3.82 × 10-12, pey=1.90 × 10-7), and MPHOSPH9 (thyroid; pheight=5.84 × 

10-18, pey=1.30 × 10-6). 

Figure 3. Histogram and density estimate for correlation of 𝜌",OPQ3O across tissues. We computed 

the correlation across pairs of different tissues using local estimates of genetic correlation 

between expression on trait. The majority of tissues exhibited high correlation over the 

underlying gene effects on trait with an estimated mean 𝑟 = 0.82 

Figure 4. Estimates of genetic correlation 𝜌" obtained from LD-Score vs estimates of expression 

correlation 𝜌+, using nominally significant TWAS results. A) Correlation matrix for 30 traits. 

The lower triangle contains 𝜌+, and the upper triangle contains 𝜌" estimates. Estimates of 

correlation that are significantly non-zero (p < 0.05 / 435) are marked with a star (*). Strength 

and direction of correlation is indicated by size and color. We found 43 significantly correlated 

traits using cis expression and 62 using genome-wide SNPs. B) Linear relationship between 

estimates of 𝜌+, and 𝜌". We indicate whether individual estimates were significant in either 

approach by color. Non-significant trait pairs are reduced in size for visibility.  

Figure 5. Estimates of expression correlation 𝜌+, for HDL, LDL, and TG with total cholesterol. 

Column A) Estimates of  𝜌+, using nominally significant genes (p < 0.05).  Column B) We 

repeated the analysis using only susceptibility genes found in the x-axis trait but not found in the 

y-axis trait. Column C) Same analysis as Column B, but using the other trait’s susceptibility 

genes. All three analyses resulted in stronger point estimates for 𝜌%w	|	xTyTz when conditioning on 
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HDL/LDL/TG genes compared to 𝜌xTyTz	|	%w; however, significance was only observed for 

𝜌%w	|	%+  (p=2.34 × 10-3). 

Figure 6. Estimates of expression correlation 𝜌+, for triglycerides with BMI and triglycerides 

with LDL. We present results for pairs of traits that displayed a significant difference (p < 0.05; 

Welch’s t-test) in their conditional estimates. These results are consistent with a causal model 

where BMI influences TG and TG influences LDL. 
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Tables 

Table 1. Summary of GWAS and TWAS results. The majority (92%) of GWAS risk loci overlap 

with at least one eGene, of which 40% contain at least one susceptibility gene. We report 168 

(9%) of identified gene-trait pairs do not overlap a GWAS variant, which provide novel risk loci 

for follow up.  

Trait Short Name 

Number of GWAS Number of Susceptibility 

Loci Loci with eGene 
Loci with Single 

Susceptibility 
Gene 

Loci with at 
least one 

Susceptibility 
Gene 

Genes that 
overlap 
GWAS 

Genes that do 
not overlap 

GWAS 

Age at Menarche AM 70 60 14 19 34 9 
Body Mass Index BMI 76 60 10 18 44 11 

College COL 5 5 2 2 1 4 
Crohn's Disease CD 50 48 4 17 65 5 
Education Years EY 7 4 2 2 2 11 
Fasting Glucose FG 12 11 2 5 8 1 
Fasting Insulin FI 0 0 0 0 0 1 

Femoral Neck BMD FN 20 20 2 2 2 1 
Forearm BMD FA 3 3 0 0 0 0 
Hemoglobin HB 22 21 2 5 22 3 

HBA1C HBA1C 10 10 0 1 4 0 
Height HEIGHT 482 454 94 225 669 52 

High Density 
Lipoprotein HDL 100 95 11 29 98 4 

HOMA-B HOMA-B 4 3 0 0 0 0 
HOMA-IR HOMA-IR 0 0 0 0 0 1 

Inflammatory 
Bowel Disease IBD 63 59 12 23 70 11 

Low Density 
Lipoprotein LDL 75 72 8 25 84 3 

Lumbar Spine LS 24 23 2 3 4 0 
MCH Concentration MCHC 5 3 0 0 0 0 

Mean Cell 
Hemoglobin MCH 35 31 5 17 46 7 
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Mean Cell Volume MCV 43 40 8 20 49 1 
Number of Platelets PLT 35 34 6 13 30 8 
Packed Cell Volume PCV 14 13 1 3 5 1 

Red Blood Cell 
Count RBC 25 21 3 10 35 2 

Rheumatoid 
Arthritis RA 44 41 7 13 30 5 

Schizophrenia SCZ 95 74 15 31 113 24 
Total Cholesterol TC 88 85 13 40 117 0 

Triglycerides TG 70 67 4 18 59 1 
Type 2 Diabetes T2D 12 12 0 1 3 0 

Ulcerative Colitis UC 37 36 5 9 27 2 

Total 1526 1405 232 551 1621 168 
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Table 2. Novel risk loci. Identified susceptibility genes that do not overlap a genome-wide 
significant SNP (p < 5 × 10-8) within 0.5Mb for the tested trait. 
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Trait Gene Chr Tx Start Tx End Index SNP Index SNP P Expression Training Set TWAS P 

AM NUCKS1 chr1 205681946 205719372 rs1832775 7.10E-08 GTEX_Skin_Not_Sun_Exposed_Suprapubic 1.70E-08 

AM RAB7L1 chr1 205737113 205744574 rs1832775 7.10E-08 GTEX_Whole_Blood 7.96E-07 

AM SLC26A9 chr1 205882176 205912588 rs1832775 7.10E-08 CMC 3.07E-07 

AM 

PMS2P5 chr7 72476618 72520245 rs13238203 1.10E-02 

GTEX_Brain_Frontal_Cortex_BA9 5.78E-10 

AM CMC 1.27E-06 

AM GTEX_Brain_Cerebellum 8.41E-08 

AM 

STAG3L2 chr7 74298091 74306731 rs4717903 1.50E-07 

GTEX_Muscle_Skeletal 9.19E-07 

AM GTEX_Lung 6.17E-07 

AM GTEX_Esophagus_Mucosa 4.38E-08 

AM GTEX_Thyroid 1.91E-07 

AM GTEX_Artery_Tibial 5.99E-09 

AM GTEX_Nerve_Tibial 2.84E-10 

AM GTEX_Esophagus_Muscularis 5.47E-07 

AM TMEM180 chr10 104221148 104236005 rs2274351 1.80E-05 GTEX_Heart_Atrial_Appendage 6.32E-07 

AM CCDC65 chr12 49297892 49315359 rs11168850 3.70E-06 GTEX_Artery_Aorta 2.92E-07 

AM 
COG6 chr13 40229763 40326765 rs9548873 2.90E-07 

GTEX_Nerve_Tibial 4.78E-09 

AM GTEX_Artery_Tibial 2.55E-08 

AM INO80E chr16 30007529 30017111 rs747973 1.10E-07 GTEX_Skin_Sun_Exposed_Lower_leg 6.92E-07 

BMI 

STAG3L1 chr7 72467817 72476448 rs7801936 1.01E-03 

GTEX_Artery_Tibial 9.44E-07 

BMI CMC 6.09E-07 

BMI GTEX_Skin_Sun_Exposed_Lower_leg 5.34E-08 

BMI GTEX_Thyroid 6.48E-07 

BMI GTEX_Muscle_Skeletal 1.58E-08 

BMI SLC27A4 chr9 131102838 131123749 rs2270204 3.25E-07 GTEX_Esophagus_Mucosa 1.15E-06 

BMI 

URM1 chr9 131133597 131154295 rs2270204 3.25E-07 

GTEX_Lung 6.40E-08 

BMI GTEX_Artery_Tibial 2.15E-07 

BMI GTEX_Skin_Sun_Exposed_Lower_leg 6.32E-08 

BMI GTEX_Nerve_Tibial 2.60E-07 

BMI GTEX_Adipose_Subcutaneous 1.77E-08 

BMI GTEX_Esophagus_Muscularis 5.19E-07 

BMI CERCAM chr9 131181438 131199630 rs2270204 3.25E-07 GTEX_Thyroid 5.46E-07 

BMI TUBA1C chr12 49621708 49667121 rs12821008 3.21E-05 YFS 2.25E-07 

BMI 

INO80E chr16 30007529 30017111 rs4787491 2.92E-06 

GTEX_Adipose_Subcutaneous 6.00E-07 

BMI GTEX_Artery_Tibial 5.10E-07 

BMI GTEX_Heart_Atrial_Appendage 1.05E-06 

BMI GTEX_Esophagus_Mucosa 5.45E-07 

BMI GTEX_Pituitary 2.88E-07 

BMI GTEX_Breast_Mammary_Tissue 2.23E-07 

BMI GTEX_Adipose_Visceral_Omentum 6.60E-07 

BMI GTEX_Nerve_Tibial 4.34E-07 

BMI GTEX_Colon_Transverse 1.23E-06 

BMI GTEX_Thyroid 3.41E-07 

BMI GTEX_Testis 6.65E-07 
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BMI GTEX_Skin_Sun_Exposed_Lower_leg 1.29E-06 

BMI 
GGNBP2 chr17 34900736 34946276 rs12150665 2.06E-07 

GTEX_Esophagus_Mucosa 4.40E-08 

BMI GTEX_Artery_Tibial 4.12E-07 

BMI DHRS11 chr17 34948225 34957233 rs12150665 2.06E-07 GTEX_Muscle_Skeletal 3.93E-07 

BMI 
RP11-6N17.9 chr17 46022789 46051804 rs6504108 3.09E-07 

GTEX_Thyroid 1.90E-07 

BMI GTEX_Nerve_Tibial 1.09E-06 

BMI CDK5RAP3 chr17 46047893 46059152 rs6504108 3.09E-07 GTEX_Thyroid 4.34E-09 

BMI RP11-6N17.10 chr17 46057763 46073562 rs6504108 3.09E-07 GTEX_Thyroid 2.38E-08 

COL AFF3 chr2 100163715 100722045 rs13033732 4.03E-07 CMC 5.89E-08 

COL RNF123 chr3 49726931 49758962 rs3796386 1.04E-06 GTEX_Thyroid 1.07E-06 

COL AC091729.9 chr7 1200009 1204903 rs7793318 5.74E-06 GTEX_Spleen 7.54E-07 

COL ABCB9 chr12 123405497 123451056 rs12316131 7.40E-07 GTEX_Skin_Not_Sun_Exposed_Suprapubic 6.57E-07 

CD RIT1 chr1 155867598 155880706 rs821551 7.01E-08 GTEX_Thyroid 3.37E-08 

CD SMIM19 chr8 42396297 42408140 rs2923396 1.20E-06 GTEX_Brain_Cortex 6.42E-07 

CD 
CISD1 chr10 60028861 60049019 rs1624017 2.95E-07 

GTEX_Whole_Blood 1.28E-07 

CD GTEX_Testis 1.56E-07 

CD PPP1R14B chr11 64011950 64014413 rs11231774 2.47E-06 GTEX_Artery_Tibial 8.56E-09 

CD 
CCDC88B chr11 64107689 64125006 rs11231774 2.47E-06 

GTEX_Brain_Cerebellum 6.32E-08 

CD CMC 1.11E-06 

EY SDCCAG8 chr1 243419306 243663393 rs12080886 5.73E-07 GTEX_Whole_Blood 7.77E-07 

EY 

ABCB9 chr12 123405497 123451056 rs7980687 1.59E-06 

GTEX_Skin_Sun_Exposed_Lower_leg 1.01E-06 

EY GTEX_Heart_Left_Ventricle 1.28E-06 

EY GTEX_Skin_Not_Sun_Exposed_Suprapubic 5.06E-07 

EY MPHOSPH9 chr12 123640942 123717785 rs7980687 1.59E-06 GTEX_Thyroid 1.30E-06 

EY STK24 chr13 99102452 99174379 rs17574378 1.52E-07 NTR 1.96E-09 

EY 

EIF3CL chr16 28390902 28415206 rs8049439 1.52E-07 

GTEX_Adipose_Subcutaneous 5.27E-07 

EY GTEX_Lung 4.50E-09 

EY GTEX_Skin_Sun_Exposed_Lower_leg 4.15E-07 

EY 

SULT1A1 chr16 28616907 28620649 rs8049439 1.52E-07 

GTEX_Muscle_Skeletal 1.07E-08 

EY MET 1.22E-06 

EY GTEX_Pancreas 3.18E-08 

EY 

RP11-1348G14.4 chr16 28814096 28829149 rs8049439 1.52E-07 

GTEX_Breast_Mammary_Tissue 7.53E-07 

EY GTEX_Artery_Tibial 1.29E-06 

EY GTEX_Artery_Aorta 1.76E-07 

EY GTEX_Esophagus_Muscularis 2.85E-07 

EY GTEX_Lung 9.86E-07 

EY GTEX_Nerve_Tibial 7.77E-07 

EY MET 3.05E-08 

EY 
TUFM chr16 28853731 28857729 rs8049439 1.52E-07 

GTEX_Nerve_Tibial 5.25E-07 

EY GTEX_Artery_Aorta 3.64E-07 
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EY GTEX_Artery_Tibial 2.42E-07 

EY GTEX_Spleen 4.83E-07 

EY GTEX_Lung 4.90E-07 

EY GTEX_Skin_Not_Sun_Exposed_Suprapubic 2.65E-08 

EY GTEX_Whole_Blood 5.88E-07 

EY GTEX_Colon_Sigmoid 4.45E-07 

EY 
MIR4721 chr16 28855239 28855328 rs8049439 1.52E-07 

GTEX_Whole_Blood 6.25E-07 

EY GTEX_Artery_Tibial 1.18E-06 

EY 
SH2B1 chr16 28857920 28885534 rs8049439 1.52E-07 

GTEX_Adipose_Subcutaneous 6.52E-07 

EY MET 6.60E-07 

EY NFATC2IP chr16 28962317 28977767 rs8049439 1.52E-07 GTEX_Skin_Not_Sun_Exposed_Suprapubic 5.01E-07 

FG MAPRE3 chr2 27193238 27250087 rs7586601 2.82E-07 GTEX_Skin_Not_Sun_Exposed_Suprapubic 1.21E-06 

FI 

KNOP1 chr16 19717673 19729492 rs1858973 1.61E-05 

GTEX_Thyroid 1.11E-06 

FI GTEX_Lung 7.85E-07 

FI GTEX_Adrenal_Gland 5.27E-07 

FN FGFRL1 chr4 1005609 1020686 rs35654957 5.10E-08 GTEX_Thyroid 2.86E-07 

HB UBE2Q2 chr15 76135626 76193388 rs1976748 2.07E-07 CMC 7.61E-07 

HB WNT3 chr17 44839871 44896126 rs916888 8.24E-07 GTEX_Artery_Aorta 1.24E-06 

HB CCDC117 chr22 29168661 29185289 rs13056243 2.44E-07 YFS 9.31E-07 

HEIGHT ECHDC2 chr1 53361581 53387446 rs1769316 1.21E-05 YFS 1.24E-06 

HEIGHT RP4-612B15.3 chr1 87169184 87170145 rs4656136 1.47E-06 GTEX_Adipose_Subcutaneous 1.08E-06 

HEIGHT 

CNIH4 chr1 224544512 224564586 rs6693287 5.68E-08 

GTEX_Esophagus_Mucosa 1.15E-06 

HEIGHT GTEX_Artery_Tibial 4.37E-07 

HEIGHT GTEX_Skin_Not_Sun_Exposed_Suprapubic 6.43E-07 

HEIGHT GTEX_Muscle_Skeletal 1.04E-06 

HEIGHT GTEX_Skin_Sun_Exposed_Lower_leg 5.03E-07 

HEIGHT GTEX_Thyroid 1.52E-07 

HEIGHT GTEX_Esophagus_Muscularis 4.86E-07 

HEIGHT GTEX_Nerve_Tibial 3.92E-07 

HEIGHT GTEX_Adipose_Subcutaneous 2.45E-07 

HEIGHT GTEX_Breast_Mammary_Tissue 2.77E-07 

HEIGHT 

SH3YL1 chr2 218135 256340 rs2290911 5.73E-07 

GTEX_Muscle_Skeletal 3.76E-08 

HEIGHT GTEX_Pancreas 2.70E-07 

HEIGHT GTEX_Esophagus_Mucosa 7.97E-08 

HEIGHT GTEX_Heart_Atrial_Appendage 2.31E-08 

HEIGHT GTEX_Nerve_Tibial 1.63E-07 

HEIGHT GTEX_Esophagus_Muscularis 2.29E-09 

HEIGHT LBX2-AS1 chr2 74729743 74732192 rs2268424 2.42E-05 GTEX_Lung 2.98E-07 

HEIGHT MAT2A chr2 85766100 85772403 rs1465821 2.31E-07 GTEX_Brain_Cerebellum 1.23E-06 

HEIGHT CRELD1 chr3 9975523 9987097 rs1473183 6.33E-05 GTEX_Skin_Not_Sun_Exposed_Suprapubic 6.32E-10 
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HEIGHT GTEX_Skin_Sun_Exposed_Lower_leg 2.61E-09 

HEIGHT GTEX_Artery_Tibial 9.45E-07 

HEIGHT GTEX_Adipose_Subcutaneous 1.55E-10 

HEIGHT P4HTM chr3 49027340 49044581 rs990211 4.34E-06 GTEX_Nerve_Tibial 3.46E-07 

HEIGHT TMEM128 chr4 4237268 4249969 rs11729131 6.33E-05 GTEX_Lung 9.70E-07 

HEIGHT FUCA2 chr6 143815948 143833020 rs2161972 5.73E-07 MET 5.14E-07 

HEIGHT HIBADH chr7 27565058 27702620 rs10951187 3.68E-07 CMC 6.19E-08 

HEIGHT 
ATP5J2 chr7 99055783 99063824 rs17277546 6.07E-08 

GTEX_Testis 2.70E-07 

HEIGHT GTEX_Thyroid 3.77E-10 

HEIGHT WDR60 chr7 158649268 158738883 rs4909278 4.84E-06 GTEX_Nerve_Tibial 9.18E-07 

HEIGHT C9orf156 chr9 100666770 100684852 rs953199 5.68E-08 GTEX_Brain_Cortex 1.34E-08 

HEIGHT 

RP11-4O1.2 chr9 114794834 114800010 rs10441737 1.31E-06 

GTEX_Adipose_Subcutaneous 1.54E-09 

HEIGHT GTEX_Esophagus_Muscularis 7.93E-08 

HEIGHT GTEX_Adipose_Visceral_Omentum 6.60E-07 

HEIGHT SUSD1 chr9 114803060 114937577 rs4310281 1.31E-06 GTEX_Esophagus_Muscularis 1.03E-07 

HEIGHT MEGF9 chr9 123363195 123476765 rs10739570 1.08E-07 GTEX_Adipose_Subcutaneous 1.35E-07 

HEIGHT PSMD5 chr9 123578331 123605299 rs10739570 1.08E-07 GTEX_Liver 6.56E-09 

HEIGHT 

PSMD5-AS1 chr9 123605319 123616651 rs10739570 1.08E-07 

GTEX_Brain_Hippocampus 2.48E-08 

HEIGHT GTEX_Ovary 2.61E-07 

HEIGHT GTEX_Uterus 4.40E-09 

HEIGHT PHF19 chr9 123617928 123631189 rs10739570 1.08E-07 GTEX_Esophagus_Muscularis 5.10E-09 

HEIGHT DAB2IP chr9 124329380 124547809 rs12683062 1.21E-05 GTEX_Thyroid 1.92E-07 

HEIGHT MSRB2 chr10 23384426 23410942 rs10828323 1.24E-06 YFS 1.75E-07 

HEIGHT 

RP13-39P12.3 chr10 79542623 79552934 rs1268956 1.08E-07 

GTEX_Adipose_Subcutaneous 1.32E-06 

HEIGHT GTEX_Whole_Blood 2.47E-07 

HEIGHT GTEX_Nerve_Tibial 1.17E-08 

HEIGHT GTEX_Lung 1.50E-07 

HEIGHT 

DLG5 chr10 79550548 79686348 rs1268956 1.08E-07 

GTEX_Lung 9.34E-07 

HEIGHT MET 5.40E-07 

HEIGHT GTEX_Adipose_Visceral_Omentum 1.31E-06 

HEIGHT GTEX_Brain_Cerebellum 2.79E-07 

HEIGHT GTEX_Esophagus_Mucosa 5.85E-08 

HEIGHT SFTPD chr10 81697495 81708861 rs1304463 2.45E-07 GTEX_Esophagus_Gastroesophageal_Junction 2.19E-07 

HEIGHT FAM35A chr10 88854952 88951222 rs6586076 5.73E-07 GTEX_Skin_Not_Sun_Exposed_Suprapubic 1.75E-07 

HEIGHT PLEKHA1 chr10 124134093 124191871 rs4612730 9.64E-08 NTR 2.29E-07 

HEIGHT MGMT chr10 131265447 131565884 rs11016853 3.06E-06 GTEX_Testis 2.71E-07 

HEIGHT H2AFJ chr12 14927269 14930936 rs10772776 2.31E-07 YFS 7.11E-07 

HEIGHT ATF1 chr12 51157788 51214943 rs10747592 1.31E-06 YFS 1.35E-07 

HEIGHT MED4 chr13 48649863 48669277 rs12875433 3.84E-07 GTEX_Skin_Sun_Exposed_Lower_leg 3.96E-08 

HEIGHT IQGAP1 chr15 90931472 91045475 rs6496620 2.58E-07 MET 1.28E-06 
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HEIGHT GTEX_Stomach 7.09E-07 

HEIGHT RRN3 chr16 15153878 15188192 rs3751877 7.13E-06 GTEX_Heart_Left_Ventricle 2.76E-08 

HEIGHT 

INO80E chr16 30007529 30017111 rs11642612 9.64E-08 

GTEX_Adipose_Subcutaneous 8.06E-07 

HEIGHT GTEX_Testis 2.92E-07 

HEIGHT GTEX_Pituitary 4.10E-09 

HEIGHT GTEX_Heart_Atrial_Appendage 2.29E-07 

HEIGHT GTEX_Skin_Sun_Exposed_Lower_leg 8.62E-08 

HEIGHT YFS 5.68E-08 

HEIGHT GTEX_Esophagus_Muscularis 4.10E-07 

HEIGHT GTEX_Artery_Tibial 2.16E-07 

HEIGHT GTEX_Colon_Transverse 1.10E-06 

HEIGHT YPEL3 chr16 30103634 30107521 rs11642612 9.64E-08 GTEX_Breast_Mammary_Tissue 3.99E-07 

HEIGHT RP11-455F5.3 chr16 30107750 30115437 rs11642612 9.64E-08 GTEX_Skin_Sun_Exposed_Lower_leg 6.88E-07 

HEIGHT RP11-67A1.2 chr16 68111242 68156174 rs6499141 2.65E-07 GTEX_Testis 1.30E-06 

HEIGHT 
RP11-173M1.8 chr17 25641668 25642952 rs7207347 1.38E-06 

GTEX_Esophagus_Gastroesophageal_Junction 1.33E-06 

HEIGHT GTEX_Muscle_Skeletal 1.46E-07 

HEIGHT 
CRHR1 chr17 43861645 43913194 rs7222389 5.73E-07 

GTEX_Colon_Transverse 3.94E-07 

HEIGHT GTEX_Heart_Left_Ventricle 9.53E-10 

HEIGHT MAPT chr17 43971747 44105699 rs7222389 5.73E-07 GTEX_Brain_Cerebellar_Hemisphere 1.76E-07 

HEIGHT KANSL1 chr17 44107281 44270166 rs7225082 5.73E-07 GTEX_Skin_Sun_Exposed_Lower_leg 7.91E-08 

HEIGHT ARL17A chr17 44376499 44439163 rs12947764 5.48E-06 GTEX_Esophagus_Muscularis 2.16E-07 

HEIGHT LRRC37A2 chr17 44590075 44633014 rs8077487 8.81E-06 GTEX_Stomach 2.17E-07 

HEIGHT UTP18 chr17 49337896 49375292 rs9896627 5.73E-07 GTEX_Muscle_Skeletal 1.27E-06 

HEIGHT DUS3L chr19 5785152 5791249 rs11672480 6.33E-05 GTEX_Adipose_Subcutaneous 9.21E-07 

HEIGHT COX6B1 chr19 36139124 36149686 rs2280743 5.73E-07 GTEX_Nerve_Tibial 4.02E-07 

HEIGHT C20orf194 chr20 3229947 3388309 rs2207994 2.33E-06 GTEX_Nerve_Tibial 1.12E-06 

HEIGHT 

YWHAB chr20 43514239 43537175 rs2239535 2.93E-07 

NTR 1.11E-07 

HEIGHT GTEX_Artery_Tibial 1.26E-06 

HEIGHT GTEX_Esophagus_Mucosa 7.65E-07 

HEIGHT UBE2L3 chr22 21903735 21978323 rs5754102 1.31E-07 CMC 3.41E-08 

HEIGHT 

CCDC116 chr22 21987085 21991616 rs5754102 1.31E-07 

GTEX_Nerve_Tibial 2.64E-09 

HEIGHT GTEX_Artery_Aorta 8.21E-08 

HEIGHT GTEX_Esophagus_Muscularis 4.29E-07 

HEIGHT MORC2-AS1 chr22 31318294 31322640 rs1076301 2.53E-06 GTEX_Thyroid 6.20E-07 

HEIGHT DESI1 chr22 41994031 42017061 rs5758341 7.37E-06 GTEX_Breast_Mammary_Tissue 6.05E-07 

HDL RETSAT chr2 85569077 85581821 rs10460587 3.32E-07 GTEX_Whole_Blood 1.61E-07 

HDL HRAS chr11 532241 535567 rs7117022 3.29E-05 GTEX_Artery_Tibial 3.08E-07 

HDL TYRO3 chr15 41851219 41871536 rs721772 2.26E-07 GTEX_Lung 7.33E-07 

HDL 
KNOP1 chr16 19717673 19729492 rs11865578 1.72E-06 

GTEX_Skin_Not_Sun_Exposed_Suprapubic 6.84E-07 

HDL GTEX_Lung 1.00E-06 
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HOMA-IR 

KNOP1 chr16 19717673 19729492 rs1858973 2.05E-05 

GTEX_Lung 8.13E-07 

HOMA-IR GTEX_Artery_Coronary 1.13E-06 

HOMA-IR GTEX_Thyroid 8.21E-07 

HOMA-IR GTEX_Adrenal_Gland 1.32E-06 

IBD 

GBAP1 chr1 155183615 155197325 rs734073 6.71E-07 

GTEX_Artery_Tibial 1.48E-07 

IBD GTEX_Nerve_Tibial 2.56E-07 

IBD GTEX_Lung 1.78E-08 

IBD GTEX_Adipose_Subcutaneous 6.75E-08 

IBD GTEX_Esophagus_Mucosa 1.44E-07 

IBD GTEX_Heart_Left_Ventricle 4.12E-07 

IBD GTEX_Thyroid 5.47E-07 

IBD GBA chr1 155204238 155211066 rs734073 6.71E-07 GTEX_Esophagus_Mucosa 1.16E-06 

IBD FAM189B chr1 155216995 155225274 rs734073 6.71E-07 GTEX_Thyroid 2.46E-07 

IBD HCN3 chr1 155247217 155258498 rs734073 6.71E-07 GTEX_Nerve_Tibial 5.23E-07 

IBD ADCY3 chr2 25042038 25142886 rs7583409 1.77E-06 YFS 1.17E-06 

IBD SATB2 chr2 200134222 200322819 rs62180151 3.77E-07 GTEX_Skin_Sun_Exposed_Lower_leg 1.05E-06 

IBD TMEM180 chr10 104221148 104236005 rs7078511 1.73E-06 GTEX_Breast_Mammary_Tissue 6.03E-07 

IBD PPP1R14B chr11 64011950 64014413 rs11231774 1.35E-05 GTEX_Artery_Tibial 5.85E-08 

IBD CCDC88B chr11 64107689 64125006 rs11231774 1.35E-05 GTEX_Brain_Cerebellum 5.24E-07 

IBD 

RMI2 chr16 11439294 11445620 rs12598132 2.54E-07 

CMC 5.09E-07 

IBD GTEX_Muscle_Skeletal 1.06E-06 

IBD GTEX_Breast_Mammary_Tissue 7.26E-07 

IBD ZFP90 chr16 68573115 68601039 rs1094281 4.79E-07 YFS 1.05E-06 

LDL WDR25 chr14 100842754 100996640 rs999045 2.81E-05 GTEX_Testis 5.44E-07 

LDL ERAL1 chr17 27181974 27188085 rs9892942 1.59E-06 YFS 8.33E-07 

LDL DHRS13 chr17 27224798 27230089 rs9892942 1.59E-06 YFS 6.00E-07 

MCH 
RP11-69E11.4 chr1 39987951 40011859 rs3916164 2.25E-07 

GTEX_Skin_Not_Sun_Exposed_Suprapubic 5.99E-07 

MCH GTEX_Esophagus_Muscularis 1.25E-06 

MCH PABPC4 chr1 40026484 40042521 rs3916164 2.25E-07 GTEX_Nerve_Tibial 2.95E-07 

MCH RP1-18D14.7 chr1 47691468 47696422 rs741959 8.45E-08 GTEX_Whole_Blood 2.48E-07 

MCH 
RPS6KB2  chr11 67195934 67202879 rs596603 3.41E-07 

GTEX_Skin_Sun_Exposed_Lower_leg 2.94E-07 

MCH GTEX_Testis 1.26E-07 

MCH 

AP003419.16 chr11 67198837 67202870 rs596603 3.41E-07 

GTEX_Muscle_Skeletal 1.19E-06 

MCH GTEX_Skin_Sun_Exposed_Lower_leg 5.15E-07 

MCH GTEX_Testis 1.57E-07 

MCH GTEX_Esophagus_Muscularis 6.93E-07 

MCH GTEX_Skin_Not_Sun_Exposed_Suprapubic 1.47E-07 

MCH GTEX_Artery_Tibial 9.85E-07 

MCH 
PTPRCAP chr11 67202980 67205153 rs596603 3.41E-07 

GTEX_Skin_Sun_Exposed_Lower_leg 4.40E-08 

MCH GTEX_Adipose_Subcutaneous 1.23E-07 
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MCH GTEX_Brain_Nucleus_accumbens_basal_ganglia 1.85E-08 

MCH GTEX_Testis 6.29E-07 

MCH GTEX_Esophagus_Muscularis 5.36E-08 

MCH GTEX_Brain_Cortex 1.07E-07 

MCH GTEX_Brain_Cerebellum 1.19E-06 

MCH GTEX_Muscle_Skeletal 4.86E-07 

MCH GTEX_Brain_Cerebellar_Hemisphere 9.09E-08 

MCH GTEX_Nerve_Tibial 5.98E-08 

MCH GTEX_Ovary 2.42E-07 

MCH GTEX_Breast_Mammary_Tissue 5.17E-07 

MCH GTEX_Thyroid 3.44E-07 

MCH GSTP1 chr11 67351065 67354124 rs596603 3.41E-07 GTEX_Artery_Tibial 1.12E-06 

MCV COX4I2 chr20 30225690 30232800 rs6060399 1.96E-06 GTEX_Muscle_Skeletal 7.16E-07 

PLT MUTYH chr1 45794913 45805629 rs4660853 1.10E-07 MET 2.32E-07 

PLT TESK2 chr1 45809554 45956840 rs4660853 1.10E-07 YFS 5.92E-08 

PLT CCDC17 chr1 46085715 46089731 rs4660853 1.10E-07 YFS 2.25E-07 

PLT IPP chr1 46159997 46216485 rs4660853 1.10E-07 YFS 1.04E-06 

PLT 
TMEM180 chr10 104221148 104236005 rs2281880 7.66E-07 

GTEX_Brain_Cerebellar_Hemisphere 1.12E-06 

PLT GTEX_Liver 7.61E-07 

PLT ACTR1A chr10 104238985 104262512 rs2281880 7.66E-07 NTR 2.91E-07 

PLT BAZ2A chr12 56989379 57024115 rs2958139 6.56E-08 YFS 1.17E-06 

PLT PRIM1 chr12 57125363 57146146 rs2958139 6.56E-08 NTR 7.76E-07 

PCV PLEKHH2 chr2 43864438 43995126 rs1368087 1.28E-04 GTEX_Thyroid 1.20E-06 

RBC FBXL20 chr17 37408896 37557909 rs8182252 5.09E-08 GTEX_Small_Intestine_Terminal_Ileum 3.69E-07 

RBC COX4I2 chr20 30225690 30232800 rs6060359 3.34E-07 GTEX_Muscle_Skeletal 5.36E-07 

RA 

SUOX chr12 56391042 56399309 rs773125 8.50E-08 

GTEX_Pancreas 8.16E-09 

RA GTEX_Skin_Sun_Exposed_Lower_leg 2.73E-07 

RA GTEX_Nerve_Tibial 1.22E-08 

RA GTEX_Colon_Transverse 1.21E-09 

RA GTEX_Artery_Aorta 2.04E-07 

RA GTEX_Esophagus_Muscularis 8.40E-07 

RA GTEX_Lung 3.43E-07 

RA 

RPS26 chr12 56435685 56438007 rs773125 8.50E-08 

CMC 5.04E-07 

RA GTEX_Breast_Mammary_Tissue 6.41E-07 

RA GTEX_Ovary 3.40E-07 

RA SLC26A10 chr12 58013692 58019934 rs1633360 9.10E-08 GTEX_Heart_Left_Ventricle 1.06E-09 

RA METTL21B chr12 58166382 58176324 rs1633360 9.10E-08 GTEX_Esophagus_Muscularis 8.02E-07 

RA 
RNF40 chr16 30772932 30787628 rs56656810 2.80E-06 

GTEX_Nerve_Tibial 9.58E-08 

RA GTEX_Adipose_Subcutaneous 1.00E-06 

SCZ CAD chr2 27440257 27466660 rs4665386 1.87E-05 GTEX_Pancreas 3.32E-07 
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SCZ NRBP1 chr2 27650656 27665124 rs12474906 9.11E-08 GTEX_Skin_Not_Sun_Exposed_Suprapubic 8.83E-07 

SCZ CEBPZ chr2 37428774 37458740 rs3770752 2.69E-06 GTEX_Adipose_Subcutaneous 4.62E-07 

SCZ ALMS1P chr2 73872045 73912694 rs56145559 7.83E-08 CMC 9.22E-07 

SCZ 10-Sep chr2 110300373 110371234 rs9330316 7.70E-08 CMC 9.09E-07 

SCZ EMB chr5 49692030 49737234 rs76329678 5.75E-07 CMC 5.60E-07 

SCZ PFDN1 chr5 139624634 139682689 rs2563297 8.04E-07 GTEX_Skin_Sun_Exposed_Lower_leg 4.66E-07 

SCZ SRA1 chr5 139929651 139937041 rs13168670 4.71E-07 NTR 1.02E-06 

SCZ TMCO6 chr5 140019011 140024993 rs13168670 4.71E-07 GTEX_Brain_Cerebellar_Hemisphere 5.80E-07 

SCZ IK chr5 140027383 140042065 rs13168670 4.71E-07 MET 1.32E-06 

SCZ DND1 chr5 140050380 140053171 rs13168670 4.71E-07 MET 8.37E-07 

SCZ ENDOG chr9 131580778 131584955 rs2805099 1.91E-06 GTEX_Thyroid 1.99E-08 

SCZ 
ARL14EP chr11 30344645 30359770 rs1765142 2.42E-06 

GTEX_Lung 9.54E-07 

SCZ GTEX_Esophagus_Muscularis 8.78E-08 

SCZ 

PCNX chr14 71374121 71582099 rs67981189 1.65E-07 

GTEX_Skin_Sun_Exposed_Lower_leg 1.48E-07 

SCZ GTEX_Nerve_Tibial 8.99E-07 

SCZ GTEX_Adipose_Subcutaneous 1.48E-07 

SCZ CORO7 chr16 4404542 4466962 rs6500602 2.65E-07 CMC 1.73E-07 

SCZ 

NMRAL1 chr16 4511677 4524651 rs6500602 2.65E-07 

GTEX_Muscle_Skeletal 9.68E-07 

SCZ GTEX_Heart_Left_Ventricle 1.90E-07 

SCZ GTEX_Thyroid 1.10E-06 

SCZ CPNE7 chr16 89642175 89663654 rs34753377 1.07E-07 CMC 4.18E-09 

SCZ GRAP chr17 18923989 18950336 rs4273100 7.84E-07 NTR 1.69E-07 

SCZ EPN2 chr17 19140689 19240028 rs4273100 7.84E-07 GTEX_Artery_Tibial 1.08E-06 

SCZ RP11-135L13.4 chr17 19237620 19239440 rs4273100 7.84E-07 GTEX_Artery_Tibial 1.90E-07 

SCZ RNF112 chr17 19314490 19320589 rs4273100 7.84E-07 GTEX_Testis 1.83E-07 

SCZ PRRG2 chr19 50084586 50094265 rs56873913 2.06E-07 GTEX_Skin_Sun_Exposed_Lower_leg 5.45E-08 

SCZ 
PRR12 chr19 50094911 50129696 rs56873913 2.06E-07 

GTEX_Artery_Aorta 1.08E-06 

SCZ GTEX_Nerve_Tibial 4.71E-08 

SCZ 
CBR3 chr21 37507262 37518860 rs6517329 6.37E-06 

GTEX_Artery_Tibial 9.14E-07 

SCZ GTEX_Skin_Not_Sun_Exposed_Suprapubic 7.37E-07 

TG L3MBTL3 chr6 130339727 130462594 rs12530176 1.02E-07 GTEX_Breast_Mammary_Tissue 5.50E-07 

UC SATB2 chr2 200134222 200322819 rs2344700 1.53E-07 GTEX_Skin_Sun_Exposed_Lower_leg 7.70E-08 

UC TNPO3 chr7 128594233 128695227 rs4728142 2.94E-07 YFS 1.30E-06 
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Table 3. Significant estimates of  𝜌+, for 43 pairs of traits. We performed bi-directional 

regression and obtain conditional estimates of 𝜌+,, which provides evidence for a putative causal 

direction. We observed three pairs of traits with a significant difference between their directional 

estimates; namely, BMI influencing TG, TG influencing LDL, and TG influencing TC. We mark 

entries with 𝑀 < 3 with “-“. 
a determined by Welch–Satterthwaite equation 
 

Trait 1 Trait 2 
All nominally significant genes Ascertain for trait 1 Ascertain for trait 2 Test for difference 

Rho GE SE P M Rho GE SE P M Rho GE SE P M t P Approx Ma 

AM BMI -0.33 0.06 7.97E-08 257 -0.74 0.13 6.45E-05 23 -0.89 0.07 5.76E-08 21 1.05 2.99E-01 33 

BMI COL -0.31 0.07 1.02E-05 190 -0.58 0.17 3.02E-03 24 0.28 0.25 6.50E-01 5 -2.81 2.30E-02 8 

BMI EY -0.31 0.06 5.00E-06 210 -0.43 0.19 3.51E-02 24 -0.59 0.47 2.93E-01 5 0.32 7.64E-01 5 

BMI FI 0.39 0.06 3.06E-07 164 0.60 0.10 1.77E-03 24 - - - 0 - - - 

BMI HDL -0.34 0.06 1.66E-08 256 -0.76 0.12 2.75E-05 23 -0.39 0.16 2.35E-02 33 -1.77 8.20E-02 53 

BMI HOMA-B 0.31 0.07 4.34E-05 168 0.73 0.07 5.50E-05 24 - - - 0 - - - 

BMI HOMA-IR 0.36 0.06 2.14E-06 162 0.55 0.11 5.40E-03 24 - - - 0 - - - 

BMI TG 0.29 0.06 5.16E-06 233 0.62 0.10 2.06E-03 22 -0.04 0.22 8.62E-01 19 2.74 1.12E-02 25 

CD IBD 0.93 0.01 < 2.00E-16 366 0.99 0.00 1.47E-06 8 0.97 0.01 1.39E-09 16 2.34 3.17E-02 17 

CD UC 0.51 0.05 6.66E-16 218 0.96 0.01 1.02E-10 19 0.74 0.09 5.54E-02 7 2.34 5.81E-02 6 

COL EY 0.95 0.00 < 2.00E-16 363 0.99 0.00 1.21E-02 4 0.99 0.00 6.38E-05 6 -1.14 3.18E-01 4 

FA FN 0.57 0.05 6.04E-14 149 - - - 0 0.98 - 1.29E-01 3 - - - 

FA LS 0.60 0.04 < 2.00E-16 170 - - - 0 0.76 - 4.49E-01 3 - - - 

FG FI 0.65 0.05 < 2.00E-16 133 -0.74 0.45 1.55E-01 5 - - - 1 - - - 

FG HOMA-B -0.60 0.06 1.72E-13 125 -0.98 0.08 2.23E-03 5 - - - 0 - - - 

FG HOMA-IR 0.92 0.01 < 2.00E-16 136 0.46 0.19 4.41E-01 5 - - - 1 - - - 

FI HDL -0.31 0.07 3.83E-05 168 - - - 0 -0.14 0.17 4.51E-01 33 - - - 

FI HOMA-B 0.97 0.00 < 2.00E-16 243 - - - 1 - - - 0 - - - 

FI HOMA-IR 0.99 0.00 < 2.00E-16 383 - - - 0 - - - 0 - - - 

FI TG 0.57 0.05 3.38E-14 152 - - - 1 0.53 0.13 2.08E-02 19 - - - 

FN LS 0.86 0.01 < 2.00E-16 264 1.00 - - 2 -1.00 - - 2 - - - 

HB MCH 0.37 0.06 1.58E-06 156 0.66 0.12 7.58E-02 8 0.58 0.11 9.29E-03 19 0.48 6.37E-01 19 

HB MCHC 0.40 0.08 2.35E-05 105 0.27 0.24 5.10E-01 8 - - - 0 - - - 

HB PCV 0.97 0.00 < 2.00E-16 338 0.99 0.00 4.83E-06 8 1.00 - - 2 - - - 

HB PLT -0.36 0.08 1.54E-05 141 0.29 0.23 4.86E-01 8 -0.49 0.24 5.57E-02 16 2.35 2.97E-02 19 

HB RBC 0.95 0.01 < 2.00E-16 260 0.94 0.02 4.61E-03 6 0.71 0.09 1.01E-02 12 2.47 2.95E-02 12 

HBA1C T2D 0.46 0.07 5.08E-07 110 - - - 1 - - - 1 - - - 

HBA1C TG 0.37 0.07 9.54E-06 137 - - - 1 -0.19 0.23 4.29E-01 19 - - - 
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HDL HOMA-IR -0.32 0.07 3.43E-05 159 -0.08 0.17 6.42E-01 33 - - - 0 - - - 

HDL T2D -0.32 0.07 6.23E-06 186 -0.33 0.17 5.38E-02 34 - - - 1 - - - 

HDL TG -0.74 0.03 < 2.00E-16 274 -0.64 0.14 1.74E-04 29 -0.68 0.23 1.48E-02 12 0.14 8.88E-01 19 

HOMA-B HOMA-IR 0.97 0.00 < 2.00E-16 227 - - - 0 - - - 1 - - - 

HOMA-B TG 0.43 0.07 5.22E-07 127 - - - 0 0.47 0.14 4.45E-02 19 - - - 

HOMA-IR TG 0.48 0.06 3.14E-09 138 - - - 1 0.55 0.12 1.46E-02 19 - - - 

IBD UC 0.96 0.00 < 2.00E-16 415 0.98 0.01 0.00E+00 24 - - - 1 - - - 

LDL TC 0.97 0.00 < 2.00E-16 452 0.94 0.02 4.36E-05 10 0.86 0.04 1.23E-07 23 1.89 6.79E-02 30 

LDL TG 0.54 0.04 < 2.00E-16 231 0.07 0.19 7.25E-01 25 0.56 0.13 3.55E-02 14 -2.17 3.69E-02 36 

MCH MCHC 0.63 0.05 3.55E-15 127 0.67 0.09 1.53E-03 19 - - - 0 - - - 

MCH MCV 0.96 0.00 < 2.00E-16 320 1.00 0.00 1.30E-07 7 1.00 0.00 3.88E-08 7 -0.90 3.92E-01 9 

MCH RBC -0.81 0.03 < 2.00E-16 207 -0.95 0.04 6.49E-09 17 -0.68 0.32 6.42E-02 8 -0.85 4.24E-01 7 

MCV RBC -0.80 0.03 < 2.00E-16 208 -0.94 0.05 7.82E-09 18 -0.67 0.35 9.76E-02 7 -0.75 4.83E-01 6 

PCV RBC 0.96 0.00 < 2.00E-16 278 - - - 1 0.89 0.04 9.61E-05 12 - - - 

TC TG 0.61 0.04 < 2.00E-16 248 0.24 0.14 1.63E-01 36 0.76 0.08 1.79E-03 14 -3.22 2.34E-03 47 
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