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Abstract 26 

 27 
Schizophrenia (SZ) is a pervasive neurodevelopmental disorder entailing social and cognitive 28 

deficits, including marked problems with language. Its complex multifactorial 29 

etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ 30 

incidence has always been high and quite stable in human populations, across time and 31 

regardless of cultural implications, due to unclear reasons. It has been hypothesised that SZ 32 

pathophysiology may involve the biological components that changed during the recent human 33 

evolutionary history and led to our distinctive mode of cognition, which includes language 34 

skills. In this paper we explore this possibility, focusing on the self-domestication of the human 35 

species. This has been claimed to account for many human-specific distinctive traits, including 36 

aspects of our behaviour and cognition, and to favour the emergence of complex languages 37 

through cultural evolution. The “domestication syndrome” in mammals comprises the 38 

constellation of traits exhibited by domesticated strains, seemingly resulting from the 39 

hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more 40 

marked domesticated traits at the morphological, physiological, and behavioural levels. We 41 

also show that genes involved in domestication and neural crest development and function 42 

comprise nearly 20% SZ candidates, most of which exhibit altered expression profiles in the 43 

brain of SZ patients, specifically in areas involved in language processing. Based on these 44 

observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the 45 

human faculty of language, resulting, at least in part, from changes in genes important for the 46 

“domestication syndrome” and, primarily involving the neural crest. 47 

  48 
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1. Introduction 49 
 50 

Schizophrenia (SZ) is a pervasive neurodevelopmental condition entailing different and severe 51 

social and cognitive deficits. Core distinctive symptoms of SZ include delusions, 52 

hallucinations, impaired motivation, reduction in spontaneous speech, and social withdrawal; 53 

cognitive impairment, episodes of elated mood, and episodes of depressive mood are also 54 

commonly observed (van Os and Kapur 2009, Owen et al., 2016). SZ prevalence has been 55 

found stable across time and cultures, to the extent that it has been considered a human-specific 56 

disease. Indeed, susceptibility genes are poorly conserved across species, some of them being 57 

absent in great apes (Brüne, 2004, Pearlson and Folley, 2008). Also, most of the biological 58 

components that seem to have played a central role in the evolution of human cognition are 59 

found impaired in SZ patients. For instance, after our split from great apes, the frontal cortical 60 

circuitry was remodelled; this circuitry is responsible for many human-specific cognitive 61 

abilities and is found dysfunctional in patients with SZ and other psychiatric conditions (Teffer 62 

and Semendeferi, 2012). Likewise, genomic regions that have undergone positive selection in 63 

anatomically-modern humans (AMHs) are enriched in gene loci associated with SZ (Srinivasan 64 

et al., 2016). This enrichment has been recently linked to functional elements like introns and 65 

untranslated regions (Srinivasan et al., 2017). This rises the intriguing possibility that most of 66 

SZ risk alleles appeared more recently in human evolution. Overall, these evidences suggest 67 

that the evolutionary changes occurred in the human lineage, particularly after the split from 68 

extinct hominins, may help clarifying some aspects of SZ. On the other hand, delving into the 69 

SZ polygenic etiopathogenesis, which acts synergistically with unclear environmental factors, 70 

might help understand the changes that brought about our human distinctive cognitive 71 

phenotype, including our language abilities. 72 

 73 

Language deficits are a hallmark of SZ, which has been defined as “the price that homo sapiens 74 

pays for language” (Crow, 2000). These usually manifest as problems in speech perception (in 75 

the form of auditory verbal hallucinations), abnormal speech production (known as Formal 76 

Thought Disorder, FTD), and production of abnormal linguistic content (that is, delusions) 77 

(Stephane et al., 2007, and 2014). These major positive symptoms can be reduced to 78 

disturbances in linguistic computation (Hinzen and Roselló 2015) that result from atypical 79 

brain development and wiring during growth (Li et al., 2009, and 2012). In our previous work 80 

we have showed that this abnormal mode of processing language can be specifically drawn 81 

back to an abnormal, distinctive oscillatory profile of the brain during language computation 82 

(Murphy and Benítez-Burraco, 2016a). Also, we have showed that candidates for SZ are 83 

overrepresented among the genes believed to be involved in the evolution of our language-84 

readiness, that is, our species-specific ability to learn and use languages (Boeckx and Benítez-85 

Burraco, 2014a, 2014b; Benítez-Burraco and Boeckx, 2015, Murphy and Benítez-Burraco, 86 

2016a). 87 

 88 

Besides the genomic and epigenomic changes that favoured our speciation, we expect that our 89 

cognitive phenotype was also modelled by changes occurred later, during our self-90 

domestication (Benítez-Burraco et al., 2016a). The idea of human beings as domesticated 91 

primates can be drawn back to Darwin (1871). Recent comparisons with extinct hominins have 92 

revealed that AMHs exhibit a number of domesticated traits, including differences in the brain 93 

and the face, changes in dentition, reduction of aggressiveness, and retention of juvenile 94 

characteristics (see Thomas, 2014 for details). Many authors have argued that the relaxation of 95 

the selective pressures on our species resulting from this process of self-domestication may 96 

have contributed to the creation of the cultural niche that favoured the emergence of modern 97 

languages (Hare and Tomasello, 2005, Deacon, 2009, Thomas, 2014, among others). This 98 
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niche provides humans with an extended socialization window, enabling them to receive a 99 

greater amount of linguistic stimuli, to involve in enhanced and prolonged communication 100 

exchanges with other conspecifics, and to experiment with language for a longer time. In 101 

particular, language complexity is expected to increase in these comfortable conditions, as 102 

attested by domestic strains of songbirds, in which domestication triggers variation and 103 

complexity in their songs (Takahasi and Okanoya, 2010, Kagawa et al., 2012). Importantly, 104 

this possibility is supported by several linguistic studies revealing positive correlations between 105 

aspects of linguistic complexity and aspects of social complexity (Wray and Grace, 2007, 106 

Lupyan and Dale, 2010), or pointing out to the emergent nature of core properties of human 107 

languages, resulting from cultural transmission (Benítez-Burraco, 2016). 108 

 109 

Several selectionist accounts of why humans became self-domesticated have been posited over 110 

time, ranging from selection against aggression and towards social tolerance, to a by-product 111 

of mate-choices, to adaptation to the human-made environment (Thomas, 2014). In our recent 112 

work we have hypothesised that self-domestication might be (also) a by-product of the changes 113 

that brought about our more globular skull/brain and our language-readiness (Benítez-Burraco 114 

et al., 2016a). The reason is that candidates for globularization and language-readiness are 115 

found among (and interact with) the genes believed important for the development and function 116 

of the neural crest (NC). And as noted by Wilkins et al (2014), the set of traits observed in 117 

domestic mammals, ranging from changes in the craniofacial region, to changes in the skin, 118 

the reproductive and vital cycles, and behaviour (the so-called ‘domestication syndrome”), may 119 

result from the hypofunction of the NC, in turn triggered by the selection for tameness (see 120 

Sánchez-Villagra et al., 2016, for a recent account). 121 

 122 

Building on this hypothesis, in our previous work we have showed that the complex 123 

pathophysiology of some human cognitive diseases entailing problems with language can be, 124 

at least in part, linked to an abnormal presentation of the “domestication syndrome” (Murphy 125 

and Benítez-Burraco, 2016a). Specifically, we have discussed how patients suffering from 126 

autism spectrum disorders (ASD) exhibit a plethora of distinctive behavioural, neurological, 127 

and physical anomalies, including dysmorphic features, that seem to be opposite as the 128 

“domesticated” traits observed in typically-developing (TD) individuals (Benítez-Burraco et 129 

al., 2016b). 130 

 131 

Interestingly, ASD and SZ have been hypothesised to be opposite poles in the continuum of 132 

cognitive modes, encompassing also the TD one. Their opposed natures can be tracked from 133 

brain structure and function to neurodevelopmental paths, to cognitive abilities (Crespi and 134 

Badcock, 2008). We have previously shown as well that SZ and ASD patients process language 135 

differently, and exhibit distinctive, disorder-specific oscillatory profiles when computing 136 

language (Murphy and Benítez-Burraco, 2016b). Similarly to SZ, language deficits in ASD can 137 

be linked to many of the changes occurred during our speciation, to the extent that candidates 138 

for this condition are also overrepresented among the genes believed to account for the 139 

evolution of our language-readiness (see Benítez-Burraco and Murphy, 2016).  140 

 141 

In this paper we wish to explore the possibility that SZ patients exhibit exacerbated, disease-142 

specific signatures of the “domestication syndrome”. If we are right, our hypothesis could pave 143 

the way towards exploring the etiopathogenesis of SZ, and related language impairment, under 144 

an original standpoint. To this aim, we begin providing a general account of the domesticated 145 

traits found in SZ patients. Thereafter, we will focus on the molecular etiopathogenesis of SZ 146 

and check whether genes that have been found involved in the domestication process are 147 

somehow represented among SZ candidates. Considering the relevant role of the neural NC in 148 
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the domestication process, we also consider, in this search, genes involved in NC development 149 

and function. Through this comparative evaluation of candidates, we will define a subset of 150 

overlapping genes involved in both SZ and in domestication and/or NC. The functional role of 151 

these selected genes will be discussed in detail, focusing on their contribution to 152 

etiopathogenesis of SZ and their implication for cognition and language. In addition, in order 153 

to evaluate their actual functional involvement, we will delve into their differential expression 154 

profiles in the SZ brain, by in silico analysis of previously published data. 155 

 156 

Environmental factors are known to contribute to SZ too (see Brown, 2011; Geoffroy et al., 157 

2013; Moran et al., 2016, for reviews). Likewise, although domestication has genetic roots (as 158 

originally suggested by Wilkins et al. and as we will show here), domestication results as well 159 

in the creation of a cultural niche that favours the maintenance of domestic features by cultural 160 

evolution. Accordingly, although our focus is put on the genes, the role of the environment 161 

cannot be dismissed. The same is true for language indeed, as suggested above. Modern 162 

language seemingly evolved as the result of changes in brain genes that brought about a 163 

differential cognitive ability (aka language-readiness) and favoured a domesticated phenotype 164 

in our species, but it is also a consequence of subsequent changes in the (proto)linguistic 165 

systems, that were triggered and facilitated by the domestic environment in which human 166 

beings are reared.  167 

 168 

2. Domestication features in SZ 169 
 170 

Most of the features observed in the “domestication syndrome” described by Wilkins and 171 

colleagues (2014) are found generally exacerbated in SZ individuals (Figure 1). Domestic 172 

varieties of mammals exhibit a distinctive set of common traits (Figure 1, top), including 173 

neoteny, shorter reproductive cycles, depigmentation, and increased tameness. Changes in 174 

behaviour seemingly result from reduced levels of stress hormones (including 175 

adrenocorticoids, adrenocorticotropic hormone, cortisol, and corticosterone), and particularly, 176 

from the delay in the maturation of the adrenal glands, which also gives rise to an increase of 177 

the duration of the immaturity of the hypothalamic-pituitary-adrenal system (the HPA axis) 178 

and a hypofunction of the sympathetic nervous system, which provides the animal with a longer 179 

socialization window. Many of the differences with their wild conspecifics concern to the 180 

craniofacial area. These include changes in ear size and shape, changes in the orofacial area 181 

(including shorter snouts and smaller jaws), changes in dentition (particularly, smaller teeth), 182 

and a reduced brain capacity (specifically, of components of the forebrain such as the amygdala 183 

or parts of the limbic system) (see Wilkins et al., 2014 and Sánchez-Villagra et al., 2016 for 184 

details). Below we provide with a detailed description of domestication traits commonly found 185 

in schizophrenic patients (Figure 1, down).  186 

 187 
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 188 
 189 
Figure 1. Schizophrenia and the domestication syndrome. The diagram is meant to symbolize the 190 
anomalous presentation of the “domestication syndrome” in people with schizophrenia. Main features 191 
observed in domesticated mammals (Wilkins et al., 2014, Sánchez-Villlagra, 2016) are shown in the 192 
upper box, while selected clinical findings from the SZ spectrum, that may resemble «hyper-193 
domesticated traits», are categorized below. Pictures were gathered and modified from “Slide kit 194 
Servier Medical Art” (available at www.servier.com).  195 
 196 

Physical anomalies 197 

Minor dysmorphisms are typically featured in the craniofacial area of SZ patients. Indeed, 198 

facial asymmetries, particularly those arising along the midfacial junctions (between 199 

frontonasal and maxillary prominence derivatives), are reproducibly found in these patients 200 

(Gourion et al., 2004, Deutsch et al., 2015). Additionally, ear shape abnormalities (including 201 

adherent ear lobes, lower edges of the ears extending backward/upward, malformed ears, 202 

asymmetrical ears, or cuspidal ears) are usually observed in SZ phenotypes (Yoshitsugu et al., 203 

2006, Akabaliev et al., 2011, Lin et al., 2012). Some of these features (like prominent crux of 204 

helix and ear lobe crease, or primitive shape of the ear) are considered as pathognomonic for 205 

SZ in the differential diagnosis of psychotic conditions (Trixler et al., 2001, Praharaj et al., 206 

2012). Anomalies in the mouth (e.g. decreased tooth size, abnormal palate shape and size) are 207 

also commonly observed in schizophrenics (Ismail et al., 1998, Rajchgot et al., 2009, Hajnal et 208 

al., 2016). Likewise, the odds of having a psychotic disorder seem to be increased in people 209 

with shorter and wider palates (McGrath et al., 2002). More generally, the odds of having a 210 

psychotic disorder seem to be increased in people with smaller lower-facial heights (glabella 211 

to subnasal) (McGrath et al., 2002). Some studies suggest a significant association between 212 

minor physical anomalies and the early onset of the disease (Hata et al., 2003). 213 

 214 

Brain anomalies and dysfunctions 215 
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Metanalyses of structural neuroimaging studies in the SZ brain are indicative of a significant 216 

reduction of total brain volume, which mostly affects to the hippocampus, the thalamus and the 217 

cortex, most pronounced in the frontal and temporal lobes (Steen et al., 2006, Haijma et al., 218 

2013, Haukvik et al., 2013). This is seemingly due to the impairment of the surface expansion 219 

of the cortex during brain growth, which impacts more on the left hemisphere and results in a 220 

relative areal contraction of diverse functional networks (Palaniyappan et al., 2011). Gray 221 

matter reduction in SZ is also associated with longer duration of illness and reduced sensitivity 222 

to antipsychotic medications. Accordingly, brain volume constraints in SZ are better explained 223 

as a combination of early neurodevelopmental disturbance and disease progression (Haijma et 224 

al., 2013). Metanalyses of longitudinal neuroimaging studies of the schizophrenic brain further 225 

suggest that SZ entails a disorder-specific trajectory of morphological change (compared to 226 

other similar conditions like bipolar disorder), which is characterised by a progressive grey 227 

matter loss confined to fronto-temporal cortical regions (De Peri et al., 2012, Liberg et al., 228 

2016). Children with childhood onset SZ revels that SZ is characterised by reduced cerebral 229 

volume and cortical thickness during childhood and adolescence, which is levelled off in 230 

adulthood, as well as by deficits in local connectivity and increased long-range connectivity 231 

(Baribeau and Anagnostou, 2013). 232 

 233 

The reduction of brain volume is expected to impact cognitive and language abilities of patients 234 

and to account for distinctive symptoms of the disease (see also section 5). Specifically, 235 

schizophrenic patients with FTD show clusters of volume reduction in the medial frontal and 236 

orbitofrontal cortex bilaterally (related to poverty of content of speech), and in two left-sided 237 

areas approximating to Broca's and Wernicke's areas (related to the fluent disorganization 238 

component of FTD) (Sans-Sansa et al., 2013). Likewise, reduced brain activity in the left pars 239 

triangularis of Broca’s area positively correlates with volume reduction of this area (Iwashiro 240 

et al., 2016). Interestingly, antipsychotic-naive patients show more pronounced volume 241 

reductions in caudate nucleus and thalamus (Haijma et al., 2013), which play a key role in 242 

language processing (Murphy, 2015). Finally, we wish highlight that amygdala volume is 243 

usually reduced in schizophrenics (Li et al., 2015, Okada et al., 2016, Rich et al., 2016).  244 

 245 

Behavioural traits and neuroendocrine impairment 246 

Aggressive behaviour, being involved in the behavioural traits of the “domestication 247 

syndrome”, is frequent in SZ, and paranoid belief may associate with it (Darrell-Berry et al., 248 

2016). Interestingly, no positive correlation seems to exist between physical aggression and 249 

neuropsychological performance in patients (unless they have attained severe impairment that 250 

induces constant uncontrollable outbursts) (Lapierre et al., 1995). 251 

 252 

SZ involves as well an impairment of social cognition. Oxytocin is a neuropeptide hormone 253 

that, within a wide range of organic functions, is able to affect social interactions and response 254 

to social stimuli at various levels (reviewed by Romano et al., 2016). Specifically, it has been 255 

recently argued to modulate the multimodality that characterizes our higher-order linguistic 256 

abilities (Theofanopoulou, 2016). Oxytocin promotes social play in domestic dogs and the 257 

appropriate use of human social cues (Oliva et al., 2015, Romero et al., 2015). A positive 258 

correlation between the SZ progression and oxytocin levels in the central nervous system has 259 

been observed (Beckmann et al., 1985), which is plausibly explained by a decreased sensitivity 260 

to the hormone (Strauss et al., 2015, Glovinsky et al., 1994, Sasayama et al., 2012). Treatment 261 

with oxytocin indeed improves verbal memory learning tasks in SZ patients (Feifel et al., 262 

2012), and attenuates the negative symptoms of the disease (Feifel et al., 2010, Modabbernia 263 

et al., 2013, Gibson et al., 2014, Davis et al., 2014). 264 

 265 
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The hypothalamus-pituitary axis (HPA) is also affected in SZ, with both hyper- and hypo-266 

function being described (Bradley and Dinan, 2010). Accordingly, heightened cortisol levels 267 

are observed in patients with SZ, especially in those who are not medicated (Walker et al., 268 

2008). At the same time, Hempel et al., (2010) found that cortisol concentration in the plasma 269 

decreases more markedly during the day in SZ patients than in healthy controls, and that the 270 

decrease of HPA axis sensitivity correlates with the severity of negative symptoms. In male 271 

patients, diagnosed with first-episode SZ, higher afternoon cortisol levels at the beginning of 272 

medical treatment are related to impaired memory performance (Havelka et al., 2016). Girshkin 273 

et al., (2016) found that SZ patients do not show significant differences in waking cortisol 274 

levels, in the cortisol awakening response, or in immediate post-cortisol awakening control 275 

decline compared to controls. However, they also found that they exhibit a significant absence 276 

of the increase in cortisol responsivity to stress. According to Ciufolini et al., (2014), SZ is 277 

characterised by an attenuated HPA axis response to social stress: despite a normal cortisol 278 

production rate, schizophrenics have lower cortisol levels than controls, both in anticipation 279 

and after exposure to social stress. In the TD population, HPA activity increases around 280 

puberty, with a postpubertal rise in baseline cortisol secretion linked with pubertal stage 281 

(Walker et al., 2001, Gunnar et al., 2009). It has been suggested that delayed adrenarche 282 

correlates with a higher risk for SZ (Saugstad 1989a, 1989b). 283 

 284 

Other features 285 

With regard to neoteny, it is noteworthy that SZ patients exhibit lower weight and reduced head 286 

circumference at birth (Cannon et al., 2002), along with slower growth rates and smaller sizes 287 

in childhood (Gunnell et al., 2003, Haukka et al., 2008).  288 

 289 

Reproductive cycles are also affected in both male and female SZ patients. Delayed age at 290 

puberty is associated with greater severity of negative SZ prodromal symptoms in males 291 

(Ramanathan et al., 2015). In women higher negative symptom scores and greater functional 292 

impairment correlate with later age of menarche (Hochman and Levine 2004). Nearly 50% of 293 

women with SZ have irregular menses that are frequently associated to low levels of oestradiol, 294 

although no differences in their neuropsychological status have been found compared to 295 

patients with regular menses (Gleeson et al., 2016). There is ample evidence of the protective 296 

effect of estradiol with respect to SZ, because it interacts with the neurotransmitter systems 297 

implicated in the disease, and because it enhances cognition and memory, and reverses the 298 

symptoms (Gogos et al., 2015). Men with SZ have, indeed, lower levels of testosterone than 299 

healthy controls, and an inverse correlation between serum testosterone and negative symptoms 300 

of the disease has been described (Ramsey et al., 2013, Sisek-Šprem et al., 2015). However, in 301 

more aggressive patients this correlation is not found (Sisek-Šprem et al., 2015). Interestingly, 302 

circulating testosterone levels in schizophrenic males predict performance on verbal memory, 303 

processing speed, and working memory (Moore et al., 2013). Men with SZ show a less 304 

pronounced activation of the middle frontal gyrus when inhibiting response to negative stimuli, 305 

and this response is inversely related to testosterone level, contrary to what is observed in 306 

healthy subjects (Vercammen et al., 2013). Testosterone significantly affects brain 307 

development, particularly targeting the hypothalamus, the amygdala, and the hippocampus, and 308 

impacting on aspects of memory consolidation (Filová et al., 2013). 309 

 310 

Lastly, concerning changes in pigmentation, an association between SZ and albinism has been 311 

occasionally reported (Clarke and Buckley, 1989). In turn, hyperpigmentation is typically 312 

described as a side effect of neuroleptic drugs (specifically, of phenothiazines) used in SZ 313 

treatment (Otreba et al., 2015). Interestingly, low serum vitamin D levels have been found in 314 

SZ patients and they correlate with the severity of psychotic symptoms (Yüksel et al., 2014). 315 
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The molecular background for this link may rely on shared features of latitude-adaptation 316 

observed in both SZ- and vitamin D-related genes, which suggest that SZ etiopathogenesis may 317 

encounter latitude dependent adaptive changes in vitamin D metabolism (Amato et al., 2010).  318 

 319 

As noted in section 1, the constellation of symptoms that characterize the “domestication 320 

syndrome” have been hypothesised to result as the unselected by-product of a reduce input in 321 

NC cells (Wilkins et al., 2014). The phenotypical presentation of human neurocristopathies 322 

commonly includes features that have been described in domesticated mammals (Sánchez-323 

Villagra et al., 2016). Interestingly, well-defined neurocristopathies like velocardiofacial 324 

syndrome (OMIM#192430) and Di George syndrome (OMIM#188400), involve schizophrenic 325 

features (Mølsted et al., 2010, Zhang et al., 2014, Escot et al., 2016). Likewise, given the NC 326 

derivation of most craniofacial structures, craniofacial abnormalities observed in SZ are 327 

believed to result from disturbances in the neuroectoderm development, hence representing 328 

putative external biomarkers of atypical brain growth (Comptom et al., 2007, Aksoy-Poyraz et 329 

al., 2011), and suggesting an additional connection between SZ and domestication, at the level 330 

of NC functional implication.  331 

 332 

3. Genetic signature of domestication/neural crest features in the SZ molecular 333 

background. 334 

 335 
In order to delve into the molecular background of our hypothesis, we first assessed whether 336 

genes that are involved in SZ etiopathogenesis are represented among candidates for 337 

domestication and NC development and function. To this aim, we gathered an extended an up-338 

to-date list of SZ-associated genes, through literature mining and database search (using the 339 

Schizophrenia Database, http://www.szdb.org/). The list includes 2689 genes with different 340 

levels of evidence: genes bearing pathogenic SNPs, genes found mutated in familial forms of 341 

the disease, genes resulting from candidate gene approaches and functional studies, genes 342 

resulting from GWA and CNV/exome sequencing studies, and genes showing alternative 343 

methylation patterns (see the entire list and corresponding details in Supplemental file 1). 344 

Regarding candidates for domestication, we have implemented an enlarged list of candidates, 345 

which includes the core set of genes proposed by Wilkins and colleagues (2014), along with 346 

additional candidates derived from genetic studies performed in different species. The entire 347 

list of domestication candidates comprises 127 genes, detailed in Supplemental file 2. Finally, 348 

the third gene list considered in the analysis includes genes related to NC development and 349 

function. This list comprises 89 genes (see Supplemental file 3) gathered using functional and 350 

pathogenic criteria: NC markers, neurochristopathy-associated genes annotated in the OMIM 351 

database, genes that are functionally involved in NC induction and specification, genes 352 

involved in NC signalling (within NC-derived structures), and genes involved in cranial NC 353 

differentiation. 354 

 355 

To search the intersections among the three different sets of genes we have employed a simple 356 

Venn diagram (Figure 2), drawn using the software designed and made available as a webtool, 357 

by the bioinformatics evolutionary genomics group, at the University of Gent (Belgium; 358 

webpage: bioinformatics.psb.ugent.be/webtools/Venn/). A Venn diagram shows all possible 359 

logical relations between a finite collection of different sets; the diagram consists of multiple 360 

overlapping circles, each representing a set. 361 

 362 
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 363 
Figure 2. Genetic overlap among schizophrenia, domestication, and neural crest signatures. Venn 364 
diagrams show the intersection among the extended list of genes considered as either genomic or 365 
functional candidates for schizophrenia (SZ, see Supplemental file 1), domestication (DOM, see 366 
Supplemental file 2) and neural crest (NC, see Supplemental file 3). See text for details. 367 
 368 
As shown in Figure 2, an overall number of 42 genes were found among the intersection sets 369 

of the diagram. In particular, 5 genes (FOXD3, RET, SOX9, SOX10 and GDNF) were 370 

overlapping within the three gene lists, hence could represent a selected core of candidates that 371 

support our hypothesis. In addition, 18 genes were shared between the SZ list and the 372 

domestication list, while 19 genes were shared between SZ and NC candidates. Overall, we 373 

found out that over 18% (23 out of 127) of domestication candidates, and 27% (24 out of 89) 374 

of genes involved in NC development and function, are listed within those that have been 375 

documented as playing a role, as either putative candidates for, or functionally related to SZ. 376 

Considering domestication (n: 127) and neural crest (n: 89) candidates altogether, this list 377 

comprises 19.4% (42 of 216) SZ candidates. 378 

 379 

Below we provide with a brief functional characterization and biological interpretation of these 380 

genes. 381 

 382 

4. Functional implication and biological interpretation of domestication/NC genes in the 383 

SZ brain.  384 
 385 

We expected that the 42 genes we highlight here as part of the shared signature of domestication 386 

and/or NC and SZ (see Figure 2) are functionally interconnected and map on to specific 387 

signaling cascades, regulatory pathways, or aspects of brain development and function, of 388 

interest for SZ etiopathogenesis, and specifically, for language deficits in this condition. 389 

Accordingly, we have employed the license free software for gene network analysis String 10 390 

(www.string-db.org). This allowed predicting quite robust links among the genes. In particular, 391 

the core genes (FOXD3, GDNF, RET, SOX9, and SOX10) are all reciprocally interconnected, 392 

hence displayed in the central part of the network (Figure 3). These genes are indeed involved 393 

in different steps of NC development and neural specification. 394 

 395 
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 396 
Figure 3. Gene interaction network. The diagram shows the network of known and predicted 397 
interactions among genes proposed as candidates for SZ and domestication and/or NC development and 398 
function (genes with positive tags in the last two right-sided columns in Figure 2). The network was 399 
drawn with String (version 10.0; Szklarczyk et al., 2015)) license-free software (http://string-db.org/), 400 
using the molecular action visualization. Colored nodes symbolize gene/proteins included in the query 401 
(small nodes are for proteins with unknown 3D structure, while large nodes are for those with known 402 
structures). The color of the edges represent different kind of known protein-protein associations. 403 
Green: activation, red: inhibition, dark blue: binding, light blue: phenotype, dark purple: catalysis, light 404 
purple: post-translational modification, black: reaction, yellow: transcriptional regulation. Edges ending 405 
in an arrow symbolize positive effects, edges ending in a bar symbolize negative effects, whereas edges 406 
ending in a circle symbolize unspecified effects. Grey edges symbolize predicted links based on 407 
literature search (co-mentioned in PubMed abstracts). Stronger associations between proteins are 408 
represented by thicker lines. The medium confidence value was .0400 (a 40% probability that a 409 
predicted link exists between two enzymes in the same metabolic map in the KEGG database: 410 
http://www.genome.jp/kegg/pathway.html). The diagram only represents the potential connectivity 411 
between the involved proteins, which has to be mapped onto particular biochemical networks, signaling 412 
pathways, cellular properties, aspects of neuronal function, or cell-types of interest. Functional 413 
enrichment of the entire gene set, according to Gene Ontology (GO) consortium annotations, was 414 
performed using String algorithm for gene network analysis; the output is provided in the table on the 415 
right. FDR: false-discovery rate, obtained after Bonferroni correction. A FDR cutoff of 0.05 was set to 416 
select significant functions. For the “biological process” and “molecular function” annotations, only the 417 
top ten scoring categories are displayed.  418 
 419 

RET gene is a core domestication candidate (Wilkins et al., 2014), which encodes a tyrosine-420 

protein kinase involved in NC development, and is found deleted in SZ patients (Glessner et 421 

al., 2010). SOX genes encode master transcriptional regulators of cell-fate programming during 422 

development. In particular, SOX9 and SOX10 are members of the soxE group, involved in NC 423 

development and differentiation (Cheung and Briscoe, 2003). SOX9 acts specifically in 424 

craniofacial development, downstream of WNT and BMP pathways (Liu et al., 2013b), and 425 

has been found reproducibly upregulated in SZ brains (Shao and Vawter, 2008, Chen et al., 426 

2013, Lanz et al., 2014). SOX10 regulates NC stem cells balance during development; it is 427 

functionally related to the SZ-susceptibility gene DISC1 during early NC cell migration 428 

(Drerup et al., 2009), and oligodendrocyte differentiation (Hattori et al., 2014). SOX10 is found 429 

hypermethylated in the brain of SZ patients (Iwamoto et al., 2005) and carries SNPs that have 430 
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been related to the age of onset of clinical manifestations (Yuan et al., 2013). RET and SOX10 431 

are co-expressed as reliable markers in enteric nervous system, although their functional 432 

interaction is not clear (Hetz et al., 2014). In turn, FOXD3 is required during NC development 433 

and regulates dorsal mesoderm development in the zebrafish (Chang and Kessler, 2010). The 434 

gene locus maps within one of the AMH-specific differentially-methylated genomic regions 435 

(Gokhman et al., 2014), suggesting that changes in the gene functional status may have 436 

occurred during recent human evolution. FOXD3 is also a transcriptional target of the SZ-437 

candidate DISC1, and is involved in cranial NC migration and differentiation (Drerup et al., 438 

2009). SOX9 and SOX10 indirectly interact through FOXD3, as shown in Figure 3, being 439 

coexpressed at different stages of NC development. In particular, SOX9 seems to drive the 440 

expression of both SOX10 and FOXD3 (Cheung and Briscoe, 2003). Finally, GDNF is also a 441 

core candidate for the domesticated phenotype in mammals (Wilkins et al., 2014). It encodes a 442 

neurospecific factor involved in the differentiation of dopaminergic neurons and in 443 

synaptogenesis (Christophersen et al., 2007, Ledda et al., 2007). GDNF levels are lower in SZ 444 

patients compared with healthy controls (Tunca et al., 2015). With regard to gene networking, 445 

GDNF contributes to the activation of RET protein-tyrosine kinase (Jing et al., 1996), 446 

mediating neuronal survival (Coulpier et al., 2002). 447 

 448 

Other genes in the network are directly or indirectly related to the core genes described above. 449 

In particular, MSX1 and DLX5 homeotic genes also appear to play pivotal roles in this gene 450 

network, as they establish functional interactions with many of the candidates shown in Figure 451 

3. Interestingly, MSX genes control the spatial organization of the NC-derived craniofacial 452 

skeleton (Attanasio et al., 2013, Khadka et al., 2006, Han et al., 2007, Gitton et al., 2011). Also 453 

DLX homeobox genes function in early NC development, and also in late specification of NC-454 

derived structures (McLarren et al., 2003, Ruest et al., 2003), and play key roles as well in skull 455 

and brain development (Jones and Rubinstein, 2004, Kraus and Lufkin, 2006, Vincentz et al., 456 

2016). In particular, MSX1 encodes a transcriptional repressor specifically involved in 457 

odontogenesis (Alappat et al., 2003, Cohen, 2000), hence mutated in orofacial clefting and 458 

tooth agenesis (Liang et al., 2016). MSX1 is a direct downstream target of DLX5 during early 459 

inner ear development (Sajan et al., 2011). Methylation changes in MSX1 are found in the 460 

hippocampus of SZ patients, as a part of the circuit-specific DNA methylation changes 461 

affecting the glutamate decarboxylase 1 regulatory network in SZ, which may explain 462 

GABAergic dysfunctions in this condition (Ruzicka et al., 2015). 463 

 464 

Among the other shared candidates between SZ and domestication, KDM6B and BMPR1B are 465 

shown to interact with SOX9 and SOX10 (see Figure 3). KDM6B encodes a histone 466 

demethylase, which plays a central role in regulation of posterior development. In particular, it 467 

activates neuronal gene expression during postnatal and adult brain neurogenesis in the 468 

subventricular zone (Park et al., 2014). A frameshift mutation, with unknown functional 469 

consequences, has been found in this gene, through whole exome sequencing (WES) of SZ 470 

family trios (Fromer et al., 2014). In turn, BMPR1B encodes a receptor for bone morphogenetic 471 

proteins (BMPs), that are pleiotropic morphogens acting in both bone and neural development. 472 

The interaction with SOX9 is well characterized during postnatal chondrogenesis (Jing et al., 473 

2014). Type Ib BMP receptors also mediate the rate of commissural axon extension in the 474 

developing spinal cord (Yamauchi et al., 2013), and, in mice, are involved in supraxial nervous 475 

functions (Caronia et al., 2010). BMPRIB is annotated among the putative SZ epigenetic 476 

signature genes,  resulting from genome-wide methylome studies (Aberg et al., 2014). 477 

 478 

Also GLI3 is widely functionally involved in this network. This gene encodes a key mediator 479 

of the hedgehog signalling in vertebrates, acting as a repressor in dorsal brain regions (Haddad-480 
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Tóvolli et al., 2012). It controls cortical size by regulating the primary cilium-dependent 481 

neuronal migration (Wilson et al., 2012). With regards to SZ, a de novo missense mutation in 482 

GLI3 has been recently identified through WES (Fromer et al., 2014). GLI3 has been found to 483 

interact, both in vivo and in vitro, with SKI (Ravasi et al., 2010). This gene encodes a 484 

transcription factor that regulates TGFβ signaling and is mutated in nearly 90% of cases of 485 

Shprintzen-Goldberg syndrome (OMIM#182212), a condition entailing craniofacial and brain 486 

anomalies (Au et al., 2014). This gene is found methylated in SZ patients (Montano et al., 487 

2016). Indeed, in the brain, SKI regulates the proliferation and differentiation of neural 488 

precursors, along with the specification of cortical projections (Lyons et al., 1994, Baranek and 489 

Atanasoski 2012). In the mouse embryo, Ski is expressed in the migrating NCCs and in NC 490 

derivatives (Lyons et al., 1994). 491 

 492 

OLIG2 encodes a transcription factor that interacts with SOX proteins, and plays a key role in 493 

the regulation of ventral neuroectodermal progenitor cell fate. Specifically, it is essential for 494 

oligodendrocyte function, whose impairment is thought to be a primary pathogenic event in 495 

SZ, specifically affecting the prefrontal cortex (Georgieva et al., 2006, Mauney et al., 2015). 496 

Indeed, in our network OLIG2 is also linked to GFAP, which encodes a hallmark structural 497 

component of mature astrocytes. Interestingly, GFAP levels are upregulated in the left posterior 498 

superior temporal gyrus (Wernicke's area) of schizophrenics (Martins de Souza et al., 2009). 499 

 500 

Another key node in the network is represented by the CDH2 gene, which encodes a member 501 

of the cadherin superfamily involved in the formation of cartilage and bone, the establishment 502 

of left-right asymmetry, and the development of the nervous system (Kadowaki et al., 2007, 503 

Martínez-Garay et al., 2016)). Inactivation of CDH2 in the dorsal telencephalon results in a 504 

“double cortex” phenotype, with heterotopic gray matter interposed between zones of white 505 

matter (Gil-Sanz et al., 2014). CDH2 indeed regulates the proliferation and differentiation of 506 

ventral midbrain dopaminergic progenitors, the organization of excitatory and inhibitory 507 

synaptic circuits, and long-term potentiation in the adult hippocampus (Bozdagi et al., 2010, 508 

Sakane and Miyamoto 2013, Nikitczuk et al., 2014). The gene was found mutated in 509 

schizophrenics in a WES study (Purcell et al., 2016). CDH2 integrates SOX9 signaling and 510 

regulates OLIG2 in neuroepithelial lineage cells, during vertebrate brain development (Sasai et 511 

al., 2014). Also, CDH2 cooperates with the BDNF in the aggregation, assembly and 512 

mobilization of synaptic vesicles (Bury and Sabo, 2014). BDNF encodes a nerve growth factor 513 

needed for neuronal survival and synaptic plasticity. Common variants/polymorphisms of the 514 

gene have been associated with specific cognitive processes (see Goldberg and Weinberger 515 

2004, González-Giraldo et al., 2014, Jasińska et al., 2016, Wegman et al., 2016) and with the 516 

cognitive performance of people suffering from neuropsychiatric conditions. In particular, 517 

abnormally low levels of BDNF have been detected in schizophrenics (Palomino et al., 2006). 518 

Functional genomics has indeed identified BDNF among a list of reliable SZ candidates, 519 

contributing to the genetic background for the neurodevelopmental abnormalities leading to 520 

the disrupted connectivity occurring in the disease (Ayalew et al., 2012). Being implicated in 521 

axonogenesis and neural cell polarization, CDH2 is also indirectly related to ROBO genes. 522 

ROBO1 and ROBO2 encode highly conserved transmembrane receptors that function in axon 523 

guidance and neuronal precursor cell migration. Mutations in ROBO genes have been linked 524 

to human neurodevelopmental disorders, as discussed in the next section. Noticeably, 525 

functional genomics analyses have identified both ROBO1 and ROBO2 as candidate loci for 526 

SZ risk (Potkin et al., 2009, 2010). Finally, ZEB2 appears as an additional functional partner 527 

of CDH2 in the network (Figure 3). This gene encodes a transcriptional factor, which acts as 528 

an essential regulator of neuroectoderm and NC development, contributing to the development 529 

of the neocortex and the hippocampus (Hegarty et al., 2015). Besides being mutated in the 530 
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Mowat-Wilson syndrome (OMIM#235730), a condition characterized by Hirschsprung 531 

disease, craniofacial dismorphisms, and intellectual disability (Adam et al., 2006, Garavelli et 532 

al., 2016), ZEB2 maps within a SZ-associated locus, thus possibly representing a player in the 533 

polygenic etiology of this condition (Ripke et al., 2013, Bigdeli et al., 2016). 534 

 535 

Other candidate genes are not clearly functionally interconnected in the core interacting 536 

network (see Figure 3), although most of them play relevant roles in cognitive functions that 537 

have evolved in humans. Most of them are further discussed in section 5 because of their impact 538 

on language development. 539 

 540 

The functional enrichment, based on gene ontology (GO) annotations, of the gene list 541 

considered in this study (Figure 2), point out that most of these genes act in signaling pathways 542 

known to be impaired in SZ and might play biological functions that are affected in this 543 

condition (see GO annotation table in Figure 3). Noticeably, the top-scoring functional 544 

categories, resulting from the functional annotations, include regulation of nervous system 545 

development and of cell differentiation, specifically of glial cells and neurons. Among the 546 

molecular function GO categories, transcription regulation hits as the most relevant; indeed, 547 

many of the genes listed here encode transcription factors and epigenetic modulators, that on 548 

their turn modulate the expression of genes with pleiotropic role in brain development, 549 

cognitive abilities (including language processing). Finally, considering the cellular 550 

localization of the proteins, most of them appear to localize inside the cell projection 551 

components, confirming their role as regulators of neuron interconnection. 552 

 553 

We have further attempted to delve into the actual functional implication of these selected 554 

genes in the SZ molecular pathogenesis, by assessing whether their expression is significantly 555 

modulated in the SZ brain. To this aim, we surveyed the Gene Expression Omnibus (GEO) 556 

repository (https://www.ncbi.nlm.nih.gov/gds) searching for gene expression datasets obtained 557 

from SZ brain profiling. The following dataset were selected and corresponding data were 558 

gathered: GSE53987 (prefrontal cortex, hippocampus, and associative striatum; Lanz et al, 559 

2014), GSE4036 (cerebellum; Perrone-Bizzozzero, unpublished data), GSE21935 (temporal 560 

cortex; Barnes et al, 2011); GSE35977 (parietal cortex; Chen et al, 2013); GSE62191 (frontal 561 

cortex; de Baumont et al, 2015). The specified datasets were selected based on their 562 

homogeneous and comparable study design. Additional details are provided in Table 1. 563 

Specifically, all datasets were obtained by means of genome-wide microarray expression 564 

profiling of dissected cadaveric brain tissues from SZ patients and matched controls. Raw 565 

datasets were individually analyzed in silico as previously described (Benítez-Burraco et al., 566 

2016). Briefly, the GEO2R tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/; Barrett et al., 2013) 567 

was used to compare patients-versus-controls normalized probeset intensities provided by the 568 

submitters. The p-value was adjusted, whenever appropriate, using Bonferroni-Hochberg 569 

correction for false discovery rate (FDR). A p-value cutoff <0.05 was set for filtering data. 570 

Base 2 logarithm transformation of fold changes (logFC) were applied to obtain relative 571 

expression changes between SZ patients and corresponding controls.  572 

 573 

Table 1. Dataset description 574 

 575 

GEO 

accession 

Tissue type 

(brain region) 

Experimental 

groups/Disease 

status 

n* Array Type/Platform Reference 

GSE4036 Cerebellum 

(crus I/VIIa area) 

SZ 

CONTROL 

14 

14 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

Perrone-Bizzozzero, 

unpublished 
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GSE21935 Superior temporal 

cortex (Brodmann Area 

22) 

SZ 

CONTROL 

23 

19 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

Barnes et al., 2011 

GSE62191 Frontal cortex SZ 

CONTROL 

29 

30 

Agilent-014850 Whole Human 

Genome Microarray 4x44K 

G4112F 

De Baumont et al., 

2015 

GSE53987 Associative striatum 

 

Prefrontal cortex 

 

Hiipocampus 

SZ 

CONTROL 

SZ 

CONTROL 

SZ 

CONTROL 

18 

18 

19 

19 

15 

18 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

Lanz et al., 2014 

GSE35977 Parietal cortex SZ 

CONTROL 

4 

5 

Affymetrix Human Gene 1.0 ST 

Array [transcript (gene) version] 

Chen et al., 2013 

* each sample corresponds to a single individual (i.e. biological replicate). 576 

 577 

Through this approach, we have obtained cortical area-specific expression profiles of the SZ 578 

brain. Complete gene lists of differentially expressed genes obtained from each dataset are 579 

provided in Supplemental file 4. Briefly, the cerebellum expression profiles of SZ patients 580 

included in the GSE4036 data series yielded over 1800 annotated genes showing statistically 581 

significant (p-value<0.05) differential expression over controls. The data analysis of the 582 

temporal cortex data included in the GSE21935 dataset yielded nearly 1950 annotated genes 583 

(p<0.05). In the frontal cortex (GSE62191 dataset), the expression profile included 727 584 

differentially expressed annotated genes (p<0.05), whereas in the prefrontal cortex, analyzed 585 

in an independent study (GSE53987 dataset), it included nearly 6200 genes (p<0.05). Finally, 586 

the in silico analysis of data included in the GSE53987 dataset allowed also obtaining 587 

expression profiles of the associative striatum nucleus (6705 annotated genes, p<0.05) and of 588 

the hippocampus (over 4000 genes, p<0.05) of SZ patients.  589 

 590 

The extended gene lists of annotated genes obtained from the analysis of each dataset (see 591 

supplemental file 4) were then used for searching the selected 42 candidates specified in the 592 

previous section. Overall, we found significant differential expression values for over 75% (32 593 

out of 42) of the common candidates for SZ, domestication, and/or NC development and 594 

function, as discussed above, namely: BDNF, BMPR1B, CACNA1D, CDH2, COX4I1, 595 

DLGAP1, DLX5, DLX6, FOXD3, GDNF, GLI3, GRID1, HES1, IMMP2L, JPH3, KDM6B, 596 

KIF1B, MSX1, NF1, NIPBL, OLIG2, POMT1, RET, ROBO2, SKI, SOX9, SYNJ2, TBX1, TPH1, 597 

VDAC1, WNK2 and ZEB2. These genes resulted differentially expressed in different brain areas 598 

(Figure 4a), the largest number being found within the expression profiles of the frontal cortex 599 

(21 genes), the associative striatum nucleus (16 genes), and the hippocampus (11 genes). These 600 

functional events are obviously observed in adult (cadaveric) specimens, hence they could not 601 

reflect the molecular events that have occurred during early neural development, which are 602 

crucial for the etiopathogenesis of SZ. Nonetheless, some insights into the molecular 603 

networking that underlie the impaired cognitive and social scenarios acting in the SZ brain 604 

could be gathered. Moreover, it is important to note that all these brain areas exhibit anomalies 605 

(structural and functional) in schizophrenics, play a role in language processing, and show 606 

differences in domesticated animals compared to their wild conspecifics.  607 

 608 
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 609 
Figure 4. Brain gene expression profiles in SZ patients. The figure on the left (a) illustrates the 610 
differential expression of the candidate genes found overlapping between SZ and domestication and/or 611 
NC development and function in the tested brain areas. The background diagrams show a coronal 612 
section across the midline (on the left) and a lateral view (on the right) of the brain. The pictures were 613 
gathered and modified from “Slide kit Servier Medical Art” (available at www.servier.com). In each 614 
bar graph: the Y-axis shows the log fold change (logFC) values calculated between SZ patients and 615 
controls in each tested dataset (red bar: upregulated gene, green bar: downregulated gene; see text for 616 
details). The logFC value of genes labeled with an asterisk was calculated as the mean value of 617 
duplicated probeset raw data found in the corresponding dataset (see Supplemental file 4 for extended 618 
gene lists). FC values cannot be directly compared when obtained from different datasets (refer to Table 619 
1), as they represent relative expression quantities, normalized over different controls samples in 620 
different studies. The expression trends of each gene across the different areas is shown as a cluster 621 
view in the image on the right (b). 622 
 623 

In the frontal cortex, most of the core-set genes in the gene network displayed in Figure 3 are 624 

upregulated, namely BMPR1B, CDH2, KDM6B, MSX1, RET, SOX9 and ZEB2. A pivotal role 625 

in this selected group is played by SOX9, whose activation occurs downstream to BMP 626 

signaling (Liu et al., 2013b), consistent with the coherent upregulation BMPR1B. KDM6B 627 

binds and cooperates with SOX9. SOX9 promotes CDH2 activation (Sasai et al., 2014), which, 628 

in turn, induces the SMAD cascade and leads to ZEB2 transcriptional activation (Bedi et al., 629 

2014). In the same brain area, FOXD3 (a SOX9 repressor, based on String10 prediction) is 630 

downregulated, along with other 11 candidates (Figure 4a). Interestingly, genes that displayed 631 

differentially expression in the frontal cortex of domestic animals (dogs, pigs, rabbits, and 632 

guinea pigs) compared to their wild counterparts included a widely conserved SOX gene 633 

(Albert et al, 2012), strongly supporting the central role of these gene family in the brain 634 

changes implicated in the domestication process. 635 

 636 

In the temporal cortex, OLIG2 and SKI, among others, show a reduced expression trend (Figure 637 

4a), possibly indicative of the impaired glial function. Indeed, SKI methylation was described 638 

in SZ brains (Montano et al., 2016). 639 

 640 

It is worth noting that structural and functional anomalies in the frontal and temporal cortices 641 

of SZ patients are believed to impact greatly on their language abilities. Accordingly, lexical 642 

processing in SZ entails abnormal oscillatory patterns in the left frontal-temporal areas, 643 

specifically reduced temporal lobe α and left frontal lobe β activity (Xu et al., 2013, Sun et al., 644 

2014). Likewise, complex sentences understanding involves reduced activation in the right 645 

posterior temporal and left superior frontal cortex in schizophrenic patients (Kircher et al., 646 
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2005). Reduced α and β in left temporal-parietal sites, along with reduced θ at right frontal lobe 647 

sites is observed during phrase structure chunking (Ferrarelli et al., 2012, Xu et al., 2012). 648 

Interestingly too, the ratio fronto-parietal vs. fronto-temporal connectivity has increased from 649 

monkeys to apes to modern humans (Hecht et al., 2013), providing the evolutionary scaffolding 650 

for our imitation abilities, which underlie cultural innovation (see Boeckx and Benítez-Burraco 651 

2014a for discussion). 652 

 653 

Also in the striatum, key candidates, including BMPR1B, CDH2, SOX9, GDNF and SKI are 654 

coherently upregulated, while DLX genes and ROBO2 are downregulated, suggesting that key 655 

molecular markers of NC-derived structures are impaired in this nucleus. The striatum is, 656 

indeed, part of the cortical-subcortical loop involved in learning speech sequences for 657 

articulation, and in extracting complex regularities in auditory sequences (Krishnan et al., 658 

2016).  659 

 660 

With regards to the hippocampus, we have found that eight candidates are downregulated, 661 

including BDNF, CDH2, DLX6, and RET (Figure 4a). Based on the reciprocal functional 662 

connections among these genes, discussed above, their shared expression trends may reflect an 663 

altered hippocampal synaptic function. Also VDAC1 and COX4I1 are downregulated in this 664 

brain region (Figure 4a); these genes are both expressed in the mitochondrion and are involved 665 

in energy production and ion homeostasis (Richter et al., 2010, Shoshan-Barmatz et al., 2015). 666 

Hence, their downregulation reasonably impacts on brain bioenergetics, in SZ and also in other 667 

disorders featuring cognitive impairment (Rosa et al., 2016). Interestingly, KDM6B, a target of 668 

activin signaling involved in cognitive function and affective behavior (Link et al., 2016), is 669 

also upregulated in the SZ hippocampus (Figure 4a). The hippocampal expression of SKI gene 670 

is increased as well, suggesting aberrant cortical connections in the SZ hippocampus. The 671 

hippocampus is involved in language learning (Krishnan et al., 2016), and displays a reduced 672 

volume in schizophrenics (Hirayasu et al., 1998), which can be related to phrase chunking 673 

difficulties, due to oscillations generated in this region (Murphy, 2015). Interestingly, some 674 

domestic animals exhibit changes in the hippocampus that can berelated to differences in their 675 

cognitive and behavioral features (Rehkämper et al., 2008). 676 

 677 

Finally, few candidates show expression changes in the cerebellum; these include CDH2, 678 

FOXD3 and ROBO2, coherently upregulated (Figure 4a), confirming their synergic functions, 679 

as gathered from the network analysis (see Figure 3). The cerebellum is involved in both motor 680 

and non-motor language-related processes, (Mariën et al., 2014, Noroozian 2014), with 681 

structural and functional anomalies documented in SZ patients (Keller et al., 2003, Chen et al., 682 

2013) 683 

 684 

Taken together, the expression levels of the entire gene set across the tested brain areas suggest 685 

that a hallmark of the SZ brain molecular signature is the abnormal activation of the BMP-686 

SOX9-CDH2 axis, given the reproducible upregulation of BMPR1B, CDH2, KDM6B, SOX9 687 

(in at least two areas; Figure 4b). Conversely, our data show a prevalent repression of BDNF, 688 

DLX5-6, JPH3 COX4I1, DLGAP1, NF1, SYNJ2 and VDAC1 in the SZ brain, suggesting the 689 

overall impairment of molecular mechanisms affecting neuronal survival, synaptic plasticity 690 

and functional, and social cognition (Li et al., 2016, Petrella et al., 2016). We reasonably expect 691 

that these changes account in part for the specific cognitive, language, and social phenotype of 692 

schizophrenics.  693 

 694 

Regarding the biological consequences of this overlapping between domestication and/or NC 695 

candidates, and SZ candidates, we wish to add two notes of caution. First, we have found that 696 
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between 20-30% of candidates for domestication/NC are also related to SZ, whereas roughly 697 

5% of the coding genes of the human genome have been implicated in the disease (according 698 

to the Schizophrenia Database). Nonetheless, because of pleiotropy, it may well be that some 699 

of these common candidates are not playing the same biological function domestication/NC 700 

and in SZ. This possibility has to be confirmed experimentally for each candidate. That said, 701 

we have shown that some promising functional overlapping can be found. SZ is a late-702 

developing condition, because important brain changes resulting in the disease (e.g. changes in 703 

neural pruning mechanisms) occur during adolescence, whereas domestication mostly results 704 

from changes in early developmental stages. Nonetheless, available evidence also suggests that 705 

the brain and the cognition of SZ patients develop differentially (compared with typically-706 

developing people) since the very beginning, as shown by studies in presymptomatic patients 707 

(Cannon et al., 2015; Liu et al., 2015; Filatova et al., 2017; Sugranyes et al., 2017). At the same 708 

time, developmental changes, brought about by the early disturbance of the NC function (and 709 

by domestication in general), are expected to have an impact throughout lifespan, particularly, 710 

because of its effect on the environment. Accordingly, it is reasonable to claim the existence 711 

of a biological overlapping between the etiology of SZ, the role of NC in development, and 712 

domestication of the human phenotype. 713 

 714 

5. Schizophrenia and (the evolution of) human language 715 
 716 

Many of the genes gathered in our selected gene list play a role in the etiopathogenesis of 717 

phenotypes affecting the language domain, reinforcing the link between domestication, SZ, 718 

and language. In most cases, though, the implication in neural/cognitive functions could be 719 

viewed as a side-effect of the wide pleiotropism and extremely heterogeneity of the vast group 720 

of genes considered to lay the polygenic foundation of SZ.  721 

 722 

DLX genes, including DLX5 and DLX6 are also important for the evolution of language-723 

readiness, based on their interaction with FOXP2 and RUNX2 (Boeckx and Benítez-Burraco, 724 

2014a). Dlx5/6(+/-) mice show reduced cognitive flexibility that seemingly results from an 725 

abnormal pattern of γ rhythms, caused by abnormalities in GABAergic interneurons: this 726 

phenotype recapitulates some clinical findings of SZ patients (Cho et al., 2015). During 727 

language processing γ  rhythms are hypothesised to generate syntactic objects before β holds 728 

them in memory and they also contributes to lexical processing (see Murphy 2015 for details). 729 

As noted in the previous section, in schizophrenics reduced γ activity is observed at frontal 730 

sites during semantic tasks; likewise, higher cross-frequency coupling with occipital α is 731 

usually detected (Murphy and Benítez-Burraco, 2016a). 732 

 733 

Also ROBO genes are core candidates for language evolution (Boeckx and Benítez-Burraco 734 

2014b). ROBO1 is a candidate for dyslexia and speech-sound disorders (Hannula-Jouppi et al., 735 

2005, Mascheretti et al., 2014), and is involved in the neural establishment of vocal learning 736 

abilities (Wang et al., 2015). The ROBO2 locus is also in linkage with dyslexia and speech-737 

sound disorder and reading (Fisher et al., 2002, Stein et al., 2004), and is associated with 738 

expressive vocabulary growth in the unaffected population (St Pourcain et al., 2014). 739 

 740 

GLI3 is involved in a craniofacial syndrome involving cognitive impairment, both in humans 741 

(Greig cephalopolisyndactily, OMIM#175700) and in mice (Veistinen et al., 2012; Lattanzi et 742 

al, in press; Tabler et al., 2016) with cognitive impairment, which entails language delay 743 

(McDonald-McGinn et al., 2010, Lattanzi, 2016). Indeed, it regulates skull development acting 744 

on the DLX5/RUNX2 cascade (Tanimoto et al., 2012), hence it is expected to have played a 745 

role in the physiological events leading to globularization, in which these genes were seemingly 746 
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involved (Boeckx and Benítez-Burraco, 2014a;  Nearly 98% of Altaic Neanderthals and 747 

Denisovans gained a non-synonymous change in GLI3 that is described as mildly disruptive 748 

(Castellano et al., 2014). 749 

 750 

OLIG2 confers susceptibility to SZ, alone and as part of a network of genes implicated in 751 

oligodendrocyte function (Georgieva et al., 2006). OLIG2 is also associated with psychotic 752 

symptoms in Alzheimer’s disease (Sims et al., 2009) and is up-regulated in the cerebellum of 753 

ASD patients (Zeidán-Chuliá et al., 2016). 754 

 755 

SKI is mutated in Shprintzen-Goldberg syndrome that features skeletal abnormalities and 756 

intellectual disability, including speech and language impairment (Au et al., 2014). Speech 757 

impairment has been hypothesized to result from poorer phonological abilities, although 758 

changes in the quality of the voice (pitch, nasalization) are also observed in patients (Van 759 

Lierde et al., 2007). 760 

 761 

A well-known polymorphism of BDNF (Val66Met) seemingly influence in the pattern of brain 762 

activation and task performance during reading, including reading comprehension and 763 

phonological memory (Jasińska et al., 2016). This and other BDNF polymorphisms have a 764 

proven to impact on the language performance of SZ patients (Kebir et al., 2009, Zhang et al., 765 

2016). BDNF is also mentioned as one of the genes defining the genetic architecture of human 766 

developmental language impairment (Li and Bartlett 2012). 767 

 768 

In Mowat-Wilson syndrome, due to ZEB2 mutations, severe impairment of productive 769 

language is described (Adam et al., 2006, Garavelli et al., 2016). 770 

 771 

NF1 is mutated in neurofibromatosis type 1 (OMIM#162200), a neurogenetic disorder 772 

comprising an increased risk for learning and intellectual disabilities, among other major 773 

symptoms (Anderson and Gutmann 2015). Affected children may exhibit high rates of social 774 

impairment that impact social interaction and skills (Allen et al., 2016; Brei et al., 2014). These 775 

might result, in part, from a generalized deficit in the “Theory of Mind” (crucial for language 776 

acquisition), which seems to be independent of their general cognitive abilities (Payne et al., 777 

2016). They also feature poor expressive language and preliteracy skills (Lorenzo et al., 2013, 778 

2015). Deficit in fine motor skills usually co-occur, dut to the impairment of fronto-striatal-779 

cerebellar loop (Iannuzzi et al., 2016). Interestingly, heterozygous Nf1 (+/-) mice show larger 780 

brain volumes in the prefrontal cortex, in the caudate and the putamen (part of the language 781 

structural network), and in regions involved in social recognition and spatial learning (Petrella 782 

et al., 2016). Although these children frequently exhibit ASD symptoms, they outscore IQ-783 

matched children with ASD in eye contact, behavior, and language skills (Garg et al., 2015). 784 

 785 

Other genes, not clearly interconnected in the network (see Figure 3), are also clearly 786 

implicated in neural functions that are relevant to the language domain. 787 

 788 

NIPBL is a candidate for Cornelia de Lange syndrome (OMIM#122470), in which the 789 

intellectual disability greatly impacts on the expressive language abilities (Boyle et al., 2015, 790 

Parisi et al., 2015). The gene is also a putative candidate for childhood apraxia of speech (Peter 791 

et al., 2016). 792 

 793 

VDAC1 may reasonably represent a marker of neuronal vulnerability and cognitive 794 

impairment, in neurodegenerative conditions including Alzheimer disease (Rosa et al., 2016), 795 

and neuronal ceroid lipofuscinoses (Kielar et al 2009). These conditions are characterized by 796 
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speech and language problems, with a decline in verbal abilities over time (Lamminranta et al., 797 

2001, von Tetzchner et al., 2013). 798 

 799 

The region containing GRID1 has been associated with the parieto-occipital 10-Hz rhythmic 800 

activity (Salmela et al., 2016). This α rhythm, which synchronizes distant cortical regions, is 801 

involved in lexical decision making and contributes as well to the embedding of γ rhythms 802 

generated cross-cortically in order to yield inter-modular set-formation during language 803 

processing (see Murphy 2015 for details). This rhythmic activity is found altered in SZ during 804 

lexical and sentence processing (Murphy and Benítez-Burraco 2016a). 805 

 806 

IMMP2L is a candidate for behavioural disorders, including Gilles de la Tourette syndrome 807 

(OMIM#137580) (Bertelsen et al., 2014, Gimelli et al., 2014). In this condition multiple motor 808 

and vocal tics are described that impact on language processing (Frank 1978). 809 

 810 

Abnormal expansion of repeats in the 3' UTR of JPH3 have been associated with an allelic 811 

variant of Huntington disease (OMIM#606438), in which developmental impairment, 812 

including neurologic abnormalities and dysarthria, are featured (Seixas et al., 2012, Mariani et 813 

al., 2016). Likewise, mutations in JPH3 give rise to generalized cerebral atrophy, mostly 814 

impacting on the basal ganglia (a core component of the brain language circuitry), and are 815 

associated with cognitive decline and psychiatric features, including lack of speech due to 816 

akinexia (Walker et al., 2003, Schneider et al., 2012). 817 

 818 

Also ABCG1 has been associated with conditions entailing cognitive impairment, language 819 

deficits, and neuropsychiatric symptoms (Leoni and Caccia 2015). 820 

 821 

CACNA1D is associated with several neuropsychiatric conditions (Kabir et al., 2016) and plays 822 

important roles in hippocampus-dependent learning and memory (Marschallinger et al., 2015). 823 

It also contributes to aversive learning and memory processes (Berger and Bartsch 2014, Liu 824 

et al., 2014), and has been linked to neurodegenerative disorders (Berger and Bartsch 2014). 825 

Mutations in this gene are considered among risk factors for ASD and intellectual disability, 826 

both entailing language deficits (Pinggera et al., 2015).  827 

 828 

HES1 is thought to be important for the evolution of language, because of its specific 829 

interactions with ROBO1 and RUNX2 (Boeckx and Benítez-Burraco, 2014b). 830 

 831 

POMT1 is associated with clinical conditions entailing severe mental retardation (van 832 

Reeuwijk et al 2006, Godfrey et al., 2007, Yang et al., 2016. Mutations in this gene occasionally 833 

result in psychotic symptoms (hallucinatory behavior) (Haberlova et al 2014). 834 

 835 

TBX1 and CRKL map within the chromosomal hotspot for the Di George/velocardiofacial 836 

clinical spectrum, which are neurocristopathies entailing brain anomalies, behavioural 837 

disturbances, cognitive impairment, and language delay (Swillen et al., 1997, Swillen et al., 838 

1999, Guris et al., 2001, Glaser et al., 2002). Tbx1 haploinsufficiency in mice causes prepulse 839 

inhibition, a robust endophenotype of nonsyndromic SZ (Paylor et al., 2006), and impacts 840 

negatively on pup-mother social communication (Takahashi et al., 2016). 841 

 842 

Polymorphisms in NEUROG1 have been associated with SZ and schizoaffective disorder, one 843 

of which being significantly associated with increased cerebral gray matter and generalized 844 

cognitive deficits (Ho et al., 2008). 845 

 846 
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SYNJ2 is an evolutionary conserved gene, and a putative cognitive candidate, whose variants 847 

have been found associated with cognitive ageing in selected populations (López et al., 2012). 848 

 849 

Finally, mutations in GFAP give rise to Alexander disease (OMIM#203450). Specifically, 850 

GFAP is upregulated in the left posterior superior temporal gyrus (Wernicke's area) of 851 

schizophrenics, a region crucially implicated in language processing (Martins de Souza et al., 852 

2009). 853 

 854 

The involvement of most of these common candidates for SZ, domestication and NC in 855 

language function provides with an unexpected, intriguing window on language evolution. As 856 

we pointed out in the introductory section, an evolutionary link has been claimed to exist 857 

between the origins of language and the prevalence of SZ among human populations, because 858 

of the nature of the brain changes that brought about language, which plausibly favour the 859 

dysfunctions typically found in SZ. In this paper we have argued for putting the focus not only 860 

on the split between extinct hominins and AMHs, but also on the time period following the 861 

emergence of our species. The main reason is that changes in the social environment linked to 862 

our subsequent self-domestication are expected to have contributed to the emergence of 863 

modern languages. As we have showed in the paper, many candidates for domestication and 864 

NC development and function are involved in language, but also in the etiopathogenesis of SZ, 865 

reinforcing the view that domestication, language evolution, and SZ are intimately related. The 866 

genes we highlight here might have contributed to this set of late, domestication-related 867 

changes in the human phenotype. Interestingly, signals of ancient selection (occurring >1,900 868 

generations ago, prior to the split of present-day human groups) have been found in some of 869 

our candidates, particularly, in ZEB2, but also in BMPR2, a gene encoding another BMP 870 

receptor (Zhou et al., 2015). This is in line with the finding that SZ risk alleles may have mainly 871 

appeared during this late period, after the emergence of our species. We expect that these recent 872 

changes in our candidates contributed as well to the changes that are concomitant to the 873 

domestication process. 874 

 875 

6. Conclusions 876 
 877 

Taken together, the data discussed in this paper may provide original hints towards the 878 

clarification of some aspect of SZ etiopathogenesis, balancing genetic, epigenetic and 879 

environmental factors, and merging development and evolution. The proposed approach may 880 

help to disentangle as well the evolutionary history of human cognition, and specifically, of the 881 

human faculty of language. In particular, it supports the view that changes in the social context 882 

linked to self-domestication contributed decisively to the emergence of modern language and 883 

present-day complex languages and that both genetic and environmental factors play a role in 884 

this process.  885 
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