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ABSTRACT	
Strategies	for	containing	an	emerging	infectious	disease	outbreak	must	be	non-
pharmaceutical	when	drugs	or	vaccines	for	the	pathogen	do	not	yet	exist	or	are	
unavailable.	The	success	of	these	non-pharmaceutical	strategies	will	depend	not	only	on	
the	effectiveness	of	quarantine	or	other	isolation	measures	but	also	on	the	epidemiological	
characteristics	of	the	infection.	However,	there	is	currently	no	systematic	framework	to	
assess	the	relationship	between	different	containment	strategies	and	the	natural	history	
and	epidemiological	dynamics	of	the	pathogen.	Here,	we	compare	the	effectiveness	of	
quarantine	and	symptom	monitoring,	implemented	via	contact	tracing,	in	controlling	
epidemics	using	an	agent-based	branching	model.	We	examine	the	relationship	between	
epidemic	containment	and	the	disease	dynamics	of	symptoms	and	infectiousness	for	seven	
case	study	diseases	with	diverse	natural	histories	including	Ebola,	Influenza	A,	and	Severe	
Acute	Respiratory	Syndrome	(SARS).	We	show	that	the	comparative	effectiveness	of	
symptom	monitoring	and	quarantine	depends	critically	on	the	natural	history	of	the	
infectious	disease,	its	inherent	transmissibility,	and	the	intervention	feasibility	in	the	
particular	healthcare	setting.	The	benefit	of	quarantine	over	symptom	monitoring	is	
generally	maximized	for	fast-course	diseases,	but	we	show	the	conditions	under	which	
symptom	monitoring	alone	can	control	certain	outbreaks.	This	quantitative	framework	can	
guide	policy-makers	on	how	best	to	use	non-pharmaceutical	interventions	to	contain	
emerging	outbreaks	and	prioritize	research	during	an	outbreak	of	a	novel	pathogen.		
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SIGNIFICANCE	
	
Quarantine	and	symptom	monitoring	of	contacts	with	suspected	exposure	to	an	infectious	

disease	are	key	interventions	for	the	control	of	emerging	epidemics;	however,	there	does	

not	yet	exist	a	quantitative	framework	for	comparing	the	control	performance	of	each.	

Here,	we	use	a	mathematical	model	of	seven	case	study	diseases	to	show	how	the	choice	of	

intervention	is	influenced	by	the	natural	history	of	the	infectious	disease,	its	inherent	

transmissibility,	and	the	intervention	feasibility	in	the	particular	healthcare	setting.	We	use	

this	information	to	identify	the	most	important	characteristics	of	the	disease	and	setting	

that	need	to	be	characterized	for	an	emerging	pathogen	in	order	to	make	an	informed	

decision	between	quarantine	and	symptom	monitoring.	 	
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INTRODUCTION	

The	global	burden	of	emerging	infectious	diseases	is	growing	and	prompts	the	need	

for	effective	containment	policies	(1–3).	In	many	cases,	strategies	must	be	non-

pharmaceutical,	as	targeted	drugs	or	vaccines	for	the	pathogens	are	unavailable.	Among	

the	various	containment	strategies,	isolation	of	ill	and	potentially	infectious	patients	is	one	

of	the	most	intuitive,	relying	on	the	tracing	the	contacts	of	known	cases.	Contacts	with	

symptoms	can	then	be	hospitalized	or	isolated,	but	policy	makers	must	also	decide	how	

best	to	handle	contacts	that	do	not	meet	the	case	definition	for	infection.	Two	strategies	

have	historically	been	used	in	the	case	of	a	potentially	infected	but	symptom-free	contact:	

quarantine	and	symptom	monitoring.		

Quarantine	of	potentially	infected	contacts	during	an	epidemic	is	highly	

conservative	with	respect	to	efficacy,	but	it	comes	at	a	high	cost.	Costs	associated	with	

quarantine	policies	range	from	direct	(e.g.,	implementation	expenses	and	the	restriction	of	

personal	liberties)	to	indirect	(e.g.,	stigmatization	of	health	workers	and	sometimes	

interruption	of	financial	and	trade	markets)	(4–8).	A	less	conservative	but	substantially	

cheaper	and	more	socially	palatable	approach	is	active	symptom	monitoring	of	contacts.	In	

this	strategy,	health	workers	check	on	contacts	one	or	two	times	a	day	and	isolate	them	if	

symptoms	occur	(see	definitions	in	Methods).		

Given	the	importance	of	rapid	decision	making	in	the	event	of	novel	emerging	

pathogens,	and	the	potentially	devastating	consequences	of	poor	containment	strategies,	

quantitative	guidelines	are	urgently	needed	for	deciding	whether	quarantine	is,	according	

to	Gates	et	al.,	at	worst	"counterproductive"	or	at	best	"one	of	the	few	tactics	that	can	
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reduce	its	spread"	(9).	Current	guidance	on	the	use	of	quarantine	or	symptom	monitoring	

is	ad	hoc	and	disease-specific,	lacking	the	generalizability	required	for	rapid	decision-

making	for	novel	pathogens	and	leading	to	confusion	during	implementation	(10–12).	

During	the	Severe	Acute	Respiratory	(SARS)	epidemic,	broad	quarantine	interventions	

were	applied	in	Taiwan	and	subsequently	abandoned	(13).	Furthermore,	we	are	aware	of	

no	framework	that	considers	the	implementation	setting	as	a	factor	for	intervention	choice	

or	performance,	despite	its	obvious	importance.	Indeed,	the	United	States	Centers	for	

Disease	Control	and	Prevention	(CDC)	implicitly	recognized	the	value	of	implementation	

setting	by	differentiating	its	international	response,	where	quarantine	was	prioritized	(14),	

and	its	domestic	response,	where	symptom	monitoring	was	prioritized	(15,	16).		

The	success	of	these	approaches	is	not	simply	a	reflection	of	the	efficiency	of	their	

implementation	but	crucially	depend	on	the	biology	and	natural	history	of	the	pathogen	in	

question.	Previous	theoretical	work	by	Fraser,	et	al.	(17)	summarized	these	dynamics	into	

a	measure	of	the	proportion	of	infections	by	asymptomatic	infection	(𝜃)	and	the	basic	

reproductive	number	(𝑅!),	defined	as	the	average	number	of	infections	generated	by	an	

infectious	individual	in	a	fully	susceptible	population.	Subsequent	work	has	explored	the	

interaction	between	disease	characteristics	(e.g.,	super-spreading	(18))	and	the	

performance	of	interventions	(e.g.,	travel	screening	(19)),	but	the	recent	Ebola	epidemic	

demonstrated	that	at	least	two	large	questions	remain	(7).	Firstly,	what	is	the	role	of	

symptom	monitoring	as	an	alternative	to	quarantine,	and	secondly,	how	does	this	choice	

depend	on	the	characteristics	of	the	disease,	the	setting,	and	their	interactions?		

Here	we	develop	an	agent-based	branching	model	that	accommodates	realistic	

distributions	of	disease	characteristics	and	maintain	the	infector-infectee	correlation	
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structure	necessary	for	interventions	targeted	via	contact	tracing.	To	assess	diseases	with	a	

wide	range	of	natural	histories	that	have	the	potential	for	causing	sudden,	severe	

epidemics,	we	consider	case	studies	of	seven	known	pathogens:	Ebola;	hepatitis	A;	

influenza	A;	Middle	East	Respiratory	Syndrome	(MERS);	pertussis;	SARS;	and	smallpox.	We	

identify	which	disease	characteristics	and	intervention	attributes	are	most	critical	in	

deciding	between	quarantine	and	symptom	monitoring,	and	provide	a	clear,	general	

framework	for	understanding	the	consequences	of	isolation	policies	during	an	epidemic	of	

known	or	novel	pathogens.	
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RESULTS	

Intervention	Effectiveness	Depends	on	Disease	Epidemiological	Dynamics.	

To	assess	the	impact	of	quarantine	and	symptom	monitoring,	we	developed	a	

general	mathematical	model	of	disease	transmission	and	interventions	targeted	via	contact	

tracing	(Fig	1).	The	model	structure	accommodates	five	key	metrics	of	intervention	

performance	in	a	given	setting	(Table	1).	We	used	particle	filtering	to	generate	parameter	

sets	consistent	with	seven	case	studies	of	outbreak-prone	pathogens	(see	Methods	and	

Table	2).	

Fig	2	illustrates	model	dynamics	for	two	infections	with	different	epidemiological	

characteristics,	Ebola	and	influenza	A,	showing	the	range	of	epidemic	outcomes	resulting	

from	different	interventions	for	a	given	R0	value.	Unimpeded	exponential	epidemic	growth	

in	our	branching	model	(red)	can	be	reduced	by	the	increasingly	conservative	

interventions	of	health-seeking	behavior	(teal),	symptom	monitoring	(gold),	and	

quarantine	(blue)	(Figs	2A-B).	Under	a	given	intervention	policy,	we	estimate	the	effective	

reproductive	number	(Re)	as	the	average	number	of	infections	generated	by	an	infectious	

individual	in	the	population.	The	effective	reproductive	number	under	symptom	

monitoring	(RS),	quarantine	(RQ),	and	the	absolute	difference	between	the	two	(𝑅! − 𝑅!)	

increases	with	R0	and	differs	by	disease	(Figs	2C-D).	

We	find	the	effectiveness	of	symptom	monitoring	and	quarantine	in	controlling	a	

disease	in	a	particular	setting	depends	critically	on	its	biological	dynamics	(e.g.	latent	and	

infectious	periods)	and	transmissibility	(𝑅!)	(Fig	3a).	Holding	transmissibility	constant	(𝑅!	

arbitrarily	set	to	2.75±0.25),	biological	dynamics	alone	strongly	influence	the	effectiveness	
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of	quarantine	and	especially	symptom	monitoring,	as	seen	by	the	wide	spread	in	𝑅!	(Fig	

3b).	

In	simulations	with	high	intervention	performance	settings	(i.e.,	90%	isolation	

effectiveness,	90%	of	contacts	traced	within	one	day,	and	symptoms	monitored	daily),	

diseases	such	as	MERS	and	Ebola	could	be	controlled	(i.e.,	Re	<	1)	with	either	quarantine	or	

symptom	monitoring;	diseases	such	as	hepatitis	A	with	only	quarantine;	but	diseases	such	

as	pertussis	require	additional	interventions	in	order	to	reduce	the	effective	reproductive	

number	below	one,	due	in	large	part	to	pre-symptomatic	infectiousness	(Fig	3c).	The	

absolute	comparative	effectiveness	(𝑅! − 𝑅!)	varies	widely	by	disease,	as	demonstrated	by	

the	line	length	in	Fig	3c.	The	relative	comparative	effectiveness	(!!!!!
!!

)	also	varies	widely,	

with	quarantine	reducing	RS	by	over	65%	for	influenza	A	and	hepatitis	A	and	by	less	than	

10%	for	pertussis	(Fig	S1).	The	reader	can	explore	results	from	landscapes	with	different	

intervention	performance	settings	and	disease	transmissibility	in	the	interactive	

supplement	(https://coreypeak.shinyapps.io/InteractiveQuarantine).	

	

Categorizing	Disease	Control	Frontiers		

In	order	to	compare	the	effectiveness	of	symptom	monitoring	and	quarantine,	one	

must	select	an	appropriate	metric	to	compare	RS	and	RQ.	We	therefore	categorized	

intervention	response	heterogeneity	into	four	control	quadrants	(Fig	3a).	In	quadrant	I,	

where	neither	intervention	is	sufficient	to	prevent	epidemic	growth,	the	relative	difference	

!!!!!
!!

	can	distinguish	whether	quarantine	is	merited	or	could	be	paired	with	other	

strategies	to	achieve	control.		Because	quarantine	is	by	definition	the	more	conservative	
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intervention,	simulation	results	in	quadrant	II	occur	only	stochastically.	In	quadrant	III,	

where	both	interventions	are	sufficient	and	the	number	of	prevented	cases	can	be	more	

directly	estimated,	the	distinguishing	metric	was	the	absolute	difference	𝑅! − 𝑅! 	and	its	

inverse	( !
!!!!!

),	which	can	be	interpreted	as	the	number	of	contacts	that	must	be	

quarantined	in	order	to	prevent	one	additional	case	over	symptom	monitoring	(an	analog	

of	“number	needed	to	treat”).	For	the	example	of	SARS,	Day	et	al.	propose	that	mass	

quarantine	may	be	unnecessary	because	effective	symptomatic	isolation	alone	would	

sufficiently	control	the	disease	(hence	placing	the	disease	in	quadrant	III)	(8).	In	quadrant	

IV,	where	quarantine	but	not	symptom	monitoring	can	control	the	disease,	quarantine	

would	be	strongly	considered	as	the	minimum	sufficient	strategy	to	prevent	exponential	

epidemic	growth.		

The	following	two	sections	aim	to	identify	which	disease	characteristics	and	

intervention	performance	metrics	most	strongly	influence	these	differences	in	response	to	

quarantine	and	symptom	monitoring.		

	

Ranking	of	epidemiological	characteristics	by	importance	for	containment	feasibility		

The	comparative	effectiveness	of	quarantine	and	symptom	monitoring	is	strongly	

influenced	by	differences	in	the	infection’s	natural	history.	We	measured	partial	rank	

correlation	coefficients	to	examine	which	biological	characteristics	in	particular	are	most	

influential	after	controlling	for	the	other	characteristics	(Methods).	As	demonstrated	by	

strongly	negative	partial	rank	correlation	coefficients	in	Fig	4,	increasing	the	duration	of	

infectiousness	(𝑑!"#)	and	elongating	the	latent	period	(𝑇!""#$%)	reduced	the	differences	

between	quarantine	and	symptom	monitoring,	thereby	making	the	interventions	more	
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similar.	Other	factors,	such	as	overdispersed	heterogeneity	of	the	basic	reproductive	

number	(𝜅),	did	not	influence	the	average	effect	of	symptom	monitoring	and	quarantine,	as	

reflected	by	a	coefficient	of	nearly	zero.	However,	at	a	given	effective	reproductive	number,	

overdispersion	does	decrease	the	average	number	of	generations	until	extinction,	as	

predicted	(Fig	S2)	(18).	Longer	incubation	periods	(TINC)	increased	the	preference	for	

quarantine,	as	seen	by	the	positive	partial	rank	correlation	coefficient	for	both	absolute	and	

relative	comparative	effectiveness.	However,	the	length	of	the	incubation	period	does	not	

generally	influence	comparative	effectiveness	per	quarantine	day	because	the	number	of	

days	in	quarantine	(𝑑!)	increases	as	the	incubation	period	lengthens	(Fig	S3).	 	

Frequently,	the	most	politically	and	economically	pressing	concerns	are	whether	

control	(i.e.	𝑅! < 1)	is	logistically	achievable	and	what	would	be	the	least	invasive	

intervention	to	achieve	control.	Fig	5	shows	frontiers	where	control	of	an	Ebola-like	

disease	requires	increasingly	invasive	interventions,	moving	from	health-seeking	behavior	

(teal),	to	symptom	monitoring	(gold),	to	quarantine	(blue),	the	most	invasive.	Fig	5a	shows	

how	this	frontier	is	influenced	by	the	inherent	transmissibility	(𝑅!)	and	timing	of	the	latent	

period	relative	to	the	incubation	period	(𝑇!""#$%),	with	all	other	characteristics	similar	to	

Ebola.	When	R0	is	large	and	symptoms	emerge	long	after	infectiousness	(e.g.,	𝑇!""#$% > 0),	

even	quarantine	is	insufficient	to	control	the	disease	with	optimal	intervention	

performance.	However,	we	observe	that	when	transmissibility	is	relatively	low	(e.g.,	

𝑅! < 2.5),	control	of	this	hypothetical	disease	can	be	achieved	even	if	infectiousness	

precedes	symptoms	by	several	days	(Fig	5a)	or	if	a	substantial	fraction	of	transmission	

events	occur	before	symptom	onset	(adapting	the	framework	of	(17))	(Fig	5b).		
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Ranking	of	intervention	performance	metrics	by	importance	for	containment	

feasibility	

Policy	makers	facing	an	epidemic	must	also	consider	the	expected	performance	of	

interventions,	since	the	effectiveness	of	targeted	control	policies	will	depend	on	their	

feasibility	within	a	particular	healthcare	system.	Generally,	we	found	the	benefit	of	

quarantine	over	symptom	monitoring	increases	with	better	intervention	performance	(i.e.	

larger	fraction	of	contacts	traced	(𝑃!"),	better	isolation	effectiveness	(𝛾),	and	shorter	delays	

in	tracing	a	contact	(𝐷!!)	(Fig	4).	However,	the	effectiveness	of	symptom	monitoring	

approached	that	of	quarantine	when	the	delay	between	symptom	onset	and	isolation	(𝐷!")	

is	shortened,	due	either	to	more	frequent	symptom	monitoring	or	more	sensitive	detection	

of	symptoms	followed	by	prompt	isolation.	

While	these	patterns	were	highly	consistent	across	the	case	study	diseases,	some	

intervention	performance	metrics	were	particularly	influential	in	the	presence	of	certain	

disease	characteristics.	For	example,	diseases	with	short	incubation	periods	(𝑇!"#)	such	as	

influenza	A	were	strongly	influenced	by	delays	in	tracing	a	contact	(𝐷!")	(Fig	S3).		
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DISCUSSION		

A	key	strategy	to	controlling	the	spread	of	infectious	diseases	focuses	on	tracing	the	

contacts	of	infected	individuals,	with	the	goal	of	limiting	subsequent	spread	should	those	

contacts	become	infectious.	Here,	we	present	the	first	study	comparing	the	effectiveness	of	

the	two	primary	non-pharmaceutical	interventions	targeted	via	contact	tracing:	symptom	

monitoring	and	quarantine.	We	show	that	the	interventions	are	not	equivalent	and	that	the	

choice	of	which	intervention	to	implement	to	achieve	optimal	control	depends	on	the	

natural	history	of	the	infectious	disease,	its	inherent	transmissibility,	and	the	intervention	

feasibility	in	the	particular	healthcare	setting.		

Our	results	show	that	the	benefit	of	quarantine	over	symptom	monitoring	is	

maximized	for	fast-course	diseases	(short	duration	of	infectiousness	and	a	short	latent	

period	compared	to	the	incubation	period),	and	in	settings	where	isolation	is	highly	

effective,	a	large	fraction	of	contacts	are	traced,	or	when	there	is	a	long	delay	between	

symptom	onset	and	isolation.	This	delay	(𝐷!")	not	only	captures	ineffective	symptom	

monitoring,	but	also	the	potential	for	symptoms	to	be	masked	for	a	period	of	time	through	

biological	(e.g.,	natural	disease	progression	or	self-medication	with	anti-pyretics)	or	

behavioral	(e.g.,	avoidance)	mechanisms.	In	contrast,	the	widely-discussed	“super	

spreading”	disease	characteristic	did	not	independently	impact	the	mean	comparative	

effectiveness	of	interventions	after	holding	R0	constant.	However,	this	characteristic	could	

remain	important	to	understand	disease	control	during	highly	stochastic	stages	of	

emergence	and	extinction	(Fig	S2)	(18).	Our	findings	are	consistent	with	Fraser,	Riley,	et	al.	

(17)	that	both	inherent	transmissibility	and	the	proportion	of	transmission	from	
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asymptomatically	infected	individuals	are	key	epidemiological	parameters	for	the	

feasibility	of	control	via	quarantine.	

In	addition	to	identifying	parameters	that	differentiate	quarantine	and	symptom	

monitoring,	our	results	also	characterize	parameter	spaces	where	symptom	monitoring,	

not	just	quarantine,	is	sufficient	for	containment	of	an	emerging	epidemic.	Given	the	high	

costs	and	poor	scalability	of	quarantine,	symptom	monitoring	is	likely	to	be	a	key	

intervention	for	future	epidemic	containment.		

The	CDC	has	current	legal	authority	to	quarantine	for	diseases	including	Ebola,	

SARS,	MERS,	smallpox,	and	influenza	strains	with	pandemic	potential	(12).	Our	results	

support	the	retention	of	quarantine	as	a	live-option	for	each	of	these	diseases,	but	only	if	

control	is	infeasible	through	symptom	monitoring	(i.e.	𝑅! < 1 < 𝑅!)	and	other	less-

invasive	means,	which	sometimes	include	vaccination,	prophylaxis,	and	social	distancing.	

We	find	that	the	incremental	benefit	of	quarantine	over	symptom	monitoring	is	small	for	

Ebola	and	SARS,	but	relatively	large	for	influenza,	whose	short	duration	of	infectiousness	

(𝐷!"# 	≈	1-3	days)	and	some	pre-symptomatic	infectiousness	(𝑇!""#$% < 0)	render	

symptom	monitoring	a	generally	ineffective	intervention	–	particularly	in	settings	with	

slow	contact	tracing	(𝐷!" 	>>	0)	and	symptom	identification	(𝐷!">>	0).	For	pandemic	

influenza	strains	(which	are	expected	to	have	higher	𝑅!	than	the	seasonal	influenza	strains	

shown	here)	or	if	circumstances	arise	such	that	MERS	transmissibility	increases	

substantially,	quarantine	may	be	necessary	to	achieve	control	(Fig	3B).		Note	that	CDC	

quarantine	authorities	do	not	extend	to	pertussis	and	hepatitis	A,	and	these	case	studies	

were	selected	to	demonstrate	a	broad	range	of	natural	histories	and	transmission	routes,	

including	bodily	fluid,	fecal-oral,	and	airborne,	which	will	influence	the	contact	networks	
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and	traceability	of	contacts.	In	general,	we	find	that	a	reduction	in	the	fraction	of	contacts	

who	are	ultimately	traced	will	decrease	the	preference	for	quarantine	over	symptom	

monitoring,	therefore	supporting	the	previous	findings	that	quarantine	was	inefficient	for	a	

respiratory	disease	like	SARS	(20).	

Although	our	results	focus	on	the	early	stages	of	an	outbreak,	contact	tracing,	

symptom	monitoring,	and	quarantine	are	often	key	tools	for	end-stage	epidemic	control	

and	elimination.	As	the	effective	reproductive	number	decreases	below	one	(e.g.	via	

depletion	of	susceptible	individuals,	complementary	interventions,	seasonality,	etc.),	our	

results	suggest	the	preference	for	quarantine	also	decreases	(Fig	4).	However,	one	must	

consider	aspects	such	as	geographic	containment,	public	compliance,	and,	if	the	availability	

of	resources	lags	the	epidemic	curve,	a	possible	resource-per-case	surplus	that	may	enable	

the	more	conservative	and	costly	approach	of	quarantine.	

Our	results	suggest	that	symptom	monitoring	could	effectively	control	an	outbreak	

of	a	new	Ebola-like	disease,	even	when	infectiousness	precedes	symptoms	and	

interventions	are	not	perfectly	implemented.	Because	perfect	interventions	are	not	always	

necessary,	these	results	support	the	conclusion	of	Cetron	et	al.	(21)	that	the	optimal	

containment	strategy	may	allow	“partial	or	leaky	quarantine”	in	order	to	increase	the	

fraction	of	contacts	who	participate.		

We	propose	that	the	most	influential	parameters	should	be	prioritized	for	early	

characterization	during	an	outbreak	(22)	and	should	be	modeled	with	conservative	

consideration	of	parameter	uncertainty,	including	both	real	diversity	and	measurement	

error.	Our	framework	identifies	the	key	infection-related	parameters	to	define	and	can	
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form	the	basis	of	cost-benefit	analyses.	Such	data-driven	decision-making	will	be	critical	to	

determining	the	optimal	public	health	strategies	for	the	inevitable	next	epidemic.		 	
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METHODS	

Definitions	

“Contact	Tracing”	is	the	process	of	identifying	and	assessing	people	who	have	been	

exposed	to	a	disease	(23).	Contacts	who	are	symptomatic	when	traced	are	immediately	

placed	in	isolation;	those	who	are	not	symptomatic	are	placed	under	either	quarantine	or	

symptom	monitoring.	Here,	we	model	“forward”	contact	tracing	whereby	an	infected	

individual	names	contacts	they	may	have	infected	(24).	

	 “Isolation”	is	the	separation	of	a	symptomatic	individual	believed	to	be	infected	

(23).	By	reducing	the	number	of	risky	contact	events,	isolation	reduces	disease	

transmission	when	infectiousness	coincides	at	least	partly	with	symptoms.		

	 “Quarantine”	is	the	separation	of	an	individual	who	is	believed	to	be	exposed,	but	is	

currently	not	ill	(23).	If	an	individual	becomes	symptomatic,	they	will	be	isolated	and	

receive	healthcare.	

	 “Symptom	Monitoring”	is	the	assessment	of	symptoms	at	regular	intervals	of	an	

individual	believed	to	be	exposed,	but	not	ill.	If	symptoms	are	detected,	the	individual	is	

placed	in	isolation	(23).	Although	they	may	be	encouraged	to	avoid	interpersonal	contacts,	

an	individual	under	symptom	monitoring	is	not	separated	from	others	and	therefore	does	

not	experience	a	reduction	in	risky	contacts	until	symptoms	are	detected.	

	 “Health	Seeking	Behavior”	is	the	act	of	seeking	healthcare	during	the	presentation	of	

symptoms,	leading	to	isolation.	Practically,	this	intervention	could	be	a	health	education	

campaign	that	prompts	individuals	to	self-identify	illness	and	seek	effective	isolation.	This	

intervention,	which	accelerates	isolation	in	a	manner	separate	from	contract	tracing,	

provides	a	comparative	care	standard	for	our	analysis.	
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Model		

Individuals	in	our	branching	model	progress	through	a	Susceptible-Exposed-

Infectious-Recovered	(SEIR)	disease	process.	We	focus	our	analysis	on	the	early	epidemic	

phase	of	an	emerging	infectious	disease,	assuming	no	changes	to	herd	immunity	within	the	

first	few	generations	of	transmission.		

Following	infection,	the	number	of	days	before	onset	of	infectiousness	and	onset	of	

symptoms	are	the	latent	period	and	incubation	period,	respectively	(Fig	1).	Because	

clinical	symptoms,	pathogen	concentration,	and	behavior	of	the	patient	can	change	

throughout	the	course	of	disease	(25),	we	allow	relative	infectiousness	to	vary	with	time	τ	

since	onset	of	infectiousness	(𝛽!).	The	effective	reproductive	number	in	the	presence	of	

health	seeking	behavior,	symptom	monitoring,	and	quarantine	are	respectively	RHSB,	RS,	and	

RQ.	

The	recent	SARS	and	Ebola	epidemics	highlighted	that	hospital	isolation	does	not	

always	contain	transmission;	we	therefore	allow	isolation	effectiveness	(γ)	to	vary	to	

reflect	different	settings	(17,	26,	27).	The	fraction	of	contacts	who	are	traced	(PCT)	can	be	

less	than	1,	encompassing	symptomatic	infectors	who	fail	to	recall	contacts,	asymptomatic	

“silent”	infection	events,	reluctance	to	report	contacts,	and	challenges	in	identifying	

contacts,	especially	for	airborne	transmission	routes.	Imperfections	and	uncertainties	in	

risk	profiling	can	reduce	the	fraction	of	traced	contacts	that	are	truly	infected	(PINF)	(16,	

20).	Delays	in	tracing	a	contact	(DCT)	can	arise	for	numerous	reasons,	including	intractable	

roads,	low	mobile	phone	penetration,	and	personnel	limitations.	The	delay	between	

symptom	onset	and	isolation	(DSM)	specifically	applies	to	individuals	under	symptom	
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monitoring	and	is	influenced	by	the	frequency	of	monitoring,	delays	in	recognizing	

sometimes	unreliable	clinical	features,	and	delays	in	prompt	isolation	upon	symptom	

detection.	Intervention	performance	parameter	examples	can	be	found	in	Table	1.	

	

Simulation	

We	draw	disease	characteristics	for	each	simulated	individual	from	disease-specific	

input	distributions.	During	each	hour	τ	of	infectiousness,	an	individual	infects	a	number	of	

new	individuals	drawn	from	a	Poisson	distribution	(or,	if	super-spreading	factor	𝜅 ≠ 1,	a	

negative	binomial	distribution	(18))	with	mean	equal	to	the	product	of	the	expected	

number	of	onward	infections	for	the	individual	(𝑅!)	and	the	relative	infectiousness	𝛽!	

where	 𝛽! !!"#
!!! 	=	1.	We	assume	time-varying	relative	infectiousness	follows	a	triangular	

distribution	with	time	of	peak	infectiousness	(𝜏!)	occurring	anywhere	between	the	onset	

and	end	of	infectiousness,	inclusively.	

We	record	both	the	day	of	transmission	and	the	source	of	each	new	infection	for	

each	transmission	event,	and	draw	disease	characteristics	for	each	newly	infected	

individual.	An	individual	is	identified	by	contact	tracing	with	probability	PCT	at	the	earlier	

time	of	either	when	their	infector	is	isolated	or	the	time	of	the	transmission	event	if	

infection	occurs	while	the	infector	was	isolated.	After	an	operational	lag	time	of	DCT	days,	a	

contact	is	placed	under	quarantine,	symptom	monitoring	or,	if	already	symptomatic,	

isolation.	An	individual	in	isolation	or	quarantine	has	their	infectiousness	reduced	by	a	

factor	γ	for	the	remainder	of	their	disease.	An	individual	under	symptom	monitoring	is	

isolated	DSM	days	after	symptom	onset.	A	full	description	of	the	model	process	can	be	found	

in	S1	Appendix.	
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Parameterization	

As	compared	to	characteristics	related	to	the	natural	history	of	symptoms	and	

illness,	key	aspects	of	the	natural	history	of	infectiousness	tend	to	be	harder	to	observe	and	

measure	(28).	Therefore,	we	use	a	Sequential	Monte	Carlo	particle	filtering	algorithm	(29,	

30)	to	create	a	joint	probability	space	of	the	time	offset	between	the	latent	period	and	

incubation	period	(𝑇!""#$% = 𝑇!"# − 𝑇!"#),	time	of	peak	infectiousness	(𝜏!),	and	duration	of	

infectiousness	(𝑑!"#).	From	an	uninformative	prior	distribution	of	each	parameter	

bounded	by	published	observations,	we	simulate	five	infection	generations	of	500	initial	

individuals	and	record	the	simulated	serial	interval	(i.e.,	the	time	between	symptom	onset	

in	infector-infectee	pairs).	Parameter	sets	are	resampled	with	importance	weights	

determined	by	the	degree	to	which	the	distribution	of	simulated	serial	intervals	match	

published	serial	interval	distributions,	using	the	Kolmogorov-Smirnov	test	of	the	difference	

between	cumulative	distribution	functions	(Table	2)	(31,	32).	After	perturbation,	the	

process	is	repeated	until	convergence,	which	we	define	to	be	when	the	median	

Kolmogorov-Smirnov	statistic	was	within	10%	of	the	previous	two	iterations.	This	cutoff	

criterion	balances	the	objectives	of	finding	a	stationary	posterior	set	of	particles	while	

preserving	some	of	the	heterogeneity	in	input	parameters.		

	 Holding	the	incubation	period	distribution	constant,	we	fit	an	offset	for	the	latent	

period	(𝑇!""#$%)	for	several	reasons,	including	consistency	with	CDC	methods	for	disease	

characterization	(33),	the	biological	expectation	of	these	timings	both	being	linked	to	

pathogen	load,	and	to	parsimoniously	limit	each	characteristic	to	one	interpretable	

parameter.	For	the	duration	of	infectiousness	(𝑑!"#),	we	fit	the	upper	bound	of	a	uniform	
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distribution	with	a	lower	bound	of	1	day.	To	allow	for	variable	infectiousness	during	this	

duration,	we	assume	a	triangular	distribution	of	relative	infectiousness	𝛽!	and	fit	the	time	

of	peak	infectiousness	(𝜏!).	A	full	description	of	the	model	parameterization	can	be	found	

in	the	S2	Appendix.	

	

Analysis	

Partial	rank	correlation	coefficients	are	calculated	to	identify	the	most	influential	

disease	characteristics	(e.g.	duration	of	infectiousness)	and	intervention	performance	

metrics	(e.g.	isolation	effectiveness).	In	order	to	remove	dependence	between	the	

parameters	jointly	fit	through	the	particle	filtering	method	above,	we	use	Latin	Hypercube	

Sampling	to	draw	5,000	sets	from	each	marginal	posterior	parameter	distribution	

independently.	To	maximize	coverage	of	the	parameter	space	we	allowed	fractional	

parameters	(γ,	PCT,	PINF,	𝑘)	to	range	from	0	to	1,	delays	(DCT,	DSM)	to	range	from	0	to	7	days,	

𝑅! to	range	from	1	to	5,	and	the	incubation	period	(𝑇!"#)	to	be	shrunk	by	up	to	50%	or	

stretched	by	up	to	150%.		

We	draw	1,000	samples	from	the	joint-parameter	space	from	the	particle	filtering	

method	and	measure	R0,	RQ,	RS,	and	RHSB	for	each	disease.	We	compare	the	effectiveness	of	

symptom	monitoring	and	quarantine	by	the	absolute	difference	(𝑅! − 𝑅!)	and	the	relative	

difference	(!!!!!
!!

).	We	calculate	the	number	of	days	an	infected	individual	was	in	

quarantine	but	not	yet	infectious	(𝑑!)	as	surrogate	for	the	marginal	cost	of	quarantine	over	

symptom	monitoring.	As	abstract	surrogates	for	cost-effectiveness,	we	calculate	the	

absolute	difference	per	quarantine	day	 𝑅! − 𝑅! 𝑑! 	and	relative	difference	per	
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quarantine	day	 !!!!!
!!

𝑑! 	and	present	these	results	in	Figs	S1	and	S3.	More	concrete	

measures	of	cost-effectiveness	would	require	economic	and	social	considerations	that	are	

outside	the	scope	of	this	paper.	

When	risk	profiling	is	imperfect	(i.e.	PINF	<	1),	uninfected	individuals	may	be	

mistakenly	traced	as	contacts	and	placed	under	symptom	monitoring	or	quarantine.	Such	

events	may	be	conceptualized	as	false	positives	and	will	decrease	PINF;	conversely,	

individuals	who	are	infected	but	not	traced	are	false	negatives	and	will	decrease	PCT.	We	

assume	that	non-infected	contacts	are	followed	for	a	length	of	time	set	up	the	95th	

percentile	incubation	period	(𝑇!"#!" ),	at	which	point	health	authorities	may	conclude	the	

contact	was	not	infected	after	all.	This	changes	the	number	of	days	in	quarantine	to	

𝑑! = 𝑑! + 𝑇!"#!" 1
𝑃!"# − 1 .		 	
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Fig	1.	Schematic	of	the	natural	history	of	disease	and	the	timing	of	interventions.		

Beginning	on	the	left	with	the	infection	event,	one	progress	through	a	latent	period	(TLAT)	

before	becoming	infectious	for	dINF	days	with	late	peak	infectiousness	𝜏! .	For	diseases	A,	B,	

and	C,	symptoms	are	respectively	shown	to	emerge	before,	concurrent	with,	and	after	

onset	of	infectiousness.	We	show	here	an	individual	who	is	traced	shortly	after	infection	

and	is	placed	under	symptom	monitoring	or	quarantine	after	a	short	delay	DCT.	
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Fig	2.	Model	dynamics	and	output	for	two	exemplar	diseases:	Ebola	and	influenza	A.		

Each	line	in	the	panels	(A)	and	(B)	designates	one	model	run	initiated	with	100	infectious	

individuals	in	Generation	1	and	submitted	to	either	no	intervention	(red),	health	seeking	

behavior	(teal),	symptom	monitoring	every	day	(gold),	or	quarantine	(blue)	at	Generation	

3.	Each	point	in	panels	C	and	D	designates	the	simulated	effective	reproductive	number	

from	one	model	run	with	input	reproductive	number	(x-axis)	between	1	and	5,	with	the	

small	vertical	line	denoting	the	input	R	for	panels	(A)	and	(B)	(1.83	and	1.46,	respectively).	

Loess	curves	are	shown	as	heavier	lines.	Here,	symptom	monitoring	performs	similarly	to	

quarantine	for	Ebola	control,	but	not	for	influenza	A.	Note	the	independent	y-axes.	
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Fig	3.	Infection	control	performance	depends	on	disease	biological	dynamics	and	

inherent	transmissibility	(R0).		

(A)	The	effective	reproductive	number	under	symptom	monitoring	(x-axis)	and	quarantine	

(y-axis)	for	100	simulations	of	each	disease	when	the	basic	reproductive	number	is	set	to	

published	values	[See	Panel	C,	diamonds].	Quadrants	indicate	regions	of	control	with	(I)	

neither	quarantine	nor	symptom	monitoring,	(II)	only	symptom	monitoring,	(III)	either	

quarantine	or	symptom	monitoring,	and	(IV)	only	quarantine.	(B)	As	in	(A),	but	the	basic	

reproductive	number	(𝑅!)	is	set	to	for	all	diseases	to	2.75	(±	0.25)	to	isolate	inherent	

differences	in	biological	dynamics.	(C)	Disease-specific	mean	basic	reproductive	number	

(diamond)	and	the	mean	effective	reproductive	numbers	under	symptom	monitoring	

(triangle)	and	quarantine	(circle).	The	length	of	the	horizontal	line	therefore	equals	the	

absolute	comparative	effectiveness	𝑅! − 𝑅! .	
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Fig	4.	Influence	of	disease	characteristics	and	intervention	performance	metrics.		

Partial	rank	correlation	coefficients	(x-axis)	measuring	the	influence	of	disease	

characteristics	and	intervention	performance	metric	(rows)	on	the	absolute	(red)	and	

relative	(green)	comparative	effectiveness	of	quarantine	and	symptom	monitoring,	pooled	

for	all	case	study	diseases.	The	95%	confidence	intervals	from	100	bootstrapped	samples	

are	represented	by	error	bars.	
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Fig	5.	Minimally	invasive	interventions	sufficient	to	control	a	hypothetical	disease.	

(A)	Disease	characteristics	drawn	from	Ebola	except	symptoms	are	assumed	to	either:	

precede	infectiousness	by	up	to	10	days	(X	=	-10	days);	coincide	with	infectiousness	onset	

(X	=	0	days);	or	emerge	up	to	10	days	after	infectiousness	onset		(X	=	+10	days).	Points	

represent	simulations	where	health-seeking	behavior	(teal),	symptom	monitoring	(gold),	

or	quarantine	(blue)	were	the	minimally	sufficient	intervention	to	bring	𝑅! 	below	1.	(B)	As	

in	(A),	but	the	x-axis	is	transformed	to	represent	the	proportion	of	infections	that	occur	

prior	to	symptoms	in	a	analogous	way	to	Fraser,	Riley,	et	al	2004	(17)	Interventions	are	in	

an	optimal	setting	with	all	contacts	being	traced	immediately,	no	infections	occur	during	

isolation,	and	symptom	monitoring	is	performed	twice	per	day.	
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Table	1.	Intervention	Parameters.	
	
	
	
	
	
	
	
	
	

*	The	mean	DHSB	will	equal	the	mean	dINF	reported	in	Table	2.	
	
	 	

	 Variable	 Example	Intervention	Performance	
Optimal	 High	

Isolation	Effectiveness	 γ	 1	 0.9	
Fraction	of	contacts	

traced	 PCT	 1	 0.9	

Fraction	of	traced	
contacts	who	are	truly	

infected	
PINF	 1	 0.5	

Delay	in	tracing	a	
named	contact	 DCT	

0.25	days	
±	0.25	

0.5	days	
±	0.5	

Delay	from	symptom	
onset	to	isolation	 DSM	 0.25	days	

±	0.25	
0.5	days	
±	0.5	

Delay	from	symptom	
onset	to	health	
seeking	behavior	

DHSB	
Disease-dependent.	
~unif(0,	dINF)	*	
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Table	2.	Disease	parameters	
	
	
	
	
	
	
	
	
	
	
	

Median	(Reference);	[95%	CI]	
	*	Assumed.	**	Sequential	Monte-Carlo	boundary	condition	reached	

	 Inputs	from	Published	Estimates	 Parameters	fit	via	Sequential	Monte-Carlo	method	
	 Basic	

Reproductive	
Number	
R0 

Serial	
Interval	
(days) 

Incubation	
Period 
𝑇!"# 	
(days)	

Latent	period	
offset 
𝑇!""#$%

= 𝑇!"# − 𝑇!"# 	
(days)	

Mean	duration	
of	infectiousness 
(1+ 𝑑!"#) 2	

(days)	

Time	of	peak	
Infectiousness 

𝜏! 	
(range	0-1)	

Ebola	 1.83	(34)	
[1.72,	1.94]	

13.36	(35)	
[2.66,	38.8]	

7.87	(36)	
[0.93,	28.2]	

0.33	
(0**,	1.01]	

6.53	
[1.28,	13.7]	

0.10	
[0,	0.37]	

Hepatitis	A	 2.25	*	
[2,	2.5]	

26.72	(37)	
[20.7,	33.8]	

29.11	(38)	
[24.6,	34.1]	

-5.33	
[-7.57,	-3.26]	

6.23	
[1.22,	15.8]	

0.35	
[0,	0.98]	

Influenza	A	 1.54	(39)	
[1.28,	1.80]	

2.20	(37)	
[0.63,	3.76]	

1.40	(40)	
[0.63,	3.10]	

-0.23	
[-0.76,	0.29]	

1.88	
[1.04,	3.84]	

0.49	
[0.02,	0.98]	

MERS	 0.95	(41)	
[0.6,	1.3]	

7.62	(42)	
[2.48,	23.3]	

5.20	(42)	
[1.83,	14.7]	

-1.55	
[-3.14,	0.02]	

8.35	
[1.37,	19.9]	

0.37	
[0.01	,	0.96]	

Pertussis	 4.75	*	
[4.5,	5]	

19.26	(43)	
[3.61,	57.2]	

7.00	(33)	
[4.00,	10.0]	

-2.14	
[-5.39,	0.78]	

34.38	
[2.67,	76.7]	

0.45	
[0.11,	0.88]	

SARS	 2.9	(44)	
[2.2,	3.6]	

8.32	(44)	
[1.59,	19.2]	

4.01	(40)	
[1.25,	12.8]	

0.16	
[0**,	0.67]	

10.94	
[1.50,	23.0]	

0.10	
[0,	0.46]	

Smallpox	 4.75	*	
[4.5,	5]	

15.54	(45)	
[9.98,	24.2]	

11.83	(45)	
[8.47,	16.5]	

0.03	
[-1.80,	1.68]	

8.45	
[1.37,	20.0]	

0.32	
[0,	0.97]	
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S1	Appendix.	Disease	model	

The	model	simulates	a	branching	network	of	infected	individuals	only.	An	individual	
𝑖	is	assigned	characteristics	sampled	from	distributions	defined	for	each	disease	(Table	
S1).	The	incubation	period	(𝑇!"#),	i.e.	the	time	from	infection	to	symptom	onset,	is	drawn	
from	published	distributions	(Table	2).	The	duration	of	infectiousness	(𝑑!"#),	time	of	peak	
infectiousness	(𝜏!),	and	time	offset	between	the	ends	of	the	latent	and	incubation	periods	
(𝑇!""#$%)	are	drawn	from	the	joint	posterior	distribution	generated	by	the	sequential	
Monte-Carlo	(SMC)	particle	filtering	method	described	in	S2	Appendix.	For	clarity,	we	
describe	the	method	for	an	individual	𝑖,	but	the	following	process	is	repeated	for	an	initial	
population	of	1,000	individuals	who	each	initiate	distinct	trees.	
	

The	expected	number	of	onward	infections	by	individual	𝑖,	𝑅!! ,	is	distributed	over	
each	hour	𝜏	of	disease	𝑅!! = 𝛽!!𝑅!! ,	where	𝛽!! 	is	the	relative	infectiousness	of	individual	𝑖	
on	hour	𝜏	such	that	 𝛽!! = 1!!"#

!!! 	(Fig	S6).	For	parsimony	and	ease	of	interpretation,	we	
assume	𝛽!! 	follows	a	discretized	triangle	distribution	with	a	peak	value	at	time	𝜏! 	drawn	
from	the	SMC	posterior	and	rounded	to	the	nearest	hour.		When	0 < 𝜏! < 𝑑!"# ,	𝛽!! 	is	
defined	by	a	piecewise	function	according	to	whether	𝜏	is	in	the	period	before	the	peak	of	
infection	(𝜏 ≤ 𝜏!)	or	τ	is	after	the	peak	of	infection:	
	

𝛽!! =

𝜏
𝜌  , 𝑖𝑓 𝜏 ≤ 𝜏!

𝜔 𝑑!"# − 𝜏 + 1
𝜌  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.	

Infectiousness	after	the	peak	is	scaled	by	𝜔,	which	is	the	slope	of	the	post-peak	
infectiousness	line:	

𝜔 =
𝜏!

𝑑!"# − 𝜏!
.	

In	order	to	normalize	𝛽!! 	to	sum	to	1,	each	piecewise	component	is	divided	by	𝜌,	
which	is	defined	as	the	sum	of	infectiousness	before	the	peak	and	after	the	peak:	

𝜌 = 𝜏

!!

!!!

+ 𝜔 𝑑!"# − 𝜏 + 1
!!"#

!!!!!!

.	

	 	
Under	the	simple	conditions	of	linearly	increasing	or	decreasing	infectiousness,	𝛽!! 	

is	respectively	defined	by	

𝛽!! =

2 𝜏 − 0.5
𝑑!"#

! , 𝑖𝑓 𝜏! = 0

2 𝑑!"# − 𝜏 + 0.5
𝑑!"#

! , 𝑖𝑓 𝜏! = 𝑑!"#
.	

	
	 The	total	number	of	infections	(𝑁!)	generated	by	individual	𝑖	is	drawn	from	a	
negative	binomial	distribution	with	mean	equal	to	the	total	expected	number	of	infections		
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(𝐸 𝑁! = 𝑅!!)	generated	by	individual	𝑖	and	dispersion	factor	𝜅.	If	𝜅 = 1,	the	negative	
binomial	distribution	reduces	to	a	Poisson	distribution	with	rate	𝜆 = 𝑅!! .	If		𝜅 < 1,	the	
number	of	infections	generated	per	case	will	be	overdispersed	to	simulate	super-spreading	
(Fig	S5).	

If	individual	i	generates	infections	(i.e.,	𝑁! > 0),	then	each	infection	generated	is	
assigned	to	a	particular	time	𝜏	drawn	from	a	random	sample	𝜏 𝜖 0,1,… ,𝑑!"#! 	that	is	
weighted	by	𝑅!! 𝑅!! 	so	that	hours	of	high	infectiousness	are	more	likely	to	have	larger	
values	of	𝑁!! .	Therefore,	each	individual	i	has	a	vector	of	 𝑁!! ,𝑁!! ,… ,𝑁!!"#! 		of	onward	
infections	that	occur	during	each	hour	𝜏	of	their	infectiousness.	

A	new	individual	𝑗	is	generated	for	each	onward	infection	𝑁!! ≥ 1.	Disease	
characteristics	for	individual	𝑗	are	drawn	as	above	and	are	set	to	begin	at	the	time	of	
infection	of	individual	j.	

Each	individual	j	will	be	traced	with	probability	𝑃!" .	If	traced,	individual	𝑗	is	placed	
under	symptom	monitoring	or	quarantine	after	an	operational	lag	time	of	𝐷!" 	days.	The	lag	
time	occurs	after	the	earlier	of:		(1)	isolation	of	individual	i	or	(2)	removal	of	individual	i	
from	the	disease	system	upon	recovery	or	death.	We	assume	individuals	granted	access	to	
the	quarantine	or	isolation	room	will	be	logged	and	given	the	same	attention	as	contacts	
traced	through	epidemiological	interview	and	will	therefore	will	begin	monitoring	or	
quarantine	at	the	time	of	the	infection	control	breach	or	transmission	event.	
	 Next	we	determine	the	time	of	isolation	for	individual	𝑗.	If	time	of	symptom	onset	
for	individual	𝑗	occurs	before	individual	𝑗	is	traced,	individual	𝑗	is	immediately	isolated.	
Otherwise,	time	of	isolation	for	individual	𝑗	depends	on	whether	symptom	monitoring	or	
quarantine	is	used.	Under	symptom	monitoring,	isolation	of	individual	𝑗	occurs	a	delay	𝐷!" 	
days	after	symptom	onset.	Note	that	for	contacts	checked	twice-daily,	𝐷!"~unif(0, 0.5).	
Upon	isolation,	the	hourly	expected	number	of	onward	infections	is	reduced	to	𝑅!! =
(1− 𝛾)𝛽!!𝑅!! 	where	𝛾	is	effectiveness	of	isolation	with	support	 0, 1 .	If	individual	𝑗	is	
under	quarantine,	then	𝑅!! 	is	reduced	by	(1− 𝛾)	beginning	at	the	time	individual	𝑗	is	
traced.	 	
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S2	Appendix.	Parameterization	via	Sequential	Monte	Carlo	
	

We	used	the	following	method	to	generate	parameter	sets	that	are	consistent	with	
the	published	serial	interval	and	incubation	period	distributions	for	each	case	study	
disease.	The	objective	of	this	procedure	is	not	explicitly	parameter	inference,	for	which	raw	
data	and	disease-specific	nuance	is	necessary,	but	rather	a	range	of	parameters	to	reflect	
the	heterogeneity	of	each	disease	in	a	common	framework.	Data-informed	incubation	
period	and	serial	interval	distributions	were	collected	through	a	literature	review.	
Sequential	Monte-Carlo	(also	known	as	particle	filtering)	methods	were	used	to	estimate	
the	joint	distribution	of	three	disease	parameters	(𝑇!""#$% ,	𝑑!"# ,	and	𝜏!)	using	knowledge	
of	the	incubation	period	and	serial	interval	distributions	[28,29].	

Here	we	assume	that	the	latent	period	for	an	individual	ends	some	time	(𝑇!""#$%)	
before	(TOFFSET	<	0)	or	after	(TOFFSET	>	0)	the	onset	of	symptoms.	Therefore,	𝑇!""#$% 	is	a	
translation	of	the	incubation	period	distribution.	We	assume	a	uniform	distribution	of	
duration	of	infectiousness	from	1	day	to	𝑑!"# ,	by	hour.	We	assume	the	distribution	of	
relative	infectiousness	to	follow	a	triangle	distribution	with	a	peak	at	time	𝜏! ,	which	ranges	
from	0	(indicating	infectiousness	is	linearly	decreasing)	to	1	(indicating	infectiousness	is	
linearly	increasing).	

The	steps	are	as	follows:	
	

i. Use	the	“lhs”	package	in	R	to	create	a	Latin	Hypercube	sample	of	1000	
parameter	sets	𝛩!,𝛩!,… ,𝛩!"""	consisting	of	𝑇!""#$% ,	𝑑!"# ,	and	𝜏! ,	which	
are	bounded	by	the	range	of	the	parameter	values	found	in	the	
literature	(Table	2),		

ii. Draw	a	parameter	set	𝛩! = 𝛩!		
iii. Under	parameter	set	𝛩! ,		run	the	branching	epidemic	model	beginning	

with	500	distinct	infections	under	a	situation	with	no	interventions.	
iv. Use	the	two-sample	“ks.test”	function	in	R	to	calculate	the	Kolmogorov-

Smirnov	(𝐾𝑆!)	test	statistic	comparing	the	empirical	distribution	of	
simulated	serial	intervals	to	the	published	serial	interval	distribution	
(Fig	S4).	

v. Repeat	steps	(iii-iv)	for	each	parameter	set	𝛩! =  𝛩!,𝛩!,… ,𝛩!""".	
vi. Set	an	adaptive	threshold	KS*	equal	to	80%	of	the	maximum	𝐾𝑆! 	among	

the	1000	parameter	sets	above.	
vii. Create	a	set	of	1000	Θcandidate	parameter	sets	by	selecting	a	weighted	

sample	with	replacement	from	all	parameter	sets	𝛩! 	with	KSi	≤	KS*.	
Weights	are	proportional	to	 !

!"!
.	

viii. Perturb	each	Θcandidate	by	between	0%	and	2%	(uniformly)	of	the	initial	
parameter	value	range.	

ix. Repeat	steps	(ii)-(viii)	until	the	median	KS	is	within	10%	of	each	of	the	
previous	two	rounds.		

		
	 It	is	widely	known	that	generation	intervals	are	difficult	to	observe	in	nature,	but	
challenges	also	arise	in	measurements	of	generation	intervals	in	simulations.	For	example,	
generation	time	distributions	may	change	over	the	course	of	an	epidemic	due	to	depletion	
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of	the	susceptible	individuals	(1).	Analogous	to	the	approach	of	(2),	our	method	of	direct	
observation	of	simulated	serial	intervals	is	restricted	to	the	exponential	growth	period	of	
an	epidemic,	as	produced	by	a	branching	model.	However,	the	potential	for	the	length	of	
generation	intervals	to	be	under-estimated	near	the	peak	of	an	epidemic	can	cause	a	
downward	bias	in	the	published	serial	intervals	upon	which	our	parameterization	methods	
are	based	(2,	3).	Therefore,	this	downward	bias	can	result	in	a	bias	towards	“faster”	disease	
parameters	(namely,	a	leftward	bias	in	𝑇!""#$% ,	𝑑!"# ,	and	𝜏!).	Such	a	bias	would	reduce	the	
simulated	effectiveness	of	all	interventions	considered	in	this	paper.	
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Fig	S1.	Relative	comparative	effectiveness	and	cost-effectiveness.	The	relative	

comparative	effectiveness	varies	widely	by	disease,	with	quarantine	reducing	𝑅!	by	>65%	

for	influenza	A	and	hepatitis	A	and	by	<10%	for	pertussis.	However,	due	to	a	much	shorter	

incubation	period	of	influenza	A	versus	hepatitis	A	(Table	2),	the	relative	cost-

effectiveness	measured	by	the	reduction	per	day	of	quarantine	(outlined	bars)	is	

substantially	higher	for	influenza	A	than	hepatitis	A.		
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Fig	S2.	Number	of	generations	until	extinction	decreases	in	the	presence	of	

overdispersion.	As	the	dispersion	factor	(k)	decreases	(i.e.,	creating	more	super-

spreading),	the	average	number	of	generations	(red	square)	before	extinction	of	a	single	

infectious	case	with	an	R0	of	0.75	is	1.43	for	k=1,	0.26	for	k=0.1,	and	0.036	for	k=0.01.	Each	

point	indicates	the	number	of	generations	(y	axis,	jittered	for	visibility)	until	a	transmission	

tree	initiated	by	a	single	case	is	contained.	95%	confidence	intervals	shown	in	brackets.	
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Fig	S3.	Partial	rank	correlation	coefficients	for	all	outcomes.	Partial	rank	correlation	

coefficients	(x-axis)	measuring	the	influence	of	disease	characteristics	and	intervention	

performance	metrics	(rows)	on	the	impact,	comparative	effectiveness,	and	comparative	

cost-effectiveness	of	the	interventions	under	study.	Disease-specific	estimates	are	shown	

with	colored	bars	and	pooled	estimates	with	larger	grey	bars.	For	example,	increasing	the	

delay	in	tracing	a	named	contact	DCT	has	a	generally	small	effect	negative	effect	on	RS-RQ	

when	pooled	across	diseases	(large	grey	bar),	but	for	influenza	A	specifically	(purple	bar),	

DCT	has	a	rather	large	negative	effect	on	RS-RQ.	Note	that	pooled	estimates	for	comparative	

cost-effectiveness	are	not	available	due	to	non-monotonic	relationships	across	diseases.	
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Fig	S4.	Demonstration	of	the	Kolmogorov-Smirnov	distance	for	SMC	paramterization	

method.	The	parameter	set	in	Panel	A	generates	serial	intervals	(bars,	blue	line)	that	are	

poorly	explained	by	the	reference	serial	interval	distribution	(green	line),	generating	a	KS	

score	of	0.25.	A	later	iteration	of	the	SMC	algorithm	generated	parameter	set	(B)	in	which	

the	generated	serial	intervals	are	more	consistent	with	the	reference	serial	interval	(same	

green	line).	
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Fig	S5.	Demonstration	of	overdispersion	parameter	(k).	In	a	system	with	100,000	

agents,	as	the	dispersion	parameter	(k)	decreases	(i.e.,	creating	more	super-spreading),	the	

variance	of	the	number	of	infections	generated	by	each	infectious	individual	increases	

while	the	mean	is	approximately	constant	at	the	input	value	of	2.	
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Fig	S6.	Distribution	of	Infectiousness.	Key	time	points	in	the	distribution	of	

infectiousness	include	the	peak	(𝜏!)	and	duration	(𝑑!"#)	of	infectiousness.	
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