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Abstract

Local excitatory connections in mouse primary visual cortex (V) are stronger and
more prevalent between neurons that share similar functional response features.
However, the details of how functional rules for local connectivity shape neuronal
responses in V remain unknown. We hypothesised that complex responses to
visual stimuli may arise as a consequence of rules for selective excitatory con-
nectivity within the local network in the superficial layers of mouse V. In
mouse V many neurons respond to overlapping grating stimuli (plaid stimuli)
with highly selective and facilitatory responses, which are not simply predicted by
responses to single gratings presented alone. This complexity is surprising, since
excitatory neurons in V are considered to be mainly tuned to single preferred ori-
entations. Here we examined the consequences for visual processing of two
alternative connectivity schemes: in the first case, local connections are aligned with
visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically
connecting neurons that share similar preferred orientations); in the second case,
local connections group neurons into excitatory subnetworks that combine and amplify
multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing pre-
dictions from large scale computational models with in vivo recordings of visual
representations in mouse V, we found that responses to plaid stimuli were best
explained by a assuming ‘feature binding’ connectivity. Unlike under the ‘like-to-
like’ scheme, selective amplification within feature-binding excitatory subnetworks
replicated experimentally observed facilitatory responses to plaid stimuli;
explained selective plaid responses not predicted by grating selectivity; and was
consistent with broad anatomical selectivity observed in mouse V. Our results
show that visual feature binding can occur through local recurrent mechanisms
without requiring feedforward convergence, and that such a mechanism is con-
sistent with visual responses and cortical anatomy in mouse V.
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Author summary

The brain is a highly complex structure, with abundant connectivity between
nearby neurons in the neocortex, the outermost and evolutionarily most recent
part of the brain. Although the network architecture of the neocortex can appear
disordered, connections between neurons seem to follow certain rules.These rules
most likely determine how information flows through the neural circuits of the
brain, but the relationship between particular connectivity rules and the function
of the cortical network is not known. We built models of visual cortex in the
mouse, assuming distinct rules for connectivity, and examined how the various
rules changed the way the models responded to visual stimuli. We also recorded
responses to visual stimuli of populations of neurons in anaesthetised mice, and
compared these responses with our model predictions. We found that connections
in neocortex probably follow a connectivity rule that groups together neurons that
differ in simple visual properties, to build more complex representations of visual
stimuli.This finding is surprising because primary visual cortex is assumed to sup-
port mainly simple visual representations. We show that including specific rules
for non-random connectivity in cortical models, and precisely measuring those
rules in cortical tissue, is essential to understanding how information is processed
by the brain.

Introduction

Much of our current understanding of local cortical connectivity in neuronal cir-
cuits of the neocortex is based on the presumption of randomness. Anatomical
methods for estimating connection probabilities [,] and techniques for using
anatomical reconstructions to build models of cortical circuits [-] are largely
based on the assumption that connections between nearby neurons are made
stochastically in proportion to the overlap between axonal and dendritic arborisa-
tions [].

On the other hand, a wealth of evidence spanning many cortical areas and several
species indicates that cortical connectivity is not entirely random. In species that
display smooth functional maps in primary visual cortex (V), such as cat and
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macaque monkey, long-range intrinsic excitatory connections tend to preferen-
tially connect regions of similar function [-]. Although rodents exhibit a map-
less, “salt and pepper” representation of basic visual features across V [], non-
random connectivity is nonetheless prevalent both within and between cortical
layers [-], reflecting similarities in functional properties [-] or projection
targets [-].

Despite multiple descriptions of specific connectivity in cortex, the rules underly-
ing the configuration of these connections are not entirely clear. Whereas strong
connections are more prevalent between neurons with similar receptive fields, the
majority of synaptic connections are made between neurons with poorly-correl-
ated receptive fields and poorly correlated responses []. This sea of weak syn-
aptic inputs might be responsible for non-feature-specific depolarisation [] or
might permit plasticity of network function [].

However, another possibility is that weak local recurrent connections reflect
higher-order connectivity rules that have not yet been described. Recent reports
have highlighted the facilitatory and selective nature of plaid responses in
mouse V [-]. Many neurons in mouse V respond to plaid stimuli in accord-
ance with a simple superimposition of their responses to the two underlying grat-
ing components (i.e. “component cell” responses; []). However, a significant
proportion of neurons that are visually responsive, reliable and selective exhibit
complex responses to plaid stimuli that are difficult to explain with respect to
simple combinations of grating components [] (Fig.S).We hypothesised that
responses to complex stimuli in mouse V could be a result of local combinations
of visual features, through structured local recurrent excitatory connectivity.These
rules could be difficult to detect through anatomical measurements, if they com-
prised only small deviations from predominantly “like-to-like” connectivity.

Here we examined whether small tweaks to recurrent connectivity rules could
alter visual representations in cortex, by analysing the computational properties
of cortical networks with defined rules for local connectivity. We simulated visual
responses to grating and plaid stimuli in large networks with properties designed
to resemble the superficial layers of mouse V, assuming distinct connectivity
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schemes. We then compared the response patterns and visual representations pre-
dicted by the network simulations with those recorded in vivo in mouse V, to
test the predictions arising from our models.

Specifically, we evaluated two broad classes of connectivity patterns, where specific
local excitatory connectivity is defined according to the visual response properties
of neurons (Fig. ):

1. Strictly “like-to-like” connectivity, such that neurons with similar response prop-
erties defined by their feed-forward inputs to each neuron (e.g. orientation tuning
of neurons in the superficial layers, arising from tuned input from layer ) are
grouped into subnetworks;

2. A form of “feature-binding” connectivity, such that in addition to predominantly
“like-to-like” connectivity, excitatory neurons with differing feed-forward visual
properties (e.g. distinct orientation preference) are also grouped together.

**** FIGURE  NEAR HERE ****

Despite the small difference in network configuration, these distinct rules give rise
to radically different visual representations of plaid stimuli, both in terms of com-
plexity of visual response selectivity of individual neurons and regarding facilita-
tion versus suppression in response to these compound stimuli. We found that the
complexity of plaid responses in mouse V was reproduced in our simulations
when assuming the ‘feature-binding’ connectivity scheme, with local connections
grouping multiple feedforward response properties, but not when assuming purely
‘like-to-like’ connections.
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Results

Models of local connectivity and cortical activity

We designed a non spiking model of the superficial layers of mouse V, to explore
the effect of different connectivity rules on information processing within the
cortex. Non-spiking linear-threshold neuron models provide a good approxima-
tion to the firing rate / input current (F–I) curves of adapted cortical neurons [];
model neurons with linear-threshold dynamics can be directly translated into
integrate-and-fire models with more complex dynamics [,], and in addition
form good approximations to conductance-based neuron models []. A full list
of parameters for all models presented in this paper is given in Table .

General equations governing model dynamics Individual excitatory neurons
(approximating layer / pyramidal cells) and inhibitory neurons (approximating
layer / basket cells) were modelled as linear-threshold units, with equal time
constants and thresholds set to zero. The dynamics of each rate-coded neuron in
the large- and small-scale models was governed by the differential equation

τi⋅ !xi=−xi+ wi , j
j

N N

∑ x j−β j⎡
⎣

⎤
⎦
+
+I i t( )+σi⋅ζi t( ) , ()

where τi is the time constant of neuron i; xi is the instantaneous current being
injected into neuron i; [ ]+ denotes the linear-threshold transfer function
x[ ]+=max x,0( ); β j is the activation threshold of neuron j; I i t( ) is the stimulus

input current provided to neuron i at time t; σi⋅ζi t( ) is a white noise process
included to approximate the barrage of spontaneous excitatory and inhibitory
post-synaptic potentials (EPSPs and IPSPs) experienced by cortical neurons; and
NN is the total number of neurons in the model. The directed connection
strength between two neurons j and i is given in Eq. () by wi , j=g j ⋅ni , j ⋅α j ,
where g j is the charge injected by a synapse from neuron j to neuron i and ni , j is
the number of synapses made by neuron j onto neuron i; α j is the gain of
neuron j.
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Synaptic input Synapses were modelled as constant current sources that injected
an amount of charge per second related to the average firing rate of the presyn-
aptic neuron, modulated by the synaptic release probability. Single excitatory syn-
apses were assigned a weight of . pC/spike / synapse; single inhibitory syn-
apses were considered to be  times stronger []. Excitatory and inhibitory
neurons were assigned output gains of . spikes /pC [].

Specific connectivity gives rise to amplification and competition

The dynamics of neuronal networks defined with particular connectivity rules
remain generally unknown, although some results suggest that specific connectiv-
ity leads to reduced dimensionality of network activity patterns []. Here we
explored the relationship between specific connectivity and network dynamical
properties in a non-linear, rate-based network model incorporating realistic
estimates for recurrent excitatory and inhibitory connection strength in layers  /
of mouse V.

To explore the basic stability and computational consequences of functionally
specific excitatory connectivity, we built a small five-node model (four excitatory
and one inhibitory neurons; “analytical model”; Fig.). Connections within this
model were defined to approximate the average expected connectivity between
populations of neurons in layers  / of mouse V. Excitatory neurons were
grouped into two subnetworks, and a proportion s of synapses from each excitat-
ory neuron was reserved to be made within the same subnetwork. When s =,
E↔E synapses were considered to be made without specificity, such that each
connection in the small model approximated the average total connection
strength expected in mouse V in the absence of functional specificity. When s = ,
all E↔E synapses were considered to be selectively made within the same subnet-
work, such that no synapses were made between excitatory neurons in different
subnetworks. Connections to and from the inhibitory node were considered to be
made without functional specificity in every case, mimicking dense inhibitory
connectivity in mouse visual cortex [-]. The general form of the weight
matrix is therefore given by
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where wS=wE ⋅ 1− f I( )⋅s is the specific weight component,
wN=wE ⋅ 1− f I( )⋅ 1−s( ) is the nonspecific weight component, wE is the total
synaptic weight from a single excitatory neuron, wI is the total synaptic weight
from a single inhibitory neuron; f I=1/5 is the proportion of inhibitory neurons;
a=wS /2+wN /4 is the excitatory weight between neurons in the same subnet-
work; b=wN /4 is the excitatory weight between neurons in different subnet-
works; wie=wI ⋅ 1− f I( )/4 is the nonspecific inhibitory to excitatory feedback
weight; and wei=wE ⋅ f I  is the nonspecific excitatory to inhibitory weight. 

Measuring stability and competition To determine network stability in the ana-
lytical model, we performed an eigenvalue analysis of the system Jacobian, given
by J= (W–I)./T, where W is the system weight matrix as given above, I is the
identity matrix, T is the matrix composed of time constants for each post-synaptic
neuron corresponding to elements in W and A./B indicates element-wise division
between matrices A and B. The network was considered stable if all eigenvalues
of J as well as the trace of the Jacobian Tr( J) were non-positive. The non-linear
dynamical system was linearized around the fixed point where all neurons are
active; if this fixed point is unstable then the system operates in either a hard
winner-take-all mode if a different partition is stable, or is globally unstable
[,]. Neither of these modes is desirable for cortex.

As suggested by estimations of strong excitatory feedback in cortex [,], our
model required inhibitory feedback to maintain stability (an inhibition-stabilised
network or ISN; Fig.S; [-]; but see []). For a network to be in an inhibi-
tion-stabilised (ISN) regime, the excitatory portion of the network must be unst-
able in the absence of inhibition, and inhibition must be strong enough in the full
network to balance excitation. To determine whether the parameter regimes place
the network in an ISN regime, we therefore performed an eigenvalue analysis of
the system in which all inhibitory connections were removed (i.e. wI=0 ). Either
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an eigenvalue of the Jacobian JE of the excitatory-only network or the system trace
Tr( JE) was required to be positive, but the system including inhibitory feedback
was required to be stable.

**** FIGURE  NEAR HERE ****

We determined the presence and strength of competition between neurons by
injecting current into a single excitatory neuron and recording the net current
received by an excitatory neuron in the opposite subnetwork at the network fixed
point (see Fig.a). Negative net currents correspond to competition between the
stimulated and recorded excitatory neurons (shown as shading in Fig.S). Non-
random connectivity, in the form of specific excitatory connections within subnet-
works (Fig.b; SNs; [,]), introduced selective amplification within subnet-
works and competition between subnetworks (Fig.c). Surprisingly, these compu-
tational mechanisms were strongly expressed even when only a minority of
synapses (s around %) were made to be subnetwork-specific (Fig.c; Fig.S).
Specific connectivity rules resulted in functional grouping of sets of excitatory
neurons (Fig.b), permitting the network to operate in a soft winner-take-all
regime [,].

Neither competition nor amplification was present under parameters designed to
approximate functionally non-specific connectivity in mouse V (Fig.a, c;
Fig.S). This is not because the network architecture was incapable of expressing
competition, but because recurrent excitatory connections were insufficiently
strong under assumptions of random stochastic connectivity. We conclude that
specific excitatory connectivity strongly promotes amplification and competition
in neuronal responses.

Local excitatory connections in cortex are broadly selective for 
preferred orientation

Does the precise configuration of local recurrent connectivity change response
patterns in cortical networks? In mouse V, synaptic connection probability is
enhanced by similarity of orientation preference [,,], suggesting that local
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excitatory connections may group together neurons with common preferred ori-
entations. Connection probability is even more strongly modulated by neuronal
response correlations to natural movies; i.e., the likelihood for a synaptic connec-
tion is higher for neuronal pairs responding similarly to natural scenes [,,].

If connections in mouse V were strictly governed by preferred orientation, then
neurons with similar orientation preference should also predominately have sim-
ilar responses to natural movies, and vice versa. We recorded visual responses pop-
ulations of neurons labelled with the synthetic calcium indicator OGB in anaes-
thetized mouse V ( animals,  / responsive neurons with overlapping
receptive fields / total imaged neurons; Fig.Sa–c; see Methods). We used signal
correlations to measure the similarity between the responses of pairs of neurons
with identified receptive fields (Fig.Sa) to drifting grating (Fig.Sb) and natural
movie (Fig.Sc) visual stimuli (see Methods).

We found that neuronal pairs with high signal correlations to natural scenes,
which are most likely to be connected in cortex [,,], showed only a weak
tendency to share similar orientation preferences (Fig.Sd–e; pairs with OSI>.;
p=., Kruskall-Wallis).This is consistent with earlier findings in cat area  (V),
which showed a poor relationship between responses to gratings and natural
movies [].

Similarly, under a like-to-like connectivity rule, synaptically connected neurons in
mouse V should share both similar orientation preference and responsiveness to
natural movies. We therefore compared response correlations and preferred ori-
entations for pairs of mouse V neurons, which were known to be connected from
in vivo / in vitro characterisation of functional properties and connectivity (data
from [] used with permission;  animals,  patched and imaged cells,  con-
nected pairs). Consistent with our results comparing responses to gratings and
natural movies, connected pairs of cells with similar orientation preference were
not more likely to share a high signal correlation to flashed natural scenes
(Fig.Sf; p=., Kruskall-Wallis). Also consistent with earlier findings [,],
we observed a positive relationship between synaptic connectivity and similarity
of orientation preference (Fig.Sg; p=., Ansari-Bradley test). However,



.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/072595doi: bioRxiv preprint 

https://doi.org/10.1101/072595
http://creativecommons.org/licenses/by-nc-nd/4.0/


strongly connected pairs (strongest % of excitatory post-synaptic poten-
tials —EPSPs—over connected pairs) were not more similar in their preferred
orientation than the remaining pairs (p=., Ansari-Bradley test vs weakest %
of connected pairs). Connected pairs spanned a wide bandwidth of preferred ori-
entations, with more than % of connections formed between neurons with
orthogonal preferred orientations. Spatial correlation of receptive fields is a com-
paratively better predictor for synaptic connectivity than shared orientation pref-
erence, but a majority of synaptic inputs are nevertheless formed between neurons
with poorly- or un-correlated responses []. We conclude that similarity in ori-
entation preference only partially determines connection probability and strength
between pairs of neurons in mouse V.

This weak functional specificity for similar visual properties can be explained by
two possible alternative connectivity rules. In the first scenario, local excitatory
connections in cortex are aligned with feedforward visual properties, but with
broad tuning (Fig. a; a “like-to-like” rule). As a consequence, all connections
show an identical weak bias to be formed between neurons within similar tuning,
and the average functional specificity reported in Fig.Sg and elsewhere [,]
reflects the true connection rules between any pair of neurons in cortex.

Alternatively, local excitatory connections may be highly selective, but follow rules
that are not well described by pairwise similarity in feedforward visual properties.
For example, subpopulations of connected excitatory neurons might share a small
set of feedforward visual properties, as opposed to only a single feedforward prop-
erty (Fig. b; a “feature-binding” rule). In this case, connections within a subpopu-
lation could still be highly specific, but this specificity would be difficult to detect
through purely pairwise measurements. If pairwise measurements were averaged
across a large population, any specific tuning shared within groups of neurons
would be averaged away.



.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/072595doi: bioRxiv preprint 

https://doi.org/10.1101/072595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Selective amplification under like-to-like and feature-binding 
connectivity rules

Amplification in the network with specific connectivity is selective (Fig.b–c):
neurons within a subnetwork recurrently support each other’s activity, while neur-
ons in different subnetworks compete. Therefore, which sets of neurons will be
amplified or will compete during visual processing will depend strongly on the
precise rules used to group neurons into subnetworks. We therefore examined the
impact of “like-to-like” and “feature-binding” rules on responses in our analytical
model.The excitatory network was partitioned into two subnetworks; connections
within a subnetwork corresponded to selective local excitatory connectivity within
rodent V. Under the “like-to-like” rule, neurons with similar orientation prefer-
ences were grouped into subnetworks (Fig.d). 

We tested the response of this network architecture to simulated grating and plaid
stimuli, by injecting currents into neurons according to the similarity between the
orientation preference of each neuron and the orientation content of a stimulus.
Preferred orientations for each excitatory neuron are indicated in Fig.. When a
stimulus matched the preferred orientation of a neuron, a constant input current
was injected ( I i t( )=ι ); when a stimulus did not match the preferred orientation,
no input current was provided to that neuron ( I i t( )=0 ). When simulating the
analytical model, the input current ι=1 .

Under the “like-to-like” rule, responses of pairs of neurons to simple grating stim-
uli and more complex plaid stimuli were highly similar (Fig.d). Amplification
occurred within subnetworks of neurons with the same preferred orientation, and
competition between subnetworks with differing preferred orientation [,]
(visible by complete suppression of response of neurons in lower traces of Fig.d).

Alternatively, we configured the network such that the rules for local excitatory
connectivity did not align with feedforward visual properties (a “feature-binding”
rule). We configured subnetworks by grouping neurons showing preference for
either of two specific orientations (Fig.e). When this “feature-binding” con-
nectivity rule was applied, neuronal responses to grating and plaid stimuli differed
markedly (cf. top vs bottom panels of Fig.e). Selective amplification was now
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arrayed within populations of neurons spanning differing orientation preferences,
and competition occurred between subnetworks with different compound feature
preferences. Importantly, a “feature-binding” rule implies that neurons with the
same preferred orientation could exist in competing subnetworks. While their
responses to a simple grating of the preferred orientation would be similar and
correlated (Fig.e; indicated by a high response correlation measured over grating
responses #g), the same two neurons would show decorrelated responses to a plaid
stimulus (Fig.e; indicated by a low response correlation measured over plaid
responses #p). We conclude that changes in pairwise response similarity, provoked
by varying the inputs to a network, can provide information about the connectiv-
ity rules present in the network.

Large-scale model of local connectivity in mouse V1

The results of our simulations of the small analytical network suggest that rules
for specific local connectivity can modify the correlation of activity between two
neurons in a network, depending on the input to the network.The question arises
of how connectivity rules shape distributed representations of visual stimuli,
examined across a large network and over a broad set of stimuli.

We therefore simulated the presentation of grating and plaid visual stimuli in a
large-scale non-linear, rate-based model of the superficial layers of mouse V.
Individual neurons were modelled as described above for the small scale network
(Eq. ()).

To construct the large-scale simulation model of mouse V, , linear-
threshold neurons were each assigned a random location ui∈T2 where T defines
the surface of a virtual torus of size .×.mm. Excitatory and inhibitory neur-
ons were placed with relative densities appropriate for layers  and  of mouse
cortex []. Approximately % of neurons were inhibitory; [,]; see Table  for
all parameters used in these models. Excitatory neurons were assigned an orienta-
tion preference $ drawn from a uniform random distribution, mimicking the “salt
and pepper” functional architecture present in rodent visual cortex [].



.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/072595doi: bioRxiv preprint 

https://doi.org/10.1101/072595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anatomical connectivity rules To determine patterns of synaptic connectivity, we
calculated for each neuron the probability distribution of forming a synaptic con-
nection with all other neurons in the model. A fixed number of synapses was
drawn from this distribution; the number was chosen as an estimate of the
number of synapses formed with other superficial layer neurons in rodent cortex
( from each excitatory and  from each inhibitory neuron; [,]). Since a
simulation with the full density of cortical neurons was computationally infeas-
ible, the size of the simulations was scaled to % of estimated cortical density.
The sparsity of local synaptic connectivity was maintained by also scaling the
number of synapses made by each neuron, while maintaining the total synaptic
conductance formed by each neuron.

Axonal and dendritic densities for each neuron were described by a two-dimen-
sional Gaussian field

G v,ui ,ρi( )=exp − v,ui
2

2ρi
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
, ()

where ρi is a field dispersion parameter associated with neuron i and v,u is the
Euclidean distance between v and u, computed over the surface of a D torus. In
our models, each neuron had a Gaussian dendritic field of #d = µm (correspond-
ing to an approximate width of #=µm; []); and axonal field of #a,e =µm
for excitatory neurons (width µm; [-]) and #a,i = µm for inhibitory
neurons (width µm; []).

Our default rule for forming synapses was based on Peters’ Rule, in that the prob-
ability of forming a synapse was proportional to the overlap between axonal and
dendritic fields [,]. This was estimated by computing the integrated product of
axonal and dendritic fields over a torus T :

pPeters= G v,ui ,ρd ,i( )G v,u j ,ρa , j( )dv
T∫∫

!
"#

$
%&, ()

where pPeters is the probability of forming a single synapse between neurons i
and j, and the notation   indicates that the expression between the double
brackets is normalised to form a probability density function, such that if summed
across all possible target neurons the total will be equal to .
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Like-to-like connectivity rule We investigated two rules for anatomical
specificity in intra-cortical excitatory recurrent connections. The first such rule
corresponds to the case where local recurrent connectivity is aligned with match-
ing feedforward visual properties (preferred orientation, in our case). We therefore
assumed that the probability of forming a synapse is modulated by the similarity
in preferred orientation between two excitatory neurons (“Like-to-Like” rule;
see Fig.a). The probability of connection between two neurons was proportional
to

pconn∝ pPeters s1 pori! "+ 1−s1( )( ) , ()
where pori=vonmises θi ,θ j ,κ( ); pPeters is the connection probability under non-
specific Peters’ rule connectivity, defined above; and s1 is the proportional strength
of specificity s1∈ 0,1[ ] . If s1 = then Eq. () becomes equivalent to Peters’ rule.
When s1 =  then the probability of connecting orthogonally tuned neurons is
zero.

Feature-binding connectivity rule The second rule for anatomical connection
specificity corresponds to the case where local recurrent connectivity is not
aligned with feedforward visual properties. Instead, it was designed to explore
binding of simple visual features (“Feature-Binding” specificity; see Fig.e).
Under this rule, a subnetwork combined neurons with a number % of different
orientation preferences.The preferred orientations used to compose a subnetwork
in the Feature-Binding specificity model were chosen from periodic filtered noise
fields.

Each noise field Zk ,q was built by generating a unit-magnitude complex number
z j=exp −iζ j( ) for each neuron in the model, with uniformly-distributed orienta-
tions ζ j∈−π,π[ ) . Here “i” represents the complex number −1 ; k∈ 1, N S[ ] ,
where NS is the number of subnetworks in the model; q∈ 1,ϑ[ ] , where ϑ is the
number of preferred orientations per subnetworks. In our models described in this
paper, NS = and ϑ =.

A field Zk ,q was defined by placing each z j at the location u j of the correspond-
ing neuron. Each complex field Zk ,q was spatially filtered by convolving with a
Gaussian field Gρ on a torus, with a spatial standard deviation of ρ =µm (width
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µm).The angles from the resulting field of complex numbers was used as one
orientation component for one subnetwork, at each point in simulated space. The
composition of each subnetwork therefore changed smoothly across cortical space,
so that nearby neurons in the same subnetwork had similar functional selectivity.
Therefore, ∠ Z!Gρ( ) defines a NS×ϑ matrix of numbers where each element
determines one preferred orientation component of the corresponding
subnetwork.

Neurons were assigned to one of NS subnetworks, according to the maximum
similarity between a neuron’s preferred orientation and the orientation composi-
tion of the set of subnetworks at the location of the neuron’s soma.The similarity
between a neuron’s preferred orientation and a subnetwork orientation was com-
puted using a von Mises function (a circular, Gaussian-like function) with width
parameter &2, such that the membership probability was proportional to

pm k,θi( )∝ max vonmises θi ,θk ,1 ,κ2( ), vonmises θi ,θk ,2 ,κ2( )⎡
⎣

⎤
⎦

 , ()
where k is the index of an SSN consisting of preferred orientations θk ,1 and θk ,2 ;
θi is the preferred orientation of a neuron under consideration; and the expression
within the double brackets   was normalised to be a valid probability density
function over k. A neuron was assigned membership of an SSN according to the
formula

M i( )=arg max
k

pm k,θi( )( ), ()

where M i( )  gives the index of the SSN of which neuron i is a member.

The probability of connection between two neurons under the feature-binding
model is therefore given by

pconn∝(1−s2 ) pPeters s1⋅ pori! "+1−s1( )+s2 bSSN ⋅pPeters! ", ()
where parameter s1 determines the relative contribution of Non-Specific versus
orientation-tuned Like-to-Like specificity as in Eq. (); s2 determines the relative
contribution of Feature-Binding specificity; pori=vonmises θi ,θ j ,κ1( ) as in Eq. ();
and bSSN is a value equal to  when the two neurons fall within the same subnet-
work; that is

bSSN=
1iff M i( )=M j( )

0 otherwise
⎧
⎨
⎪⎪

⎩
⎪⎪

()
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Network input Input was provided to the network as a simulation of orienta-
tion-tuned projections from layer  to layers / [,]. Each excitatory neuron
was assigned an orientation tuning curve based on a von Mises function, with a
randomly chosen preferred orientation θi and a common input tuning curve
width &=. vonmises ⋅( ) is the non-normalised von Mises function with
vonmises ⋅( )∈ 0,1[ ], given by

vonmises t ,θ,κ( )=exp κcos2 t−θ( )[ ] . ()
Current was injected into each simulated neuron proportional to the orientation
tuning curve of that neuron, according to the orientation content of the stimulus:

I i t( )∝A t( )
NN

vonmises θg t( ),θi ,κi( ), ()

where A t( ) is the amplitude of the stimulus at time t; θg t( ) is the orientation of
a grating stimulus at time t; θi is the preferred orientation of neuron i; κi is the
tuning curve width of neuron i; NN is the total number of neurons in the net-
work. The input to the network is normalised such that the total current injected
into the network is equal to A t( ) . For a simulated plaid stimulus composed of
the two component orientations θg1 and θg 2 , input to a neuron was the linear
average of input associated with each grating component, given by

I i t( )∝ A t( )
2NN

vonmises θg1,θi ,κi( )+vonmises θg 2 ,θi ,κi( )( ). ()

Both grating and plaid stimuli were considered to cover the full visual field. Tuned
input currents were injected only into excitatory neurons, because we wanted to
investigate the effect of excitatory recurrence on cortical information processing.
Providing untuned feedforward input to inhibitory neurons can produce the illu-
sion of competition between excitatory neurons, merely due to the thresholding
effect of feedforward inhibitory input shared between those neurons.

Inclusion of experimental response variability We simulated large-scale networks
as described above, and obtained responses to simulated visual stimuli. In order to
mimic the response variability due to experimental conditions, such as recording
noise and intrinsic neuronal response variability, we introduced a random com-
ponent to the model responses.
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To quantify experimental variability, we recorded neuronal responses to presented
visual stimuli under two-photon calcium imaging in mouse V (see Methods). For
each presented stimulus i (e.g. a grating of a given orientation), we obtained a set
Si of single-trial responses ri,j for a single neuron such that ri , j∈Si , and the trial-
averaged response ri= ri , j Tj=1..T∑ , where T is the number of trials collected for
that stimulus. Over the full set of stimuli for a given neuron, we determined the
maximum trial-averaged response rmax=max

i
ri . We then measured the standard

deviation σ over the collection of all single-trial responses over all stimuli for a
given neuron normalised by rmax , such that σ=std Si /rmax

i
∪
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ . The estimated

experimental variability σ̂ was defined as the median σ over all recorded
neurons.

A similar procedure in reverse was applied to model-simulated visual responses, to
mimic experimental variability. Activity of single neurons in response to a simu-
lated stimulus i was interpreted as the mean response ri , with rmax defined as
above. Single-trial model responses were then generated as ri , j=ri+N 0,σ̂⋅rmax( ) ,
where N µ,σ( ) generates a single normally-distributed random variate with
mean µ and standard deviation σ . Twelve trials were generated for each stimulus
(i.e. T=), and single-trial responses were then analysed as described for experi-
mentally recorded responses.

Estimation of parameters for connection rules Ko and colleagues characterised
functional specificity in mouse V, by recording in slice from pairs of neurons that
were functionally characterised in vivo []. We fit our function pconn (Eq. ()) to
their measurements of the probability of connection between neurons tuned for
orientation, giving estimates for both &1 and s1 ( κ̂1 =.; ŝ1 =.).These paramet-
ers correspond to fairly weak functional specificity. We found that in the Like-to-
Like specificity model, in order to have an appreciable network effect we had to
increase the strength of functional specificity to s1 =. (with &1 =.). The con-
nectivity measurements of Yoshimura and colleagues suggest that on the order of
N =– subnetworks exist in layers / of rodent cortex []. For the Feature-
Binding specificity model, we took the parameters s1 =., s2 =., &1 =.,
&2 =, N =, %=.
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Therefore, in our “feature-binding” model, the majority (%) of recurrent syn-
apses are made randomly; a smaller fraction (%) are made according to similar-
ity of preferred orientation and the remaining small fraction (%) are made select-
ively across preferred orientations. These last few synapses could potentially
weakly change the preferred orientation of a neuron. However, we found that
most neurons in our feature-binding model had grating responses aligned with
their feed-forward preferred orientation.This is likely due to the strong influence
of like-to-like connectivity even in the feature-binding model.

Feature-binding connectivity leads to facilitation and 
decorrelation in large networks

We simulated the presentation of grating and plaid stimuli in our large-scale net-
work model of mouse V. We quantified response similarity between pairs of
neurons as suggested by the results of the small network simulations: by measur-
ing pairwise response correlations over a set of grating stimuli (#g), and separately
over a set of plaid stimuli (#p; see Methods).

In the network that implemented a “like-to-like” connection rule for recurrent
excitatory connectivity (Fig.a–b), pairs of neurons showed similar responses to
both grating and plaid stimuli (Fig.b; R=. between #g and #p), in agreement
with the analytical “like-to-like” model of Fig.d.

**** FIGURE  NEAR HERE ****

However, in the network that implemented a “feature-binding” connection rule,
where in addition to spatial proximity and similarity in preferred orientation sub-
networks were defined to group neurons of two distinct preferred orientations
(Fig.c–d), neurons showed reduced correlation in response to plaid stimuli
(Fig.d, R=. between #g and #p), in agreement with the analytical “feature-
binding” model of Fig.e. Different configurations of local recurrent excitatory
connectivity produced by “like-to-like” or “feature-binding” rules can therefore be
detected in large networks, by comparing responses to simple and compound
stimuli.
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Consistent with our analytical models, networks without functionally specific
connectivity did not give rise to decorrelation (Fig.Sb; R=. between #g and
#p). This shows that decorrelation between plaid and grating responses in our
models does not arise simply due to random connectivity, but requires the active
mechanism of selective amplification through feature-binding subnetwork
connectivity.

Inhibitory responses were untuned in our simulations (blue traces in Fig.a, c), in
agreement with experimental observations of poorly-tuned inhibition in
mouse V [,,,].

Visual responses in mouse V1 are consistent with “feature-binding”
connection rules

Our analytical network results show that in principle the configuration of local
excitatory connectivity, whether aligned with or spanning across feedforward
visual properties, has a strong effect on visual representations (Fig.). Our large-
scale simulations show that these effects can be detected in large networks as
differences in the pairwise correlations of responses to simple and compound
visual stimuli (Fig.). We therefore aimed to test which connectivity scheme is
more likely to be present in visual cortex, by examining responses of neurons in
mouse V.

Using two-photon calcium imaging, we recorded responses of populations of
OGB-labelled neurons in mouse V to a set of contrast-oscillating oriented grat-
ing stimuli over a range of orientations, as well as the responses to the set of plaid
stimuli composed of every possible pair-wise combination of the oriented grating
stimuli (Fig.a;  animals,  sessions,  / responsive / total imaged neurons;
see Methods). Responses to plaid stimuli in mouse V suggest that stimulating
with a denser sampling of compound stimulus space leads to a better characterisa-
tion of response selectivity [] (Fig.S). Accordingly, we probed responses in
mouse V under stimuli analogous to those used in the model simulations, with a
dense coverage of plaid combinations over a set of finely-varying grating
orientations.
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**** FIGURE  NEAR HERE ****

We found that consistent with our earlier findings examining º drifting plaid
stimuli [], responses to grating stimuli did not well predict responses to plaid
stimuli. Pairs of neurons with similar preferred orientation but with highly differ-
ing responses to plaid stimuli were common (Fig.b–c; R=. between #g and
#p; OSI >.).The degree of decorrelation we observed in mouse V was consider-
ably higher than predicted by the “like-to-like” model, and was more consistent
with the “feature-binding” model (Fig.e).

Decorrelation induced by plaid responses and the lack of a relationship between
grating and plaid responses in mouse V were not a result of unreliable or noisy
responses in vivo. We included in our analysis only neurons that were highly reli-
able, and responded significantly more strongly than the surrounding neuropil
(see Methods). As a further control, we used experimentally recorded responses to
grating stimuli to generate synthetic plaid responses for mouse V that would
result from a cortex with like-to-like subnetwork connectivity (Fig.d, inset; see
Methods). Our control data were generated from single-trial responses of single
V neurons, and therefore included the same trial-to-trial variability exhibited by
cortex. This control analysis indicates that a “like-to-like” rule among V neurons
would result in a higher correlation of grating and plaid responses than experi-
mentally observed (Fig.d; median R=.±[. .] between #g and #p;
n= bootstrap samples; compared with R=. for experimental results;
p<., Monte-Carlo test).

Importantly, this control analysis is not restricted to our “like-to-like” rule, but
makes similar predictions of highly correlated grating and plaid responses for any
arbitrary model that combines grating components to produce a plaid response, as
long as that rule is identical for every neuron in the network [].This is because
if a single consistently-applied rule exists, then any pair of neurons with similar
grating responses (high #g) will also exhibit similar plaid responses (high #p). In
contrast, neurons that are connected within the “feature-binding” model combine
different sets of grating components, depending on which subnetwork the neur-
ons are members of.
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Neurons in mouse V exhibited a wide range of facilitatory and suppressive
responses to plaid stimuli, roughly equally split between facilitation and suppres-
sion (Fig.f–g; % vs %; MI >. and MI <–.).The proportion of facilitat-
ing and suppressing neurons in mouse V was similar to that exhibited by
responsive neurons in our “feature-binding” model (Fig.g; V versus F.B., p=.;
two-tailed Fisher’s exact test, nV1 =, nF.B. =). In contrast, neither the “like-to-
like” model (L-to-L) nor a model without functionally specific connectivity (Rnd)
exhibited significant facilitation in responsive neurons, and both were significantly
different from the distribution of facilitation and suppression in mouse V
(Fig.g; p<. in both cases; two-tailed Fisher’s exact test, nL-to-L = ,
nRnd = ). The wide range of facilitatory and suppressive responses observed in
mouse V is more consistent with a feature-binding rule for local connectivity,
compared with a like-to-like rule or a network without functionally specific
connectivity.

Discussion

Whereas feedforward mechanisms for building response properties in visual net-
works have been extensively studied, it is not well understood how visual
responses are shaped by local recurrent connections. We hypothesised that the
configuration of local recurrent cortical connectivity shapes responses to visual
stimuli in mouse V, and examined two alternative scenarios for local connection
rules: essentially, whether local excitatory connections are made in accordance
with feedforward visual properties (“like-to-like”; Fig. a), or whether local excit-
atory connections span across feedforward visual properties to group them (“fea-
ture-binding”; Fig. b). We found that highly selective and facilitatory responses
to plaid stimuli observed in mouse V (Fig.S, Fig.; []) are consistent with
tuning of recurrent connections within small cohorts of neurons to particular
combinations of preferred orientations. Moreover, responses in mouse V are
inconsistent with a simple configuration of cortical connections strictly aligned
with feedforward visual responses.
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Detecting feature-binding connectivity rules in cortex

We found that the precise rules that determine local connections among neurons
in cortex can strongly affect the representation of visual stimuli. The “feature-
binding” rule we examined embodies the simplest second-order relationship
between connectivity and preferred orientation, and was chosen for this reason.
We cannot rule out more complicated connectivity rules as being present in
mouse V, but we have shown that a simple “like-to-like” rule cannot explain
responses to plaid visual stimuli. Random, non-functionally specific connections
were also unable to explain complex plaid responses in mouse V (Fig.S).

How can the detailed statistics of “feature-binding” rules be measured in cortex?
Existing experimental techniques have been used to measure only first-order
statistical relationships between function and cortical connectivity [,-,].
Unfortunately, current technical limitations make it difficult to measure more
complex statistical structures such as present under a “feature-binding” connectiv-
ity rule. Simultaneous whole-cell recordings are typically possible from only a
small numbers of neurons, thus sparsely testing connectivity within a small
cohort. Even if simultaneous recordings of up to  neurons are used [], identi-
fying and quantifying higher-order statistics in the local connectivity pattern is
limited by the low probability of finding connected excitatory neurons in cortex.
Nevertheless, our “feature-binding” connectivity model is consistent with the res-
ults of functional connectivity studies (Fig.S).

In addition, our results highlight that small changes in the statistics of local con-
nectivity can have drastic effects on computation and visual coding. Introducing a
small degree of specificity, such that a minority of synapses are made within an
excitatory subnetwork, is sufficient to induce strong specific amplification and
strong competition to the network, even though a majority of the synapses are
made randomly without functional specificity (Fig.a–c). Under our “feature-
binding” model % of synapses are made randomly; approximately % are made
under a “like-to-like” rule and the remaining % are used to bind visual features.
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Clearly, detecting the small proportion of synapses required to implement feature
binding in V will be difficult, using anatomical sampling techniques that examine
only small cohorts of connected neurons.

A recent study functionally characterised the presynaptic inputs to single superfi-
cial-layer neurons in mouse V, using a novel pre-synaptic labelling tech-
nique []. Consistent with our results for preferred orientation (Fig.Sf, g), they
found that presynaptic inputs were similarly tuned as target neurons but over a
wide bandwidth. The majority of synaptically connected networks were tuned for
multiple orientation preferences across cortical layers, similar to the feature-bind-
ing networks in our study.

We implemented an alternative approach, by inferring the presence of higher-
order connectivity statistics from population responses in cortex. This technique
could be expanded experimentally, by presenting a parameterised battery of simple
and complex stimuli. Stimuli close to the configuration of local connectivity rules
would lead to maximal facilitation and competition within the cortical network.
Importantly, our results strongly suggest that simple stimuli alone are insufficient
to accurately characterise neuronal response properties in visual cortex.

Amplification and competition might underlie facilitation and 
suppression

Our theoretical analysis and simulation results demonstrate that functionally
specific excitatory connectivity affects the computational properties of a cortical
network by introducing amplification of responses within subnetworks of excitat-
ory neurons, and competition in responses between subnetworks (Fig.a–c). Sev-
eral recent studies have demonstrated that visual input is amplified within the
superficial layers of cortex [-], and recent results from motor cortex suggest
competition between ensembles of neurons []. Our modelling results indicated
that some form of selective local excitatory connectivity is required for such amp-
lification to occur through recurrent network interactions, with reasonable
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assumptions for anatomical and physiological parameters for rodent cortex
(Fig.a–c; Fig.S).This still leaves in question whether the particular configuration
of selective excitatory connectivity plays a role.

Our simulation results showed that the effects of amplification and competition
on cortical responses are tuned to the statistics of local connectivity. This implies
that complex visual stimuli for which the composition of stimulus components
matches the statistics of a subnetwork will undergo stronger amplification than
other non-matching visual stimuli (Fig.). In our “feature-binding” model, the
statistics of subnetwork connectivity were defined to reflect combinations of two
preferred orientations chosen from a uniform random distribution.This combina-
tion of two orientations is similar to the visual statistics of plaid stimuli with
arbitrarily chosen grating components. As a result, plaid stimuli gave rise to
stronger amplification than single grating components alone, when the composi-
tion of the plaid matched the composition of connectivity within a particular sub-
network. This led to a facilitatory effect, where some neurons responded more
strongly to plaid stimuli than to the grating components underlying the plaid
stimuli. Conversely, competition between subnetworks led to weaker responses to
some plaid stimuli, for neurons that “lost” the competition. Competition could
therefore be one cortical mechanism underlying cross-orientation suppression in
response to plaid stimulation.

*** FIGURE  NEAR HERE ***

In contrast, suppression in the “like-to-like” and “random non-specific” models
occur because the energy in the stimulus is spread across two grating components,
and is not combined by the network to form strong plaid selectivity. In the “like-
to-like” model, competition occurs between representations of the two oriented
grating components of the plaid, causing additional suppression. The presence of
amplified, strongly facilitating plaid responses in mouse V is therefore consistent
with the existence of subnetworks representing the conjunction of differently-ori-
ented edges.
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Building plaid responses from convergence of simple feedforward 
inputs, or from feedback inputs

Could the complexity of plaid texture responses in mouse V be explained by con-
vergence of differently tuned feedforward inputs from layer  onto single layer /
neurons, similar to the proposed generation of pattern-selective responses in
primate MT [,]? Building plaid responses in this way would imply that
layer / neurons would respond to multiple grating orientations, since they
would receive approximately equal inputs from at least two oriented components.
However, layer  and layer / neurons are similarly tuned to orientation in rodent
V [,], in conflict with this feedforward hypothesis.

In addition, if responses to complex stimuli were built by feedforward combina-
tion of simple grating components, then the response of a neuron to the set of
grating stimuli would directly predict the plaid response of that neuron. This
would then imply that two neurons with similar responses to plaid stimuli must
have similar responses to grating stimuli. However we found this not to be the
case experimentally; two neurons with similar responses to grating components
often respond differently to plaid textures or to natural scenes (Fig.Sd; Fig.a,b;
[]).

We cannot rule out the influence of feedback projections on shaping responses to
plaid stimuli. The time resolution of calcium imaging is too slow to differentiate
between feedforward, recurrent local, and feedback responses based only on
timing. However, top-down feedback inputs are considered to be suppressed
during anaesthesia []; in contrast, we observed complex responses to plaid stim-
uli in anaesthetised animals. Since our proposed mechanism for feature binding
relies on recurrent amplification, relatively few excitatory synapses are required to
reproduce complex plaid responses. In contrast, non recurrent influences such as
feedforward or feedback projections would require comparatively more synapses
to achieve a similar pattern of plaid responses. There are more local recurrent
excitatory synapses in V layer  / than there are available excitatory synapses in
feedback projections to V (% recurrent excitatory synapses in layer  / vs a
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maximum of .% feedback synapses; []). In addition, putative feedback inputs
would need to be wired with high functional specificity; this degree of anatomical
specificity has not been demonstrated experimentally.

Computational role of inhibitory connectivity and physiology

Non-specific connectivity between excitatory and inhibitory neurons, as assumed
in our simulation models, is consistent with the concept that inhibitory neurons
simply integrate neuronal responses in the surrounding population [], and is
also consistent with experimental observations of weakly tuned or untuned inhib-
ition in rodent visual cortex [,,,,]. Although specific E↔I connectivity
has been observed in rodent cortex [,], the majority of E↔I synapses are
likely to be made functionally non-specifically in line with the high convergence
of E→I and I→E connections observed in cortex [,,].

In our models, shared inhibition is crucial to mediate competition between excit-
atory subnetworks (Fig.); inhibition is untuned because excitatory inputs to the
inhibitory population are pooled across subnetworks. Poorly tuned inhibition, as
expressed by the dominant class of cortical inhibitory neurons (parvalbumin
expressing neurons), therefore plays an important computational role and is not
merely a stabilising force in cortex.

Other inhibitory neuron classes in cortex (e.g. somatostatin or vaso-intestinal
peptide expressing neurons) have been shown to exhibit feature-selective
responses [,,]. Recent computational work examined the influence of mul-
tiple inhibitory neuron classes with different physiological and anatomical tuning
properties in a model for rodent cortex [].They examined the role of inhibitory
connectivity on divisive and subtractive normalisation of network activity in a net-
work with specific, orientation-tuned inhibitory connectivity. They found that
specific inhibitory feedback could lead to divisive normalisation of network activ-
ity, while non-specific inhibitory feedback could lead to subtractive normalisation.
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However, the computational role of specific inhibition is likely to rest on the pre-
cise rules for connectivity expressed between excitatory and inhibitory neurons. If
the rules for E↔E and E↔I connections align, then a specific inhibitory popula-
tion could act as a break on excitation within a subnetwork, and could allow more
specific anatomical connectivity to persist while maintaining the balance between
excitation and inhibition in cortex. The functional profile of this balancing pool
would be highly tuned, and be similar to that of the excitatory neurons in the sub-
network, suggesting a physiological signature of specific inhibitory feedback that
could be sought experimentally. Alternatively, if E↔I connection rules result in
counter-tuned specificity, these connections would act to strengthen competition
between subnetworks.

Existing models of specific connectivity

As discussed above, our “like-to-like” model of orientation-tuned selective excitat-
ory connectivity coupled with non-specific inhibitory feedback is similar in net-
work topology to classical ring models of orientation tuning in visual cortex (e.g
[,,]).The principal difference in our model is the embedding of functionally
selective connectivity within spatially-constrained anatomical connectivity. We
showed that under model parameters chosen to be realistic in mouse V, only a
small fraction of excitatory synapses must be specific in order to introduce select-
ive amplification and competition within the network.

Several previous models designed for columnar visual cortex have incorporated
selective excitatory connectivity, either with connectivity relying on purely ana-
tomical constraints (e.g []) or mimicking the spatially periodic, long-range lat-
eral excitatory projections found in monkey, cat and other species (e.g. [-]).
These models often incorporate assumptions of long-range inhibitory projections,
which have not been described for rodent cortex, and can modify the computa-
tional properties of such models [].These earlier models have not examined the
consequences of higher-order connectivity patterns on visual coding, and instead
looked at the effect of long-range connections spanning visual space in columnar
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visual cortex. Our models focussed on the effect of recurrent excitatory connectiv-
ity on neurons encoding overlapping regions of visual space, and make use of the
salt-and-pepper functional architecture of rodent visual cortex [].

Feature binding to detect higher-order visual statistics

In visual cortex of primates, carnivores and rodents, orientation tuning develops
before postnatal eye opening and in the absence of visual experience [,].
Local recurrent connections develop after the onset of visual experience and
maintain their plasticity into adulthood [,-]. Statistical correlations in nat-
ural scenes might therefore lead to wiring of subnetworks under an activity-
dependent mechanism such as spike-time dependent plasticity (STDP) [-].
Along these lines, examinations of the development of specific excitatory connec-
tions after eye opening found that similarities in feedforward input were progress-
ively encoded in specific excitatory connections [].

We expect that, as the specificity of lateral connections forms during develop-
ment, the emergence of compound feature selectivity will gradually occur after the
onset of sensory experience. This hypothesis is consistent with experience-
dependent development of modulatory effects due to natural visual stimulation
outside of the classical receptive field, as observed in mouse V []. A complete
factorial combination of all possible features occurring in natural vision is clearly
not possible. However, the most prominent statistical features of cortical activity
patterns could plausibly be prioritised for embedding through recurrent excitatory
connectivity. At the same time, competition induced by non-specific shared inhib-
ition will encourage the separation of neurons into subnetworks. In our interpret-
ation, single subnetworks would embed learned relationships between external
stimulus features into functional ensembles in cortex, such that they could be
recovered by the competitive mechanisms we have detailed. 

In pre-frontal cortex, compound or mixed selectivity of single neurons to com-
binations of task-related responses has been found in several studies [,]. This
is proposed to facilitate the efficient decoding of arbitrary decision-related vari-
ables. Binding feedforward cortical inputs into compound representations, as
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occurs in our “feature-binding” model, is therefore a useful computational process
with general applicability. Our works suggests that specific local excitatory con-
nectivity could be a general circuit mechanism for shaping information processing
in cortical networks.
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Materials and Methods

In-vivo calcium imaging

Experimental procedures followed institutional guidelines and were approved by
the Cantonal Veterinary Office in Zürich or the UK Home Office. Procedures for
urethane anaesthesia, craniotomies, bulk loading of the calcium indicator, as well
as for in vivo two-photon calcium imaging and in vitro recording of synaptic con-
nection strength were the same as described previously [,,,].

Preparation and imaging with OGB Male and female three-month old wild
type CBL/ mice were sedated with chlorprothixene (mg/ml in Ringer solu-
tion; .ml per g by weight) then anaesthetised with urethane (% in iso-
tonic saline; initial dose .ml per g by weight; supplemented as required to
maintain anaesthesia). The body temperature of anaesthetised animals was mon-
itored and controlled using a heating pad and rectal thermometer. Atropine was
given to reduce secretions (.ml per g by weight). Intrinsic optical imaging
was used to locate primary visual cortex, and a craniotomy was made over V.
Briefly, the skull above the estimated location of V was thinned and we illumin-
ated the cortical surface with nm LED light, presented drifting gratings for  s,
and collected reflectance images through a × objective with a CCD camera
(Toshiba TELI CSDCL).

We performed bulk loading of the synthetic calcium indicator Oregon Green-
BAPTA– (OGB–; Invitrogen). Several acute injections of OGB––AM were
made under visual guidance into the visual cortex []. Sulforhodamine (SR–;
Invitrogen) was applied topically to the pial surface, to provide labelling of the
astrocytic network []. Time-series stacks recording activity in layer / cortical
neurons were acquired at a –Hz frame rate with a custom-built microscope
equipped with a × objective (LUMPlanFl/IR, NA .; Olympus) and an
MHz pulsed Ti:Sapphire excitation laser (MaiTai HP; Spectra Physics, New-
port). Acquisition of calcium transients was performed using custom-written
software in LabView (National Instruments), and analysis was performed using
the open-source FocusStack toolbox [].
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Preparation and imaging with GCaMP Adult male mice (P–P) were ini-
tially anaesthetized with –% isoflurane in O2 and maintained on .–% during
the surgical procedure.The primary visual cortex (V) was localized using intrinsic
imaging.

A craniotomy of –mm was opened above the region of strongest intrinsic signal
response, which we assumed to be centred over V. We then injected the genetic-
ally encoded calcium indicator GCaMPm []
(AAV.Syn.GCaMPm.WPRE.SV; UPenn) around µm below the cortical
surface to target superficial layer neurons. – injections were made in a single
animal and a volume of approximately nl was injected at each location. The
craniotomy was sealed with a glass window and a metal post for head fixation was
implanted on the skull with dental acrylic, contralateral to the cranial window.

For imaging, animals were anaesthetised with isoflurane at % for induction, then
head fixed. Isoflurane concentration was lowered to .–.% during the experi-
ment. We maintained the animal’s body temperature at ºC using a rectal ther-
mometer probe and a heating pad placed under the animal. Silicon oil was applied
to the eyes to keep them moist.

In vivo / in vitro characterisation of function and connectivity Methods for
obtaining visual responses in vivo and measuring synaptic connectivity in vitro are
described in []. Briefly, young C/BL mice (P–) were anaesthetised
(fentanyl, midazolam and medetomidine) and injected with OGB calcium indic-
ators, lightly anaesthetised with isoflurane (.–.%) and head fixed. Two-
photon imaging of calcium responses was used to record the response of neurons
to a sequence of natural images ( individual images). After in vivo imaging
experiments, the brain was rapidly removed and sliced for in vitro recording. Z-
stacks recorded in vivo were matched with Z-stacks recorded in vitro in order to
locate functionally characterised neurons for electrophysiological recording. Sim-
ultaneous whole-cell recordings of up to six neurons at a time were performed.
Evoked spikes and recorded EPSPs were used to identify synaptically connected
pairs of neurons.
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Visual stimulation

Visual stimuli for receptive field characterisation, drifting gratings and plaids and
masked natural movies were displayed on an LCD monitor (.×. cm; BenQ)
placed – cm from the eye of the animal and covering approximately ×
visual degrees (v.d.).The monitor was calibrated to have a linear intensity response
curve. Contrast-oscillating grating and plaid stimuli were presented on an LCD
monitor (.×. cm; Xenarc) placed  cm from the eye of the animal and cover-
ing ×v.d.The same screen was used for stimulus presentation during intrinsic
imaging to locate visual cortex and during two-photon imaging.The open-source
StimServer toolbox was used to generate and present visual stimuli via the
Psychtoolbox package [,].

Stimuli for receptive field characterisation comprised a × array of masked high
contrast drifting gratings (v.d. wide; overlapping by %; v.d. per cycle; Hz
drift rate; .Hz rotation rate) presented for  s each in random order, separated
by a blank screen of  s duration, with % luminance (example calcium response
shown in Fig.Sa). Frames were averaged during the  s stimulus window to
estimate the response of a neuron.

Full-field high-contrast drifting gratings (.v.d. per cycle; Hz drift rate) were
presented drifting in one of  directions for  s each in random order, separated by
a  s period of blank screen with % luminance (example calcium response
shown in Fig.Sb). Frames were averaged during the  s stimulus window to
estimate the response of a neuron.

Full-field % contrast drifting sine-wave gratings (v.d. per cycle; Hz drift
rate) were presented drifting in one of  directions for  s each in random order
(calcium responses shown in Fig.S). Full-field drifting plaid stimuli were con-
structed additively from % contrast sine-wave grating components (v.d. per
cycle; Hz drift rate;  s duration; Fig.S). Three frames were averaged following
the peak response ( ms window) to estimate the response of a neuron.

Full-field natural movies consisted of a  s continuous sequence with three seg-
ments (example calcium response shown in Fig.Sc).
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Full-field contrast-oscillating square-wave gratings and plaid stimuli were com-
posed of bars of v.d. width which oscillated at Hz between black and white on
a % grey background, and with a spatial frequency of v.d./cycle (example cal-
cium response shown in Fig.a). On each subsequent oscillation cycle the bars
locations shifted phase by º. Static gratings were used to avoid introducing a
movement component into the stimulus. A base orientation for the gratings of
either horizontal or vertical was chosen, and five orientations spanning ±deg.
around the base orientation were used. Contrast-oscillating plaids were composed
of every possible combination of the five oscillating grating stimuli, giving  grat-
ing and  plaid stimuli for each experiment. A single trial consisted of a blank
period (% luminance screen) presented for  s, as well as presentations of each
of the gratings and plaids for  s each, preceded by  s of a blank % luminance
screen, all presented in random order. Frames from . s to . s during the
stimulus period were averaged to estimate the response of a neuron.

Analysis of calcium transients

Analysis of two-photon calcium imaging data was conducted in Matlab using the
open-source FocusStack toolbox [102]. During acquisition, individual two-
photon imaging trials were visually inspected for Z-axis shifts of the focal plane.
Affected trials were discarded, and the focal plane was manually shifted to align
with previous trials before acquisition continued. Frames recorded from a single
region were composed into stacks, and spatially registered with the first frame in
the stack to correct lateral shifts caused by movement of the animal. Only pixels
for which data was available for every frame in the stack were included for ana-
lysis. A background fluorescence region was selected in the imaged area, such as
the interior of a blood vessel, and the spatial average of this region was subtracted
from each frame in the stack.The baseline fluorescence distribution for each pixel
was estimated by finding the mean and standard deviation of pixel values during
the  s blank periods, separately for each trial. Regions of interest (ROIs) were
selected either manually, or by performing low-pass filtering of the OGB (green)
and sulforhodamine (red) channels, subtracting red from green and finding the
local peaks of the resulting image.
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A general threshold for responsivity was computed to ensure that ROIs con-
sidered responsive were not simply due to neuropil activity. The responses of all
pixels outside any ROI were collected (defined as “neuropil”), and the Z-scores of
the mean (F/F0 responses during single visual stimulus presentations were com-
puted per pixel, against the baseline period. A threshold for single-trial responses
to be deemed significant (ztrial) was set by finding the Z-score which would
include only % of neuropil responses ()= %). A similar threshold was set for
comparison against the strongest response of an ROI, averaged over all trials
(zmax). These thresholds always exceeded , implying that single-trial responses
included for further analysis were at least  standard deviations higher than the
neuropil response. Note that this approach does not attempt to subtract neuropil
activity, but ensures that any ROI used for analysis responds to visual stimuli with
calcium transients that can not be explained by neuropil contamination alone.

The response of AN ROI to a stimulus was found on a trial-by-trial basis by first
computing the spatial average of the pixels in AN ROI for each frame. The mean
of the frames during the blank period preceding each trial was subtracted and
used to normalise responses ((F/F0), and the mean (F/F0 of the frames during
the analysed trial period was computed.The standard deviation for the baseline of
a neuron was estimated over all (F/F0 frames from the long baseline period and
the pre-trial blank periods. ROIs were included for further analysis if the ROI was
visually responsive according to trial Z-scores (maximum response> zmax) and reli-
able (trial response> ztrial for more than half of the trials).The response of a neuron
to a stimulus was taken as the average of all single-trial (F/F0 responses.

Receptive fields of neurons recorded under natural movie and drifting grating
stimulation were characterised by presenting small, masked high-contrast drifting
gratings from a × array, in random order (see above; Fig.Sa). A receptive field
for each neuron was estimated by a Gaussian mixture model, composed of circu-
larly symmetric Gaussian fields (#= .v.d.) placed at each stimulus location and
weighted by the response of the neuron to the grating stimulus at that location.
The centre of the receptive field was taken as the peak of the final Gaussian mix-
ture. Neurons were included for further analysis if the centre of their receptive
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field lay within a .v.d. circle placed at the centre of the natural movie visual
stimulus. Example single-trial and trial-averaged calcium responses to natural
movie stimuli are shown in Fig.Sc.

Response similarity measures and response metrics

The similarity in response between two neurons was measured independently for
grating and plaid stimuli.The set of grating responses for each neuron were com-
posed into vectors R1g and R2 g , where each element of a vector was the trial-
averaged response of a neuron to a single grating orientation. The similarity in
grating responses between two neurons was then given by the Pearson’s correla-
tion coefficient between R1g and R2 g : ρg=corr R1g ,R2 g( ) (see Fig.Sb, inset).
The similarity in response to plaid stimuli was computed analogously over the sets
of trial-averaged plaid responses R1 p and R2 p : ρ p=corr R1 p ,R2 p( ) (see Fig.a,
inset). Similarity was only measured between neurons recorded in the same ima-
ging site.

The similarity between neurons in their responses to movie stimuli (#m) was
measured by computing the signal correlation as follows. The calcium response
traces for a pair of neurons were averaged over trials.The initial  s segment of the
traces following the onset of a movie segment were excluded from analysis, to
reduce the effect of transient signals in response to visual stimulus onset on ana-
lysed responses. The Pearson’s correlation coefficient was then calculated between
the resulting pair of traces (#m; see Fig.Sc, inset). Note that correlations intro-
duced through neuropil contamination were not corrected for, with the result that
the mean signal correlation is positive rather than zero. For this reason we used
thresholds for “high” correlations based on percentiles of the correlation distribu-
tion, rather than an absolute correlation value.

The similarity between neurons in their responses to flashed natural stimuli (#Ca;
Fig.Sf ) was measured as the linear correlation between the vector of responses of
a single neuron to a set of  natural stimuli [].
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The Orientation Selectivity Index (OSI) of a neuron was estimated using the for-
mula OSI= max Rg( )−min Rg( )⎡

⎣⎢
⎤
⎦⎥ sum Rg( ) , where Rg is the set of responses of a

single neuron to the set of grating stimuli. The OSI of a neuron ranges from 
to , where a value of  indicates that a neuron responds only to a single grating
stimulus; a value of  indicates equal, nonselective responses to all grating stimuli.

The Plaid Selectivity Index (PSI) of a neuron, describing how selective a neuron is
over a set of plaid stimuli, was calculated using the formula
PSI=1−−1+ Rp, j max Rp( )j∑⎡

⎣⎢
⎤
⎦⎥ # Rp( )−1⎡
⎣⎢

⎤
⎦⎥ , where # Rp( ) is the number of

stimuli in Rp []. The PSI of a neuron ranges from  to , where a value of 
indicates a highly selective response, where a neuron responds to only a single
plaid stimulus; a value of  indicates equal, nonselective responses to all plaid
stimuli.

A plaid Modulation Index (MI), describing the degree of facilitation or suppres-
sion of a neuron in response to plaid stimuli, was calculated using the formula
MI= max Rp( )−max Rg( )⎡

⎣⎢
⎤
⎦⎥ max Rp( )+max Rg( )⎡
⎣⎢

⎤
⎦⎥ , where Rp is the set of

responses of a single neuron to the set of plaid stimuli []. The MI of a neuron
ranges from – to . Values of MI < indicate stronger responses to grating stimuli
compared with plaid stimuli; values of MI > indicate stronger responses to plaid
stimuli. A value of MI =– indicates that a neuron responds only to grating stim-
uli; a value of MI =  indicates that a neuron responds only to plaid stimuli.

The proportion of facilitating and suppressing neurons was compared between
mouse V and model responses using two-tailed Fisher’s exact tests. The popula-
tion of responsive neurons was divided into three groups: facilitating (MI >.);
suppressing (MI<–.); and non-modulated (–.<= MI <=.). These cat-
egories were arranged into three × contingency tables, with each table tested to
compare facilitation and suppression between mouse V and one model.
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Generation of V1 control responses

We used single-cell, single-trial responses to oscillating contrast grating stimuli to
explore whether we could distinguish between correlated and decorrelated
responses to plaid stimuli, given experimental variability and noise. For each cell
in the experimentally-recorded data set, we used the set of grating responses Rg to
generate plaid responses Rp for the same cell, under the assumption that the
response to a plaid was linearly related to the sum of the responses to the two
grating components. For each plaid, we randomly selected a single-trial response
for each of the grating components of the plaid. The predicted single-trial plaid
response was the sum of the two grating responses. We generated  bootstrap
samples for each experimental population, with each sample consisting of the
same number of trials and neurons as the experimental population. We then
quantified the relationship between grating and plaid responses as described for
the experimental data.

Statistical methods

We used a sample size commensurate with those used in the field, and sufficient
for statistical analysis of our observations. No explicit sample size computation
was performed.

Two-sided, non-parametric statistical tests were used unless stated otherwise in
the text.
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Tables

Table 1: Summary of nominal model parameters and model variables. Abbreviations: Exc:

Excitatory; Inh: Inhibitory; Prop: proportion.
Parameter Description Nominal value

τi Lumped neuron time constant for neuron i 10ms

g j
Nominal charge injected by synapses from 
neuron j

Exc.: 0.01 pC/ spike / synapse
Inh.:10×0.01 pC/ spike / synapse

α j
Nominal output gain of neuron j 0.066 spikes /pC

ni , j
Number of synapses made from neuron j to neuron i

β j
Threshold of neuron j Zero

σi⋅ζi t( ) Noise current injected into neuron i. Wiener 
process with std. dev. σi  after 1 sec.

σi =5 mA

NN
Number of neurons in simulation 80,000 (10% of cortical density)

Prop. inh. Proportion of inhibitory neurons 18%
Dimensions of simulated torus space 2.2×2.2mm

Si
Nominal number of synapses made by neuron 
i (within superficial layers only)

Exc.: 8142 Inh.: 8566

σd ,i
Std. Dev. of Gaussian dendritic field of neuron
i

75µm (approx. width 300µm)

σa ,i
Std. dev. of Gaussian axonal field of neuron i Exc.: 290µm (approx. width 1100µm)

Inh.: 100µm (approx. width 400µm)
κi Input orientation tuning width parameter for 

neuron i
4

s1 Degree of like-to-like modulation of anatomical connection probability

s2
Degree of feature-binding modulation of connection probability

κ1
Orientation tuning of like-to-like connection probability

κ2
Orientation tuning of subnetwork membership probability

NS
Number of subnetworks that exist at a point in cortex

ϑ Number of preferred orientations bound in an subnetwork

Table 2: Parameter values used to specify large-scale network models.
Network configuration Parameter values

Random connectivity model s1 =0, s2 =0
Like-to-like specificity model s1 =0.8, s2 =0, κ1 =0.5
Feature-binding specificity model s1 =0.1, s2 =0.25, κ1 =0.5, κ2 =4, NS =6, ϑ =2
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