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Abstract 

Background: The potential of Mendelian Randomization studies is rapidly expanding due to 

(i) the growing power of GWAS meta-analyses to detect genetic variants associated with 

several exposures, and (ii) the increasing availability of these genetic variants in large-scale 

surveys. However, without a proper biological understanding of the pleiotropic working of 

genetic variants, a fundamental assumption of Mendelian Randomization (the exclusion 

restriction) can always be contested. 

Methods: We build upon and synthesize recent advances in the econometric literature on 

instrumental variables (IV) estimation that test and relax the exclusion restriction. Our 

Pleiotropy-robust Mendelian Randomization (PRMR) method first estimates the degree of 

pleiotropy, and in turn corrects for it. If a sample exists for which the genetic variants do not 

affect the exposure, and pleiotropic effects are homogenous, PRMR obtains unbiased estimates 

of causal effects in case of pleiotropy. 

Results: Simulations show that existing MR methods produce biased estimators for realistic 

forms of pleiotropy. Under the aforementioned assumptions, PRMR produces unbiased 

estimators. We illustrate the practical use of PRMR by estimating the causal effect of (i) 

cigarettes smoked per day on Body Mass Index (BMI); (ii) prostate cancer on self-reported 

health, and (iii) educational attainment on BMI in the UK Biobank data.  

Conclusions: PRMR allows for instrumental variables that violate the exclusion restriction due 

to pleiotropy, and corrects for pleiotropy in the estimation of the causal effect. If the degree of 

pleiotropy is unknown, PRMR can still be used as a sensitivity analysis. 
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Key messages: 

 If genetic variants have pleiotropic effects, causal estimates of Mendelian 

Randomization studies will be biased. 

 Pleiotropy-robust Mendelian Randomization (PRMR) produces unbiased causal 

estimates in case (i) a subsample can be identified for which the genetic variants do not 

affect the exposure, and (ii) pleiotropic effects are homogenous. 

 If such a subsample does not exist, PRMR can still routinely be reported as a sensitivity 

analysis in any MR analysis. 

 If pleiotropic effects are not homogenous, PRMR can be used as an informal test to 

gauge the exclusion restriction. 
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Introduction 

Establishing causal effects of treatments or exposures on behavioral and disease 

outcomes is of great public health importance.1 The practice of “Mendelian 

Randomization” (MR) uses genetic variants as instrumental variables (IV) for a certain 

modifiable exposure in order to estimate the causal effect of that exposure on a certain 

disease or other outcome.2,3 This method has the potential to overcome the traditional 

biases due to confounding and reverse causality that plague observational studies.4 The 

past decade has seen increasing interest in MR,4,5,6,7 and its potential is rapidly 

developing through the increasing number of Genome-Wide Association Studies 

(GWAS) that find robust associations between genetic variants and exposures of 

interest.8,9 

The assumptions of MR have been discussed extensively2,10,11,12,13, and the 

advantages and disadvantages of MR are heavily debated.14,15 Recently, there has been 

much progress in dealing with the disadvantages of MR, yet the critical assumption 

remains the exclusion restriction: the proposed IV (genetic variant) should not directly 

affect the outcome.14,15 While this assumption can be contested in any IV approach, the 

assumption is even more critical in the context of MR, since the biological working of 

genes is usually poorly understood.13,16  

In particular, more and more studies show how the same genetic variant affects 

multiple outcomes through different biological pathways, a phenomenon known as 

biological (or horizontal) pleiotropy17, and this violates the exclusion restriction. In 

contrast, mediated (or vertical) pleiotropy, in which a genetic variant is associated with 

a certain phenotype and this phenotype is causal for a second phenotype, is not 
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problematic.4 Therefore, we will only focus on biological pleiotropy, for brevity 

“pleiotropy” from here.  

In response to the possible problem of pleiotropy, a couple of MR approaches 

have been proposed. Davey Smith and Hemani suggest using multiple genetic variants 

consecutively as IV, and argue that it is increasingly unlikely that 2, 3 or 4 different 

genetic variants produce the same estimate of the causal effect.4 While an appealing 

argument, this approach still hinges critically on the assumption that at least some of 

the genetic variants do not violate the exclusion restriction. Moreover, this informal test 

cannot discriminate between violations of the exclusion restriction and heterogeneous 

causal effects.18 Kang et al. propose a method that produces valid estimates in case at 

least 50% of the combined instrument strength across all variants originates from 

variants that satisfy the exclusion restriction.19 While helpful, it is generally not possible 

to distinguish the valid IVs from the invalid IVs in case the estimates based on different 

sets of IVs diverge.20 Moreover, this approach, like the weighted median estimator21, 

still requires some of the genetic variants to satisfy the exclusion restriction. 

Bowden et al. propose to apply an Egger regression to Mendelian Randomization 

estimates.20 The idea is that a violation of the exclusion restriction leads to a bias of the 

MR estimate that is inversely proportional to the first-stage coefficient of the IV on the 

exposure. Under the assumption that, across all genetic variants, the effect of the IV on 

the outcome and the effect of the IV on the exposure are uncorrelated (“InSIDE 

assumption”), this implies that IVs with a stronger effect on the exposure should give 

less-biased MR estimates. A regression of the MR estimates on the first stage 

coefficients including an intercept then provides a consistent estimate of the causal 

effect. As acknowledged by the authors, this InSIDE assumption cannot be tested and 
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may not hold if the genetic variants used as IVs are correlated with confounders of the 

association between exposure and outcome. 

In this paper we build upon, and combine, two recent advances in the econometric 

literature on IV estimation that test and relax the exclusion restriction. We introduce 

the “plausibly exogenous” method22 in MR research to account for pleiotropy. Two 

studies have previously noticed the possibility of applying this method as a sensitivity 

analysis in the context of MR,12,23 but both papers do not provide any guidance on how 

to choose the essential input parameters. Our innovation is that we combine this method 

with another stream of econometric research that designs auxiliary regressions to test 

for violations of the exclusion restriction.24,25,26 The intuition is that in a subsample for 

which the first stage (that is, the effect of the IV on the exposure) is zero, the reduced 

form (that is, the effect of the IV on the outcome) should be zero too in case the 

exclusion restriction is satisfied. While traditionally used merely as a test of the 

exclusion restriction, there is no earlier notion that the reduced-form estimate obtained 

in this subsample is exactly the input required for the “plausibly exogenous” method. 

We term the synthesis of these techniques Pleiotropy-robust Mendelian Randomization 

(PRMR). 

Simulation results show that if a sample exists for which the first stage is zero, 

and the pleiotropic effects are homogenous, it is possible to obtain unbiased estimates 

of causal effects using PRMR, even when all genetic instruments violate the exclusion 

restriction. We empirically illustrate our method by estimating the effect of (i) the 

number of cigarettes smoked per day on body mass index (BMI), (ii) prostate cancer 

on subjective health evaluations, and (iii) educational attainment on BMI. 
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Methods 

Mendelian Randomization 

In the general case, one is interested in the causal effect β of a certain exposure X 

on an outcome Y. The idea of MR is that there is a vector of genetic variants G (usually 

single nucleotide polymorphisms (SNPs), an allele score, or polygenic score) that is 

known to be correlated with the exposure X, but is assumed to be uncorrelated with 

other (unobserved) determinants of the outcome Y. Consider the equations (we follow 

the notation of Bowden et al.20 in matrix notation here) 

   YGXY         (1) 

   XGX          (2) 

where 𝜀𝑌and 𝜀𝑋  are composite error terms including unobserved confounders U. 

The assumptions of MR are (see Figure 1 for a graphical exposition):12,13,16 

1. Relevance: The genetic variants G have an effect on the exposure X: γ ≠ 0. 

2. Independence: The genetic variants G are uncorrelated with any confounders 

of the exposure-outcome relationship. 

3. Exclusion restriction: The genetic variants G affect the outcome Y only 

through the exposure X: α = 0. 

The use of genetic variants as IV has at least two very attractive properties. First, 

publicly available GWAS results make it relatively straightforward to select genetic 

variants G for which γ ≠ 0, i.e. genetic variants that are robustly associated with the 

exposure of interest. Second, given that genetic variants are randomly distributed at 

conception, conditional on population stratification variables or family-specific effects, 

it is usually plausible that the independence assumption holds.27 
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The exclusion restriction is widely acknowledged as the most problematic 

assumption of MR.14,15 In particular, the existence of pleiotropy would lead to a 

violation of the exclusion restriction, and α ≠ 0 in equation (1). In traditional MR it is 

assumed however that α is equal to 0, which leads to biased estimates of β, the causal 

effect of interest, in case pleiotropy is present. Moreover, this bias gets amplified by 

the typically low explanatory power of the genetic variants for the exposure.28 

(Figure 1 here) 

Pleiotropy-robust Mendelian Randomization (PRMR) 

In the “plausibly exogenous” method22 the assumption that α = 0 is relaxed, and 

replaced by a user specified assumption on the plausible value, range or distribution of 

α. When the prior on α follows a Normal distribution with mean 𝜇𝛼 and variance  , 

and the uncertainty about α reduces with the sample size (i.e., “local-to-zero”), then the 

estimate of the causal effect β in equation (1) is given by: 

 'MRV,~ˆ AAAN      (3) 

Where N() indicates the Normal distribution,     GXXGGGGXA ''''
11 

 , and β and 

VMR are the traditional MR point estimate and variance-covariance matrix, respectively. 

The plausibly exogenous method on itself, however, provides no guidance on the value 

or distribution of α. 

We can, however, estimate the value of α if there is a population subgroup for 

which the first stage is known to be zero. A recent stream of econometric research 

emphasizes the identification of these subgroups to test the exclusion restriction.24,25,26 

An early example is Altonji et al. (2005)24, who investigate the validity of the 

instrument ‘being Catholic’ to study the effect of attending a Catholic high school on a 

wide variety of outcomes. They identify a subsample of public eighth graders among 
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which practically nobody subsequently attends a Catholic high school. Hence, among 

this subsample the first stage is zero, and any association between the IV (being 

Catholic) and the outcome reflects a direct effect, indicating a violation of the exclusion 

restriction. 

While this strategy is so far exclusively used as a test of the exclusion restriction, 

our observation is that the result of this auxiliary regression is exactly the required input 

for the “plausibly exogenous” method. Consider the reduced form equation that is 

obtained by substituting (2) into (1): 

   XYGY       (4) 

In a subsample for which the first stage is zero (γ = 0), the reduced form coefficient of 

the genetic variant is an estimator for α. 

Practically, we suggest first estimating the reduced-form (4) in a sample for which 

γ = 0, to obtain estimates 𝜇𝛼 = 𝛼̂  and  equal to the squared standard error of 𝛼̂. 

Thereafter, plug in 𝜇𝛼  and  into the plausibly exogenous equation (3), to obtain 

estimates of the causal effect of interest 𝛽. The estimator is easy to obtain in standard 

software. For example, the user-written command “plausexog” is readily available in 

STATA.29 While the plausibly exogenous method has been originally developed for 

continuous outcomes, it is also valid for binary outcomes in as far one is willing to 

estimate linear probability models for binary outcomes. 

Simulation 

We present a simulation study to illustrate the performance of regular MR through 

Two-Stage Least Squares (2SLS), the Inverse Variance Weighting (IVW) method30, 

MR-Egger regression, and PRMR. Following Bowden et al. (2015)20, we consider the 
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following four scenarios with varying violations of the MR assumptions (see the 

appendix for more details): 

1. No pleiotropy 

2. Balanced pleiotropy, InSIDE satisfied (α parameters take positive and 

negative values, but are independent of the first stage parameters γ) 

3. Directional pleiotropy, InSIDE satisfied (α parameters take only positive 

values, but are independent of the first stage parameters γ) 

4. Directional pleiotropy, InSIDE not satisfied (α parameters take only 

positive values and are correlated with the first stage parameters γ) 

As in Bowden et al. (2015) we assume that all of the SNPs violate the exclusion 

restriction in scenarios 2-4, and so we do not consider methods that require at least 50% 

of the SNPs to be valid. In all scenarios, we use a sample size of 1,000; 10,000 

simulation runs; 25 genetic variants with minor allele frequency 0.30; and a causal 

effect β of 0.00 and 0.05. 

(Table 1 here) 

The simulation results show that in a one-sample setting 2SLS and IVW produce 

very similar results, and that in case of no pleiotropy and balanced pleiotropy all 

methods give average estimates of β (almost) equal to the true value. With directional 

pleiotropy (both when InSIDE is satisfied and violated), the average estimates are 

biased away from the true value for 2SLS and IVW. MR-Egger performs slightly better, 

but still produces biased estimates. Not surprisingly, when the nature of pleiotropy is 

known, PRMR gives unbiased estimates. We acknowledge however that both 

deviations from homogenous pleiotropic effects, and non-zero first-stage coefficients 
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among the subsample for which the first stage should be zero, would produce biased 

estimates for α, and in turn the causal effect β. 

Examples 

To illustrate our approach, we exploit genetic data from the interim release of the 

UK Biobank31 to study (i) the effect of the number of cigarettes smoked per day (CPD) 

on BMI; (ii) the effect of prostate cancer on subjective health evaluations; and (iii) the 

effect of educational attainment on BMI. Following recommendations from the 

genotyping center, we restrict the analyses in the UK Biobank to 112,338 (52,53% 

female) conventionally unrelated individuals with “White British” ancestry.32 We use 

the first 15 principal components (PCs) of the genetic relatedness matrix as provided 

by UK Biobank to further control for population stratification.32,33 All individuals are 

born between 1934 and 1970. For individuals with missing information on a specific 

SNP, we impute the mean genotype from the sample. For all measures, we use reported 

values from the first interview round. 

The effect of Cigarettes per Day on BMI 

The relationship between smoking and BMI has received considerable attention 

in the literature34,35,36,37,38, and from these studies Wehby et al. (2012)37 used MR to 

assess the causal effect of CPD on BMI. In existing GWAS, the SNPs that are robustly 

associated with smoking measures can mostly be traced back to nicotine dependence.39 

This provides a context to apply PRMR: after all, the development of nicotine 

dependence requires initiating smoking in the first place. Hence, the group of never 

smokers provides a subsample among which the SNPs do not have an effect on CPD, 

and we can use this subsample to estimate the direct effect of the SNPs on the outcome 

measure BMI. 
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As instrument we use standardized values of rs12914385, the SNP with the 

strongest statistical association with CPD from the only locus found to be associated 

with CPD in the GWAS from the Tobacco and Genetic Consortium.40 CPD is measured 

as number of cigarettes currently smoked per day, and BMI is measured in kg/m2. OLS 

results suggest a positive association between CPD and BMI (0.05, p = 1.90×10-17). 

The first stage regression of CPD on the SNP shows a strong positive association 

(p = 3.64×10-16, F = 66.47). Among never-smokers, the SNP has a very modest positive 

association with BMI (0.01, p = 0.44). In contrast, among current-smokers, there is a 

strong negative association with BMI (-0.16, p = 8.49×10-5). This provides evidence 

that the exclusion restriction is satisfied, and regular MR can be applied. The 2SLS 

results indicate a negative causal effect of CPD on BMI (-0.24, p = 3.50×10-3), 

suggesting an effect of CPD on BMI in the opposite direction of the OLS estimate. 

The effect of Prostate Cancer on Self-reported Health 

Earlier studies have reported on the effect of (prostate) cancer on health 

outcomes41,42,43, yet none of these studies used Mendelian Randomization. Al Olama et 

al. (2014)44 find 12 autosomal SNPs to be related to prostate cancer at genome-wide 

significance level among individuals from European descent. Since prostate cancer 

naturally is only a risk factor among males, the first stage (that is, the effect of genetic 

variants on prostate cancer) among females is zero. As a result, the effect of a genetic 

variant associated with prostate cancer on a certain outcome among females may be 

used as a reasonable estimate for α. 

UK Biobank contains a self-report about whether a person was told by a doctor 

to have prostate cancer (1) or not (0). Subjective health is measured on a four-point 

scale ranging from Excellent (4), via Good (3) and Fair (2), to Poor (1). We build an 

allele score for prostate cancer using the results from the GWAS on prostate cancer,44 
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since the allele score has more power than using the individual SNPs.45,46,47 10 out of 

the 12 SNPs are available in the genetic data of UK Biobank. The allele score has been 

standardized to have mean 0 and standard deviation 1. 

An OLS regression of subjective health on prostate cancer among males reveals 

that prostate cancer is negatively associated with subjective health (-0.17, p = 9.17×10-

11), and a regression of prostate cancer on the allele score shows that the allele score is 

positively associated with prostate cancer (p = 2.45×10-3, F = 9.21). A standard 2SLS 

regression with the allele score as instrument for prostate cancer produces a large 

negative effect of prostate cancer on subjective health (-1.26), but p = 0.54. 

Using PRMR, we find that the allele score is negatively associated with subjective 

health among females (-0.009, p = 1.81×10-3), and this reduced form estimate is even 

larger in absolute terms than among males (-0.002, p = 0.53). This suggests that the 

exclusion restriction is violated and that the MR results are biased. When we plug in 

the reduced form estimate among females in the plausibly exogenous method we find 

that the effect of prostate cancer on subjective health is estimated to be positive (4.53) 

among males, but this estimate is implausibly large and surrounded by a large 95% 

confidence interval (-0.88 to 9.94, p = 0.10). Hence, we cannot reject a zero effect of 

prostate cancer on self-reported health. 

The effect of Educational Attainment on BMI 

The education-health gradient is well-documented and one of the most robust 

findings in social science.45,49 Several studies reported before on the causal effect of 

educational attainment on BMI, with mixed findings, and apart from one study 

investigating the reverse effect of BMI on educational attainment50, none of them used 

Mendelian randomization.51,52,53,54,55,56 
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Educational Attainment (EA) is constructed as years of education, similar as in 

the recent Educational Attainment GWAS (the UK Biobank data is used as out-of-

sample replication sample in that study).57 For educational attainment, we build an 

allele score from the 74 SNPs identified found to be associated with EA.57 Of these 74 

SNPs, 72 are available in UK Biobank. 

An OLS regression of BMI on EA reveals that EA is negatively associated with 

subjective health (-0.11, p = 9.20×10-308), and a regression of EA on the allele score 

shows that the allele score is positively associated with EA (p = 4.10×10-122, 

F = 552.12). A standard 2SLS regression with the allele score as instrument for EA 

provides a negative estimate (-0.39) for the causal effect of EA on BMI, with 

p = 9.63×10-21. However, it is likely that the exclusion restriction is violated, since the 

allele score for EA is, conditional on population stratification controls, gender, and birth 

year, positively associated with birth weight (0.01, p = 0.04), a known confounder of 

the relationship between EA and BMI.58 

In contrast to the previous examples, here it is difficult to find a subsample for 

which the first stage is zero. Therefore we illustrate how PRMR can be used as a 

sensitivity analysis to determine how strong the violation of the exclusion restriction 

should be to render the causal effect β to be 0. Since one usually selects SNPs as IV for 

their association with the exposure rather than the outcome, it seems plausible that, in 

absolute value, the standardized first stage effect of the IV on the exposure, γ, is larger 

than the standardized direct effect of the IV on the outcome, α. Therefore, we define 

the proportion 0 ≤ λ ≤ 1, we set 𝜇𝛼 equal to λ𝛾, and the variance   equal to the squared 

standard error of 𝛾. Subsequently, we apply equation (3) for different values of λ to find 

for which λ the corresponding β equals 0. When the first stage estimate has the opposite 
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sign of the direct effect estimate, one needs to change the sign of 𝛾 in this sensitivity 

analysis. 

In our case, the first stage effect (allele score on EA) has plausibly the opposite 

sign of the direct effect (allele score on BMI) and hence we set 𝜇𝛼 equal to -λ𝛾. The 

resulting estimates for β are plotted in Figure 2 as a function of λ. The estimate in case 

of λ = 0 corresponds to the MR point estimate, but the 95% confidence interval is a little 

wider because 0 . Moving along the x-axis, the causal effect of EA on BMI is 

estimated to be 0 when λ = 0.41, and the 95% confidence interval includes 0 already 

when λ = 0.29. Hence, a relatively mild violation of the exclusion restriction – 29% of 

the first-stage effect – implies that we cannot reject a zero effect of EA on BMI, 

producing at best weak evidence that EA causally reduces BMI. 

(Figure 2 here) 

Conclusion 

The fact that the pleiotropic effects of genes are poorly understood makes it 

difficult to use genetic variants as credible instrumental variables in Mendelian 

Randomization. In this paper we argued that if (i) one can identify a subsample for 

which genetic variants do not have an effect on the exposure, and (ii) pleiotropic effects 

are homogenous, PRMR provides a way to deal with violations of the exclusion 

restriction due to pleiotropy, and opens the door for several applications in 

epidemiology and social science research. 

A simulation study showed that PRMR clearly outperforms existing methods in 

case of violations of the exclusion restriction. We illustrated our PRMR approach by 

estimating the causal effect of cigarettes smoked per day on BMI, and the effect of 
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prostate cancer on subjective health evaluations. In those two cases it is possible to 

identify subsamples where the effect of SNPs on the exposure are zero (never smokers 

and females, respectively), and this allows estimating, and if necessary correcting for, 

the pleiotropic effect.  

We acknowledge that the two requirements for PRMR are not always satisfied. 

Yet, even if one is not willing to make the assumption of homogenous pleiotropic 

effects, one can still use the subsample without an effect of the genetic variants on the 

exposure as a useful test of the exclusion restriction. Moreover, if one cannot identify 

a subsample without a first stage, as we illustrated for the estimation of the effect of 

education on BMI, PRMR still allows for an informative sensitivity analysis that could 

routinely be applied in all MR analyses. 
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Tables 

Table 1. Performance of Two-stage-least-squares (2SLS), Inverse-variance weighting (IVW), MR-Egger regression and PRMR in simulation study for one-

sample Mendelian randomization with a null (β = 0.00) and a positive (β = 0.05) causal effect. 

  Mean estimate 

 Scenario 2SLS IVW MR-Egger PRMR 

β = 0.00     

 1: No pleiotropy, InSIDE satisfied 0.00 0.00 0.01 0.00 

 2: Balanced pleiotropy, InSIDE satisfied  0.00 0.00 0.01 0.00 

 3: Directional pleiotropy, InSIDE satisfied  0.04 0.04 0.01 0.00 

 4: Directional pleiotropy, InSIDE violated  0.13 0.13 0.04 0.00 

β = 0.05     

 1: No pleiotropy, InSIDE satisfied 0.05 0.05 0.06 0.05 

 2: Balanced pleiotropy, InSIDE satisfied 0.05 0.05 0.06 0.05 

 3: Directional pleiotropy, InSIDE satisfied 0.09 0.09 0.06 0.05 

 4: Directional pleiotropy, InSIDE violated 0.18 0.18 0.09 0.05 
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Figure 1. Illustrative diagram showing the standard MR model with its assumptions. The 

genetic effect of instrumental variable Gj on exposure X is γj; the genetic effect on unobserved 

confounder U is φj; the direct genetic effect on the outcome Y is αj, and the causal effect of the 

exposure X on the outcome Y is β. 
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Figure 2. The causal effect of Educational Attainment on BMI, for varying values of λ (the 

percentage of the standardized effect of the IV on EA which is considered to be the direct effect 

of the IV on standardized BMI). The grey area represents the 95% Confidence Interval. 
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