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Abstract

In noisy, dynamic environments, organisms must distinguish genuine change (e.g., the move-
ment of prey) from noise (e.g., the rustling of leaves). Expectations should be updated only
when the organism believes genuine change has occurred. Although individual variables can
be highly unreliable, organisms can take advantage of the fact that changes tend to be cor-
related (e.g., movement of prey will tend to produce changes in both visual and olfactory
modalities). Thus, observing a change in one variable provides information about the rate
of change for other variables. We call this the penumbra of learning. At the neural level, the
penumbra of learning may offer an explanation for why strong plasticity in one synapse can
rescue weak plasticity at another (synaptic tagging and capture). At the behavioral level,
it has been observed that weak learning of one task can be rescued by novelty exposure
before or after the learning task. Here, using a simple number prediction task, we provide
direct behavioral support for the penumbra of learning in humans, and show that it can be
accounted for by a normative computational theory of learning.
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Introduction

Some of the most significant developments in synaptic physiology have sprung from the
insight that no synapse is an island: changes in plasticity at one synapse can exert a variety of
effects on plasticity at other synapses, such as synaptic scaling [1], heterosynaptic plasticity
2], and (the focus of this paper) synaptic tagging and capture [3, 4, 5]. The synaptic
tagging and capture hypothesis holds that weak stimulation at a synapse, while insufficient
to produce synthesis of plasticity-related proteins necessary for long-lasting potentiation,
sets a molecular tag that allows the synapse to subsequently capture proteins synthesized
at another convergent synapse undergoing strong stimulation. Capture is possible in both a
“weak-before-strong” scenario (weak stimulation at synapse A followed by strong stimulation
at synapse B) and a “strong-before-weak” scenario (strong stimulation at synapse B followed
by weak stimulation at synapse A). Tagging and capture also occurs for synapses undergoing
depression [6]. Furthermore, strong depression at one synapse can rescue weak potentiation
at another synapse, and vice versa (“cross-capture” [6]).

In an effort to organize the functional principles underlying these phenomena, Gershman [7]
proposed a normative computational model of synaptic tagging and capture. According to
this model, a basic challenge facing any learning system is distinguishing between change
in the environment (which should be learned) and noise (which should be ignored). Under
the assumption that the rate of change is correlated across different variables, observing
a large change for one variable is informative about the global rate of change, which in
turn alters learning about other changes—the penumbra of learning. Thus, changes that
appear insignificant under some circumstances (due to noise) may attain significance when
the environment is perceived to be changing quickly. Applied to the synaptic level, this
principle explains why strong learning at one synapse can enhance weak learning at another
synapse.

One advantage of such an abstract model formulation is that it can be applied at multiple
levels; for example, we should be able to observe the penumbra of learning behaviorally. In-
deed, “behavioral tagging” experiments demonstrate that exposing an animal to novelty can
enhance weak learning on a separate task [8, 9, 10, 11]. One limitation of these experiments
is that they are not amenable to a systematic computational analysis, since it is unclear how
to quantitatively model the novelty manipulation. In the present paper, we study a simple
behavioral task that allows us to test the model’s predictions in humans.

Participants performed a number prediction task [12] in which they had to guess the number
a colored button would produce. Each button’s output changed over time according to a
Gaussian random walk, such that participants had to continually update their predictions.
Trials alternated between red and green buttons (Figure 1), allowing us to measure the
penumbra of learning in terms of whether a large or small change in prediction for one of the
buttons was associated with a large or small change in the other button. By looking at the
direction of change (i.e., positive or negative), we can also measure a behavioral analogue
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Figure 1: Task and analysis schematic. Participants alternated between making predic-
tions for red and green buttons. After entering a predicted number, participants observed
feedback about the true number, drawn from a Gaussian distribution whose mean fluctu-
ated over time according to a Gaussian random walk. Two variables were computed from the
sequence of predictions: the difference between contiguous green predictions (A;) and the
difference between contiguous red predictions (As). These variables were used to quantify
the penumbra of learning, as explained in the main text.

of cross-capture: an association between large positive changes on one button with large
negative changes in the other button, or vice versa.

Results

Experiment 1

The experimental results are summarized in Figure 2. First, we measured “forward tagging”:
the absolute change in prediction on trial ¢ (]As|) as a function of whether the absolute change
in prediction on trial ¢ —1 (]Aq]) is large (higher than average) or small (lower than average).
Consistent with the penumbra of learning hypothesis, we observed that |As| was larger when
|A;| was large compared to when |A;| was small [¢(148) = 6.23, p < 0.0001; Figure 2A]. We
also observed “backward tagging”: |A;| was larger when |A,| was large compared to when
|Ag| was small [t(148) = 5.47,p < 0.0001; Figure 2B].

We next examined a behavioral analogue of “cross-capture,” where a change in prediction
for one button amplifies change in prediction for the other button, even when the directions
of these changes go in opposite directions. Thus, a negative change on trial £ — 1 amplifies
a positive change on trial ¢ [t(117) = 3.92,p < 0.001; Figure 2C], and a positive change on
trial £ — 1 amplifies a negative change on trial ¢ [t(120) = 3.44, p < 0.001; Figure 2D]. These
results support the claim that it is the magnitude, not direction, of change that determines
the strength of the penumbra. Consistent with this claim, we found no significant correlation
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Figure 2: Experiment 1 results. (A) Forward tagging: absolute change in prediction on
trial ¢ as a function of the size of change in prediction on trial t — 1. The “large” and “small”
categories were determined on the basis of a mean split. (B) Backward tagging: absolute
change in prediction on trial ¢ — 1 as a function of the size of change in prediction on trial
t. (C) Forward cross-tagging: a negative change on trial ¢ — 1 amplifies a positive change
on trial ¢. Similarly, a positive change on trial ¢ — 1 amplifies a negative change on trial .
(D) Backward cross-tagging: a negative change on trial ¢ amplifies a positive change on trial
t — 1. Similarly, a positive change on trial ¢ amplifies a negative change on trial ¢t — 1. Error
bars show standard error of the mean.

between predictions on trial ¢ and trial ¢—1 (median Pearson correlation coefficient: 0.06,p =
0.15, signed rank test).
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Figure 3: Experiment 1 model simulations. (A) Forward tagging. (B) Backward tag-
ging. (C) Forward cross-tagging. (D) Backward cross-tagging. Error bars show standard
error of the mean.

These empirical results are well captured by the normative computational model described
in the Methods section (Figure 3), which was previously used to explain a variety of synaptic
tagging and capture phenomena [7]. The key principle is that participants are simultaneously
estimating both the number and the diffusion variance (or volatility) ¢. Change on one
button is, according to the model, informative about the rate of change for all buttons.
Formalized mathematically, without any parameter fitting, this principle is sufficient to
reproduce forward /backward tagging and forward/backward cross-tagging.
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Figure 4: Experiment 2 results. Absolute change in prediction for button 2 (]As|) as a
function of volatility for button 1 (Low volatility: ¢; = 25; High volatility: ¢; = 225.). Error
bars show standard error of the mean.

Experiment 2

In Experiment 1, the diffusion variance was the same across buttons, and we exploited natural
variability in prediction errors to test the model’s predictions. In Experiment 2, we sought
to directly manipulate the size of prediction errors for button 1 while keeping the prediction
errors for button 2 constant. A separate set of participants (N = 46) performed the same
task as in Experiment 1, with diffusion variance for button 1 (g;) set to 225 and the diffusion
variance for button 2 (¢2) set to 25. We refer to this new condition as “high volatility” for
button 1, compared to the “low volatility” condition studied in the subset of participants in
Experiment 1 (N = 53) for whom both ¢; and ¢ were set to 25 (see Methods for details).
Crucially, the diffusion variance for button 2 was the same across the high volatility and low
volatility conditions.

As shown in Figure 4, we found that the absolute change in prediction for button 2 (|Az|) was
significantly greater in the high volatility condition compared to the low volatility condition
[t(97) = 2.19,p < 0.05]. This finding supports the model prediction that high volatility for
one button will induce greater plasticity of learning for the other button (whose volatility
was fixed). Experiment 2 thus complements the correlational results of Experiment 1 with
a causal experimental manipulation.
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Discussion

We have shown a form of behavioral tagging in humans that recapitulates analogues of several
important synaptic tagging and capture phenomena. First, we found that a large change
in predictions for one stimulus amplified learning about another stimulus. This “penumbra
of learning” operated both forward and backward in time. Second, we found that a large
positive change for one stimulus amplified negative changes for the other stimulus, and vice
versa, indicating that the penumbra depends on the magnitude (rather than direction) of
change. Third, we found that increasing the volatility (and hence the average change in
predictions) for one stimulus amplified learning about the other stimulus, indicating that
the penumbra of learning can be exogenously manipulated.

Our paradigm made it possible to test a computational account of synaptic tagging and
capture [7], applied with minimal modifications to the behavioral task. This model formalizes
the penumbra of learning in terms of inference about the volatility of the environment. Under
the assumption that stimulus dynamics are coupled via an unknown volatility parameter,
perceiving a change in one stimulus increases the inferred volatility and thereby amplifies
learning about other stimuli. The notion that humans and animals adapt their learning
rate based on inferred volatility has become an important facet of modern learning theory
[13, 14, 15, 16], with roots in earlier models of classical conditioning [17]. The penumbra
of learning model extends this logic to multidmensional environments. Although originally
applied to synaptic plasticity phenomena [7], we have shown that the model can accurately
predict the behavioral tagging phenomena reported in this paper, lending credence to the
idea that synaptic and behavioral learning reflect common principles. However, we still lack
physiological evidence for a direct connection.

Our results pave the way for several future directions of inquiry. First, it has been demon-
strated in animals that behavioral tagging is dopamine-dependent [8, 18, 10|, suggesting
that systemically depleting dopamine in humans should eliminate the penumbra of learn-
ing. Behavioral tagging is also dependent on [-adrenergic function [18], which could also be
systemically manipulated. The role of S-adrenergic function is particularly intriguing given
the role of noradrenergic neurons in adaptation of learning [19, 20]. Pupil diameter, tightly
linked to firing of noradrenergic neurons [20], tracks changes in learning rate [15], and could
be easily measured in our task.

Methods

Participants

For Experiment 1, 149 participants were recruited online through the Amazon Mechanical
Turk web service and paid for their participation. For Experiment 2, 46 participants were
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recruited. The experiments were approved by the Harvard Internal Review Board.

Procedure

Participants completed 100 trials of a number prediction task. On each trial, participants
were shown a red or green button (on alternating trials) and had to guess a number between
1 and 100. Participants then received feedback. The numbers generated by the buttons
evolved over time according to a Gaussian random walk:

wy ~ N (f(wi-1), ¢I) (1)
Y ~ N (wxy, ) (2)

where 1, is the number observed on trial ¢, w, € R? is the vector of mean values, I is the 2 x 2
identity matrix, z; € R? is a vector representing the button presented on trial ¢ (zy, = 1 if
button k was present on trial ¢, and 0 otherwise), ¢ is the diffusion variance of the random
walk, and 7 is the noise variance of the emission distribution. The function f(w) specifies
the deterministic component of the dynamics; here we assume f(w) = w, but in the next
section we discuss different assumptions about f(w). To explore the parameter space in
Experiment 1, 53 participants completed the task with ¢ = 25 and r = 25, 50 with ¢ = 1
and r = 25, and 46 with ¢ = 25 and » = 100. However, the experimental results were nearly
indistinguishable across conditions, so in the remainder of the paper we report results pooled
across conditions. Experiment 2 used an identical procedure, with the only difference that
the two buttons had different diffusion variances: ¢; = 225 and ¢ = 25.

Computational model

Here we summarize the computational model first presented in [7]; we refer the reader to that
paper for details. Our approach is to impute to the learner a set of probabilistic assumptions
about the environment (the generative process), and then formalize the learning problem
as inference over the latent causes that gave rise to observed data under the generative
process. Thus, we posit that the learner is executing a reasonable accurate approximation
of probabilistic inference. In [7], the learner was conceptualized as a set of synapses; in this
paper, we apply essentially the same model at the organismic level, only changing some of
the parameters to match our experimental paradigm.

Formally, the computational problem facing the learner is to infer both the dynamic mean w;
and the diffusion variance ¢ after observing data (x1.;,y1.¢), where the subscript 1 : ¢ denotes
the collection of variables on trials 1 to ¢t. The optimal statistical inference is stipulated by
Bayes’ rule:

P(wt7Q‘X1:t7YI:t> X P(yt|wtaxt>P(wt’X1:t717YI:t717Q)P(Q)a (3)
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We approximate the distribution over the diffusion variance ¢ with a discrete set of points,
{q',...,q¢"}. Specifically, the diffusion variance is drawn according to P(q = ¢*) o exp{ak~"}
where a and b are constants and ¢ ranges over K equally spaced values between 1 and 30
(note that the k superscript is an index, not a power). This distribution embodies the as-
sumption that a slow rate of change is a priori more probable. For all our simulations, we
used K = 50,a = 8 and b = 5, but the results are not sensitive to small variations in these
values.

When ¢ is known, the posterior over w; can be approximated as a Gaussian using the
extended Kalman filter [21], leading to the following updates for the mean and variance:

Posterior mean: w; = f(w;—1) + cqx(ye — Wi—124) (4)

Posterior variance: v; = (1 — ay27)0?} (5)

where 02 = [f/(t0y_1)]* v;—1 + ¢ is the predictive variance after application of the transition
function f(w;_1) but before observing (z;,v;), and f’(w) is the derivative of the transition
function.

The learning rate ay is given by ay = 02/, where \; = 2?07 + r is the variance of the
posterior marginal likelihood:

P(ytyxlztfla Yiit-1, Q) = N(yt; Wy—1T¢, )\t)- (6)

Intuitively, A; expresses the overall unpredictability (or noisiness) of the data; this unpre-
dictability grows monotonically with the noise variance. Learning will be faster to the extent
that the prediction uncertainty is high (large o?) relative to the overall unpredictability (low
At).

With ¢ unknown, the posterior marginal over w; is a mixture of Gaussians:

K

P(wilx1, y14) = Y Plg = ¢* v, yr) N (wi; df, of). (7)
k=1

where we have indexed @ and v by k to indicate their implicit dependence on ¢ = ¢*. To
obtain P(q = ¢*|x1.¢, y1.), we apply the update equations 4 and 5 for each ¢* in parallel,
and use Bayes’ rule to compute the posterior over ¢:

t

P(q = ¢"[x1e,y1e) < Plg = ¢") [N (s 0F_yar, AE). (8)

=1

In [7], a nonlinear transition function was specified that captures two properties of synaptic
plasticity: (1) asymptotic decay to 0, and (2) slower decay for stronger associations. The
following functional form was used:

f(w)

. w
14 exp{—puw?}’

(9)
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where g > 0 is a parameter that governs the nonlinear relationship between w and the
decay rate; in particular, smaller absolute values of w decay more rapidly than larger values.
Following [7], we used = 10. Note that in the true generative process (unknown to
participants), f(w) was the identity function. We employ the nonlinear transition function
for consistency with prior work, but our results do not depend on this assumption.

In the simulations, all parameters were the same as in the original report [7], except that
we set r equal to its true experimental value (25 or 100 depending on the experimental
condition). Participants did not know this true value, but we chose it for expedience; our
results are robust to large variations in this parameter value.
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