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In mouse primary visual cortex (V), local excitatory connections are more
prevalent, stronger and larger between neurons that share similar functional
response features. However, the extent to which rules for local cortical con-
nection specificity shape visual responses, as well as full details relating
structure and function both remain unknown. We considered whether com-
plex responses to plaid stimuli in mouse V could be explained by one of
two alternative connectivity schemes: whether local connections are aligned
with simple feedforward visual properties, or whether local connections
group across feedforward visual properties. Using a combined experimental
and computational approach, we found that responses to plaid stimuli in
mouse V were best explained by a connectivity scheme which binds mul-
tiple feedforward visual properties. Our results show that feature binding
can occur through a recurrent mechanism not requiring feedforward con-
vergence; such a mechanism is consistent with visual responses in mouse V.
[ /  words]

Much of our current understanding of local cortical connectivity is based on the
presumption of randomness. Anatomical methods for estimating connection
probabilities (Binzegger et al. ; Braitenberg and Schüz ) and techniques
for using anatomical reconstructions to build models of cortical circuits (Hill et al.
; Binzegger et al. ; Ramaswamy et al. ; Markram et al. ;
Reimann et al. ) are largely based on the assumption that connections
between nearby neurons are made stochastically in proportion to the overlap
between axonal and dendritic arborisations (Peters ).

On the other hand, a wealth of evidence spanning many cortical areas and several
species indicates that cortical connectivity is not entirely random. In species that
display smooth functional maps in visual cortex, long-range intrinsic excitatory
connections tend to connect regions of similar function ( Juliano et al. ;
Malach et al. ; Bosking et al. ; Muir et al. ; Martin et al. ).
Rodents exhibit a mapless “salt and pepper” arrangement of function across cortex
(Ohki et al. ), but non-random connectivity is nevertheless prevalent both
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within and between cortical layers (Yoshimura et al. ; Yoshimura and
Callaway ; Perin et al. ; Kampa et al. ; Yu et al. ), and reflects
similarities in functional properties (Ko et al. ; Ko et al. ; Li et al. ;
Cossell et al. ; Lee et al. ) or projection targets (Brown and Hestrin
; Morishima et al. ). Considerable non-random structure has also been
described in patterns of anatomical connectivity across several species (Sporns
and Kötter ; Song et al. ).

Thus, specificity of cortical connections among excitatory neurons is an important
feature of local circuitry, and is likely to be influential in determining the func-
tional response properties of cortical neurons (Cossell et al. ; Muir and
Mrsic-Flogel ). However, the impact of specific excitatory connectivity on
network representations of sensory inputs and information processing has not
been addressed experimentally or through theory. It remains an open question
how the arrangement of local recurrent connections affect cortical representations.

Despite multiple descriptions of specific connectivity in cortex, the rules underly-
ing the configuration of these connections are not entirely clear. Whereas strong
connections are more prevalent between neurons with similar receptive fields, the
majority of synaptic connections are made between neurons with poorly-correl-
ated receptive fields and poorly correlated responses (Cossell et al. ).This sea
of weak synaptic inputs might be responsible for feature non-specific depolarisa-
tion (Cossell et al. ) or might permit plasticity of network function (Song et
al. ). However, another possibility is that weaker connections underly higher-
order connectivity rules that have not yet been described.

For example, recent results show that responses to compound visual stimuli (e.g.
plaid stimuli composed of two grating components) can be selective and highly
complex in mouse V (Muir et al. ).This could be explained by rules for local
excitatory connections in cortex that are not simply tuned to feedforward
response properties, but which specifically group neurons with different preferred
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orientations. Alternatively, local connections might be aligned with feedforward
response properties but be broadly tuned, such that many synapses are made
between neurons with weakly similar responses.

We explored these two alternatives by simulating large networks with local con-
nectivity rules that either aligned with feedforward response properties, or
differed from feedforward responses. We then tested predictions from these
models in mouse V, by recording responses to grating, plaid and natural stimuli.
We found that the complexity of plaid responses in mouse V was reproduced
when local connections cut across feedforward response properties, by grouping
neurons with different preferred orientations.

Our results suggest that local excitatory connections within mouse V are formed
with respect to complex or compound visual response properties, such that they
do not necessarily align with simpler feedforward properties.This pattern of con-
nectivity would allow subnetworks in V to detect particular configurations of
visual stimuli, and might be used to tune visual cortex to the complex statistics of
natural vision.

Results

Responses to plaid stimuli are selective and facilitatory in mouse 
V1

We considered that the configuration of local recurrent connections in cortex
might differently process simple and compound visual stimuli. It is therefore
important to understand the relationship between responses to grating and plaid
stimuli in visual cortex.

Recent reports have highlighted the facilitatory and selective nature of plaid
responses in mouse primary visual cortex ( Juavinett and Callaway ; Muir et
al. ). Most neurons in mouse V respond to plaid stimuli as a simple super-
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imposition of their response to the two underlying grating components (i.e. “com-
ponent cell” responses; (Movshon et al. )). However, a significant proportion
of neurons that are visually responsive, reliable and selective exhibit complex
responses to plaid stimuli that are difficult to explain with respect to simple com-
binations of grating components (Muir et al. ). Plaid stimuli are often con-
structed from a single choice of relative component angle (º orthogonal grat-
ings), leaving open the possibility that a richer set of plaid stimuli would help to
classify neurons with these complex responses.

Accordingly, we probed mouse V with grating component stimuli composed of
grating stimuli with  drift directions, and three full sets of plaid stimuli com-
posed of º, º and º relative grating component orientations. We recorded
responses from layer / neurons using two-photon imaging of animals with viral
delivery of GCaMPm (Fig. a–f;  animals,  sessions,  / respons-
ive / imaged neurons; see Methods). Visual responses to the full set of plaid stim-
uli were dominated by facilitation , and were significantly more facilitatory than
when considering only the set of º plaids (Fig. g; median modulation index MI
.±[. .] vs .±[-. .]; p< ⨉–, Wilcoxon rank-sum;
all following values are reported as median±% bootstrap CI unless stated oth-
erwise). Responses to the full set of plaid stimuli were highly selective; signific-
antly more selective than predicted by a component model (Fig. h; median PSI
.±[. .] vs .±[. .]; p< ⨉–, Wilcoxon rank-sum) and
indeed significantly more selective than responses to the º plaids alone (Fig. h;
median º PSI .±[. .]; p< ⨉– vs all plaids, Wilcoxon rank-sum).

Therefore, probing visual cortex with a dense set of plaid stimuli does not make
responses to compound stimuli more comprehensible—instead, responses are
more facilitatory and more selective.This suggests that using more plaid combina-
tions gives a more accurate characterisation of the response properties of indi-
vidual neurons.

**** FIGURE  NEAR HERE ****
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Local excitatory connections in cortex are broadly tuned for 
preferred orientation

How are selective responses to plaid stimuli generated in V? One possibility is
that specific grating component representations are combined through local excit-
atory connectivity (Muir et al. ). Synaptic connection probability in
mouse V is enhanced by similarity of orientation preference (Ko et al. ; Li et
al. ; Lee et al. ), suggesting that local excitatory connections may group
together neurons with common preferred orientations. Connection probability is
even more strongly modulated by neuronal response correlations to natural
movies; i.e., the likelihood for a synaptic connection is higher for neuronal pairs
responding similarly to natural scenes (Ko et al. ; Ko et al. ; Cossell et al.
).

We recorded responses to natural movie and drifting grating stimuli in popula-
tions of neurons in mouse V ( animals,  / responsive neurons with over-
lapping receptive fields / imaged neurons; see Fig. b–d). We found that neurons
with high correlations to natural scenes, which are most likely to be connected in
cortex (Ko et al. ; Ko et al. ; Cossell et al. ), showed only a weak
tendency to share similar orientation preferences (Fig.a–b; pairs with OSI>.;
p=., Kuiper’s test). This is consistent with earlier findings in cat area  (V),
which showed a poor relationship between responses to gratings and natural
movies (Martin and Schröder ).

**** FIGURE  NEAR HERE ****

We compared response correlations and preferred orientation between pairs of
neurons which were known to be connected, from in vivo / in vitro characterisa-
tion of function and connectivity between neurons in mouse V (data from (Cos-
sell et al. ) used with permission;  animals,  patched and imaged cells, 
connections). Consistent with our results comparing responses to gratings and
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natural movies, connected pairs of cells with similar orientation preference were
not more likely to share a high signal correlation to flashed natural scenes (Fig.c;
p=., Kuiper’s test). Also consistent with earlier findings (Ko et al. ; Li et al.
), we observed a relationship between synaptic connectivity and similarity of
orientation preference (Fig.d; p=., Ansari-Bradley test). However, strongly
connected pairs (strongest % of EPSPs over connected pairs) were not more
similar in their preferred orientation than more weakly connected pairs (p=.,
Ansari-Bradley test). Connected pairs spanned a wide bandwidth of preferred
orientations, with more than % of connections formed between neurons with
orthogonal preferred orientations. Spatial correlation of receptive fields is a com-
paratively better predictor for synaptic connectivity than preferred orientation, but
a majority of synaptic inputs are nevertheless formed between neurons with
poorly- or un-correlated responses (Cossell et al. ).

This weak functional specificity for similar visual properties can be explained by
two possible alternative connectivity rules. In the first scenario, local excitatory
connections in cortex are aligned with feedforward visual properties, but with
broad tuning (Fig.e; a “like-to-like” rule). As a consequence, all connections
show an identical weak bias to be formed between neurons within similar tuning,
and the average functional specificity reported in Fig.d and elsewhere (Ko et al.
; Cossell et al. ) reflects the true connection rules between any pair of
neurons in cortex.

Alternatively, local excitatory connections may be highly specifically tuned but
follow rules that are not aligned with feedforward visual properties (Fig.f; a “fea-
ture-binding” rule). If measurements of functional specificity were made pair-wise
and averaged across a large population, any specific tuning shared within groups
of neurons would therefore be averaged away and appear as a sea of random con-
nections. For example, subpopulations of excitatory neurons might share a small
set of feedforward visual properties; in this case, connections within a subpopula-
tion could still be highly specific, but this specificity would not be detected
through purely pairwise measurements.


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The statistics of subnetwork connectivity shape cortical 
representations

We first explored the conceptual consequences of specific excitatory connectivity
rules in a non-linear, rate-based network model incorporating realistic estimates
for recurrent excitatory and inhibitory connection strength in layers  / of
mouse V (“analytical model”). This small model consisted of four excitatory and
one inhibitory neuron with homogenous connectivity, designed to be equivalent
to a much larger model with stochastic synaptic connectivity (see Methods). As is
expected to be the case for cortical circuitry, our model required inhibitory feed-
back to maintain stability (an inhibition-stabilised network or ISN; Figure
—Figure supplement ; (Tsodyks et al. ; Ozeki et al. ); but see (Atal-
lah et al. )).

We found that non-random connectivity, in the form of specific excitatory con-
nections within subnetworks (Yoshimura et al. ; Kampa et al. ), intro-
duced selective amplification within subnetworks and competition between sub-
networks (Fig.). Surprisingly, these computational mechanisms could be strongly
expressed even when only relatively small proportions of synapses were made to
be subnetwork-specific, but neither selective amplification nor competition were
present without specific synaptic connectivity (Fig.c; Figure —Figure supple-
ment ).

**** FIGURE  NEAR HERE ****

We next examined the impact of “like-to-like” and “feature-binding” rules on
responses in our analytical model. The excitatory network was partitioned into
two subnetworks; connections within a subnetwork corresponded to selective local
excitatory connectivity within rodent V. Under a “like-to-like” rule, neurons with
similar preferred orientations were grouped into subnetworks (Fig.a–b). We
tested the response of this network architecture to simulated grating and plaid
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stimuli, by injecting currents into neurons according to the similarity between the
orientation preference of each neuron and the orientation content of a stimulus.
Under the “like-to-like” rule, responses of pairs of neurons to simple grating stim-
uli and more complex plaid stimuli were highly similar (Fig.a–b; “like-to-like”).
Amplification occurred within subnetworks of neurons with the same preferred
orientation, and competition between subnetworks with differing preferred ori-
entation (Douglas et al. ; Sadeh et al. ).

**** FIGURE  NEAR HERE ****

Alternatively, we configured the network such that the rules for local excitatory
connectivity did not align with feedforward visual properties (a “feature-binding”
rule). We configured subnetworks by grouping neurons showing preference for
either of two specific orientations (Fig.c–d). When this “feature-binding” con-
nectivity rule was applied, neuronal responses to grating and plaid stimuli differed
markedly (Fig.c vs d). Selective amplification was now arrayed within popula-
tions of neurons spanning differing orientation preferences, and competition
occurred between subnetworks with different compound feature preferences.
Importantly, a “feature-binding” rule implies that neurons with the same preferred
orientation could exist in competing subnetworks. While their responses to a
simple grating of the preferred orientation would be similar and correlated
(Fig.c; high "g), the same two neurons would show decorrelated responses to a
plaid stimulus (Fig.d; low "p).

Functional differences in connectivity statistics are detectable in 
large networks

The results of our simulations of small networks suggest that rules for non-
random local connectivity can have a profound influence on the pattern of net-
work activation following an external stimulus.The question remains whether the


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differences in representation induced by “like-to-like” compared with “feature-
binding” connection rules will be detectable in large networks with realistic struc-
ture, and in visual cortex in vivo.

We therefore investigated how the type of connection specificity affects stimulus
representations in a large-scale non-linear, rate-based model of the superficial
layers of mouse V, consisting of , neurons (of which approximately %
were inhibitory; (Gabott and Somogyi ); see Table  for all parameters used
in these models). Non-spiking linear-threshold neuron models provide a good
approximation to the F–I curves of adapted cortical neurons (Ermentrout );
model neurons with linear-threshold dynamics can be directly translated into
integrate-and-fire models with more complex dynamics (Neftci et al. ; Neftci
et al. ), and in addition form good approximations to conductance-based
neuron models (Shriki et al. ).

Our model included realistic estimates for connection strength and connection
sparsity in mouse V, and a random salt-and-pepper arrangement of orientation
preference as reported for rodent V (Ohki et al. ). We defined connection
rules for sparse stochastic connectivity based primarily on overlap of dendritic and
axonal fields, modulated by connectivity rules designed to test the difference
between “like-to-like” and “feature-binding” schemes. We quantified response
similarity between pairs of neurons as suggested by the results of the small net-
work simulations: by measuring response similarity over a set of grating stimuli
("g), and separately over a set of plaid stimuli ("p computed as for experimental
responses; Fig. c, e).

In the network that implemented a “like-to-like” connection rule for recurrent
excitatory connectivity (Fig.a–d), pairs of neurons showed similar responses to
both grating and plaid stimuli (Fig.d; R=. between "g and "p), in agreement
with the analytical model of Fig..

**** FIGURE  NEAR HERE ****


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However, in the network that implemented a “feature-binding” connection rule,
where in addition to spatial proximity and similarity in preferred orientation sub-
networks were defined to group neurons of two distinct preferred orientations
(Fig.e–h), neurons showed decorrelation in response to plaid stimuli (Fig.h,
R=. between "g and "p).

Consistent with our analytical models, networks including random excitatory
connectivity without any specificity did not give rise to decorrelation (Figure
—Figure supplement d; R=. between "g and "p). Inhibitory responses were
untuned in our simulations (Fig.c, g), in agreement with experimental observa-
tions of poorly-tuned inhibition in mouse V (Bock et al. ; Hofer et al. ;
Kerlin et al. ; Liu et al. ).

Different configurations of local recurrent excitatory connectivity produced by
“like-to-like” or “feature-binding” rules can therefore be detected in large net-
works, by comparing responses to simple and compound stimuli.

Visual responses in mouse V1 are consistent with “feature-binding”
connection rules

Our analytical network results show that in principle, whether local excitatory
connections align with feedforward visual properties or span across feedforward
visual properties, has a drastic effect on visual representations (Fig.). Our large-
scale simulations show that these effects can be detected in large networks as
differences in pairwise responses to simple and compound visual stimuli (Fig.).
Responses to plaid stimuli in mouse V suggest that a stimulating with a denser
sampling of compound stimulus space leads to a better characterisation of
response selectivity (Fig. ). Accordingly, we probed responses in mouse V under
stimuli analogous to those used in the model simulations, with a dense coverage
of plaid combinations over a set of finely-varying grating orientations.
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Using two-photon calcium imaging, we recorded responses of populations of
OGB-labelled neurons in mouse V to a set of contrast-modulated oriented grat-
ing stimuli over a range of orientations, as well as the responses to the set of plaid
stimuli composed of every possible pair-wise combination of the oriented grating
stimuli (Fig.;  animals,  sessions,  / responsive / imaged neurons).

**** FIGURE  NEAR HERE ****

We found that consistent with previous reports (Muir et al. ), responses to
grating stimuli did not well predict responses to plaid stimuli. Pairs of neurons
with similar preferred orientation but with highly differing responses to plaid
stimuli were common (Fig.a, b; R=. between "g and "p; OSI >.). The
degree of decorrelation we observed in mouse V was consistent with our “feature-
binding” model, and considerably higher than predicted by the “like-to-like”
model (Fig.d).

Decorrelation induced by plaid responses and the lack of a relationship between
grating and plaid responses in mouse V were not a result of unreliable or noisy
responses in vivo. We included in our analysis only neurons that were highly reli-
able, and responded significantly more strongly than the surrounding neuropil
(see Methods). As a control, we used experimentally recorded responses to grating
stimuli to generate synthetic plaid responses for mouse V that would result from
a cortex with like-to-like subnetwork connectivity (Fig.c, inset; see Methods).
Our control data were generated from single-neuron, single-trial responses collec-
ted from mouse V, and therefore included the same trial-to-trial variability as
exhibited by cortex.This control analysis indicates that if neurons connected only
according to a “like-to-like” rule, cortex would exhibit highly related grating and
plaid responses (Fig.c; median R=.±[. .] between "g and "p;
n= bootstrap samples) which are very different to the decorrelated responses
we observed experimentally (p<., Monte-Carlo test).
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Importantly, this control analysis is not restricted to our “like-to-like” rule, but
makes similar predictions of highly related grating and plaid responses for any
arbitrary model that combines grating components to produce a plaid response, as
long as that rule is identical for every neuron in the network (Muir et al. ).
This is because if a single consistently-applied rule exists, then any pair of neurons
with similar grating responses (high "g) will also exhibit similar plaid responses
(high "p). In contrast, neurons that are connected within our “feature-binding”
model combine different sets of grating components, depending on which subnet-
work the neurons are members of.

Neurons in mouse V exhibited a wide range of facilitatory and suppressive
responses to plaid stimuli, roughly equally split between facilitation and suppres-
sion (Fig.e, f; % vs %; MI >. and MI <–.).The proportion of facilitat-
ing and suppressing neurons in mouse V was similar to that exhibited by
responsive neurons in our “feature-binding” (F.B.) model (Fig.f; V versus F.B.,
p=.; two-tailed Fisher’s exact test, nV1 =, nF.B. =). In contrast, neither the
“like-to-like” model (L-to-L) nor a model with random non-specific connectivity
(Rnd) exhibited significant facilitation in responsive neurons, and both were sig-
nificantly different from the distribution of facilitation and suppression in
mouse V (Fig.f; p<. in both cases; two-tailed Fisher’s exact test,
nL-to-L = , nRnd = ).

Discussion

Whereas feedforward mechanisms for building receptive fields in visual cortex
have been extensively studied, it is not well understood how receptive fields are
shaped by local recurrent connections. We hypothesised that the configuration of
local recurrent cortical connectivity shapes responses to visual stimuli in mouse V,
and examined two alternative scenarios for local connection rules: essentially,
whether local excitatory connections are made in accordance with feedforward
visual properties (“like-to-like”; Fig.e), or whether local excitatory connections
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span across feedforward visual properties to group them (“feature-binding”;
Fig.f ). We found that highly selective and facilitatory responses to plaid stimuli
observed in mouse V (Fig. , Fig.; (Muir et al. )) are consistent with tuning
of recurrent connections within small cohorts of neurons to particular plaid com-
binations. Moreover, responses in mouse V are inconsistent with a simple config-
uration of cortical connections strictly aligned with feedforward visual responses. 

Amplification and competition; facilitation and suppression

Our theoretical analysis and simulation results demonstrate that non-random
excitatory connectivity affects the computational properties of a cortical network
by introducing amplification and competition between subnetworks of excitatory
neurons (Fig.). Several recent studies have demonstrated that visual input is
amplified within the superficial layers of cortex (Li et al. ; Lien and Scanziani
; Li et al. ), and recent results from motor cortex suggest competition
between ensembles of neurons (Zagha et al. ). Our modelling results indic-
ated that some form non-random local excitatory connectivity is required for such
amplification to occur through recurrent network interactions, under reasonable
estimates of anatomical and physiological parameters for rodent cortex (Fig.;
Figure —Figure supplement ).This still leaves in question whether the particu-
lar configuration of non-random excitatory connectivity plays a role.

Our simulation results showed that the effects of amplification and competition
on cortical responses are tuned to the statistics of local connectivity. This implies
that stimuli matching the statistics of a subnetwork will undergo stronger ampli-
fication than non-matching stimuli (Figure —Figure supplement ). In our “fea-
ture-binding” model, the statistics of subnetwork connectivity were well described
by plaid stimuli. As a result, plaid stimuli give rise to stronger amplification than
single grating components alone, if the composition of the plaid matches the
composition of a particular subnetwork. This leads to a facilitatory effect, where
some neurons show stronger responses to plaid stimuli than to the grating com-
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ponents underlying the plaid stimuli. Conversely, competition between subnet-
works leads to weaker responses to some plaid stimuli, for neurons that “lose” the
competition. Competition could therefore be one cortical mechanism underlying
cross-orientation suppression in response to plaid stimulation.

In contrast, suppression in the “like-to-like” and “random” models occur because
the energy in the stimulus is spread across two grating components, and is not
combined by the network to form strong plaid selectivity. In the “like-to-like”
model, competition occurs between representations of the two oriented grating
components of the plaid, causing additional suppression. The presence of ampli-
fied, strongly facilitating plaid responses in mouse V is therefore consistent with
the existence of subnetworks representing the conjunction of differently-oriented
edges.

Detecting feature-binding connectivity rules in cortex

We found that the precise rules that determine local connections among neurons
in cortex can strongly affect the representation of visual stimuli. The “feature-
binding” rule we examined embodies the simplest second-order relationship
between connectivity and preferred orientation, and was chosen for this reason.
We cannot rule out more complicated connectivity rules as being present in
mouse V, but we have shown that a simple “like-to-like” rule cannot explain
responses to plaid visual stimuli. Random, non-specific connections were also
unable to explain complex plaid responses in mouse V (Figure —Figure supple-
ment ).

How can the detailed statistics of “feature-binding” rules be measured in cortex?
Existing experimental techniques have been used to measure only first-order
statistical relationships between function and cortical connectivity (Kampa et al.
; Ko et al. ; Bock et al. ; Li et al. ; Ko et al. ; Cossell et al.
). Unfortunately, current technical limitations make it difficult to measure
more complex statistical structures such as present under a “feature-binding” con-
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nectivity rule. Simultaneous whole-cell recordings are typically possible from only
a small numbers of neurons, thus sparsely testing connectivity within a small
cohort. Even if simultaneous recordings of up to  neurons are used (Perin et al.
), identifying and quantifying higher-order statistics in the local connectivity
pattern is limited by the low probability of finding connected excitatory neurons
in cortex.

In addition, our results highlight that small changes in the statistics of local con-
nectivity can have drastic effects on computation and visual coding. Introducing a
small degree of specificity such that % of synapses are made within an excitat-
ory subnetwork is sufficient to induce strong specific amplification and strong
competition to the network, even though % of the synapses are made randomly
(Fig.). Under our “feature-binding” model % of synapses are made randomly;
approximately % are made under a “like-to-like” rule and the remaining % are
used to bind visual features. Clearly, detecting the small proportion of synapses
required to implement feature binding in V will be difficult, using random ana-
tomical sampling techniques.

A recent study approached this question using a novel pre-synaptic labelling tech-
nique to functionally characterise the presynaptic inputs to single superficial-layer
neurons in mouse V (Wertz et al. ). Consistent with our results for preferred
orientation (Fig.c, d), they found that presynaptic inputs were similarly tuned as
target neurons but over a wide bandwidth.The majority of synaptically connected
networks were tuned for multiple orientation preferences across cortical layers,
similar to the feature-binding networks in our study.

We implemented an alternative approach, by inferring the presence of higher-
order connectivity statistics from population responses in cortex. This technique
could be expanded experimentally, by presenting a parameterised battery of simple
and complex stimuli. Stimuli close to the configuration of local connectivity rules
would lead to maximally strong facilitation and competition within the cortical
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network. Importantly, our results strongly suggest that simple stimuli alone are
insufficient to accurately characterise neuronal response properties in visual
cortex.

Building plaid responses from convergence of simple feedforward 
inputs

Could the complexity of plaid texture responses in mouse V be explained by con-
vergence of differently tuned feedforward inputs from layer  onto single layer /
neurons, similar to the proposed generation of pattern-selective responses in
primate MT (Movshon et al. ; Rust et al. )? Building plaid responses in
this way would imply that layer / neurons would respond to multiple grating
orientations, since they would receive approximately equal inputs from at least
two oriented components. However, layer  and layer / neurons are similarly
tuned to orientation in rodent V (Niell and Stryker ; Medini ), in con-
flict with this feedforward hypothesis.

In addition, if responses to complex stimuli were built by feedforward combina-
tion of simple grating components, then the response of a neuron to the set of
grating stimuli would directly predict the plaid response of that neuron. This
would then imply that two neurons with similar responses to plaid stimuli must
have similar responses to grating stimuli. However we found this not to be the
case; two neurons with similar responses to grating components often respond
differently to plaid textures or to natural scenes (Fig.a; Fig.a,b; (Muir et al.
)).

Inhibitory connectivity and physiology

Non-specific connectivity between excitatory and inhibitory neurons, as assumed
in our simulation models, is consistent with the concept that inhibitory neurons
simply integrate neuronal responses in the surrounding population (Mariño et al.
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), and consistent with experimental observations of weakly- or un-tuned
inhibition in rodent visual cortex (Liu et al. ; Kerlin et al. ; Bock et al.
; Hofer et al. ; Atallah et al. ). Although specific E↔I connectivity
has been observed in rodent cortex (Yoshimura and Callaway ), the majority
of E↔I synapses are likely to be made non-specifically in line with the high con-
vergence of E→I and I→E connections observed in cortex (Fino and Yuste ;
Bock et al. ; Hofer et al. ).

In our models, shared inhibition is crucial to mediate competition between excit-
atory subnetworks (Fig.; Fig.); inhibition is untuned because excitatory inputs
to the inhibitory population are pooled across subnetworks. Poorly tuned inhibi-
tion, as expressed by the dominant class of cortical inhibitory neurons (parvalbu-
min expressing neurons), therefore plays an important computational role and is
not merely a stabilising force in cortex.

Other inhibitory classes in cortex (e.g. somatostatin or vaso-intestinal peptide
expressing neurons) have been shown to exhibit feature-selective responses (Ma et
al. ; Kerlin et al. ; Wilson et al. ). Recent computational work
examined the influence of multiple inhibitory classes with different physiological
and anatomical tuning properties in a model for rodent cortex, including a net-
work with specific, orientation-tuned inhibitory connectivity, examining the
effects on divisive and subtractive normalisation of network activity (Litwin-
Kumar et al. ). They found that specific inhibitory feedback could lead to
divisive normalisation of network activity, while non-specific inhibitory feedback
could lead to subtractive normalisation.

However, the computational role played by specific inhibition is likely to rest on
the precise rules for connectivity expressed between excitatory and inhibitory
neurons. If the rules for E↔E and E↔I connections align, then a specific inhibit-
ory population could act as a break on excitation within a subnetwork, and could
allow more specific anatomical connectivity to persist while maintaining the bal-
ance between excitation and inhibition in cortex. The functional profile of this
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balancing pool would be highly tuned, and be similar to that of the excitatory
neurons in the subnetwork, suggesting a physiological signature of specific inhib-
itory feedback that could be sought experimentally. Alternatively, if E↔I connec-
tion rules result in counter-tuned specificity, these connections would act to
strengthen competition between subnetworks.

Development of non-random connectivity is likely to embed 
natural scene statistics from visual experience

In visual cortex of primates, carnivores and rodents, orientation tuning develops
before postnatal eye opening and in the absence of visual experience (White and
Fitzpatrick ; Rochefort et al. ). Local recurrent connections develop
after the onset of visual experience and maintain their plasticity into adulthood
(White and Fitzpatrick ; Galuske and Singer ; Luhmann et al. ;
Luhmann et al. ; Katz and Callaway ; Miller et al. ). Statistical
correlations in natural scenes might therefore lead to wiring of subnetworks under
an activity-dependent mechanism such as spike-time dependent plasticity
(STDP) (Kampa et al. ; Markram et al. ; Clopath et al. ; Litwin-
Kumar and Doiron ; Sadeh et al. ). Along these lines, recent examina-
tions of the development of specific excitatory connections after eye opening
found that similarities in feedforward input were progressively encoded in specific
excitatory connections (Ko et al. ).

We expect that, as the specificity of lateral connections forms during develop-
ment, the emergence of compound feature selectivity will gradually occur after the
onset of sensory experience. This hypothesis is consistent with experience-
dependent development of modulatory effects due to natural visual stimulation
outside of the classical receptive field, as has been observed in mouse V (Pecka et
al. ). While a complete factorial combination of all possible features occur-
ring in natural vision is clearly not possible, presumably the most prominent
statistical features of cortical activity patterns would be prioritised for embedding
through recurrent excitatory connectivity. At the same time, competition induced
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by non-specific shared inhibition will encourage the separation of neurons into
subnetworks. In our interpretation, single subnetworks would embed learned rela-
tionships between external stimulus features into functional ensembles in cortex,
such that they could be recovered by the competitive mechanisms we have
detailed.This network architecture would then permit cortex to combine relevant
components of the complex and ambiguous natural environment, and recover an
interpretation that is consistent with learned statistical properties of the sensory
world.

In pre-frontal cortex, compound or mixed selectivity of single neurons to com-
binations of task-related responses occurs often, and facilitates efficient decoding
of arbitrary decision-related variables (Rigotti et al. ; Raposo et al. ).
Binding feedforward cortical inputs into compound representations, as occurs in
our “feature-binding” model, is therefore a useful computational process with gen-
eral applicability. We propose that specific local excitatory connectivity is a gen-
eral circuit mechanism for shaping information processing in cortical networks.

Materials and Methods

In-vivo calcium imaging

Experimental procedures followed institutional guidelines and were approved by
the Cantonal Veterinary Office in Zurich or the UK Home Office. Procedures for
urethane anaesthesia, craniotomies, bulk loading of the calcium indicator, as well
as for in vivo two-photon calcium imaging and in vitro recording of synaptic con-
nection strength were the same as described previously (Kampa et al. ; Roth
et al. ; Cossell et al. ; Muir et al. ).

Preparation and imaging with OGB Male and female three-month old wild
type CBL/ mice were sedated with chlorprothixene (mg/ml in Ringer solu-
tion; .ml per g by weight) then anaesthetised with urethane (% in iso-
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tonic saline; initial dose .ml per g by weight; supplemented as required to
maintain anaesthesia). The body temperature of anaesthetised animals was mon-
itored and controlled using a heating pad and rectal thermometer. Atropine was
given to reduce secretions (.ml per g by weight). Intrinsic optical imaging
was used to locate primary visual cortex, and a craniotomy was made over V.

We performed bulk loading of the synthetic calcium indicator Oregon Green-
BAPTA– (OGB–; Invitrogen). Several acute injections of OGB––AM were
made under visual guidance into the visual cortex (Fig. a; (Stosiek et al. )).
Sulforhodamine (SR–; Invitrogen) was applied topically to the pial surface, to
provide labelling of the astrocytic network (Nimmerjahn et al. ). Time-series
stacks recording activity in layer / cortical neurons were acquired at a –Hz
frame rate with a custom-built microscope equipped with a × objective
(LUMPlanFl/IR, NA .; Olympus) and an MHz pulsed Ti:Sapphire excita-
tion laser (MaiTai HP; Spectra Physics, Newport). Acquisition of calcium transi-
ents was performed using custom-written software in LabView (National Instru-
ments), and analysis was performed using the open-source FocusStack toolbox
(Muir and Kampa ).

*** FIGURE 7 NEAR HERE ***

Preparation and imaging with GCaMP Adult male mice (P–P) were ini-
tially anesthetized with –% isoflurane in O2 and maintained on .–% during
the surgical procedure.The primary visual cortex (V) was localized using intrinsic
imaging. Briefly, the skull above the estimated location of V was thinned and we
illuminated the cortical surface with nm LED light, presented drifting grat-
ings for  s, and collected reflectance images through a × objective with a CCD
camera (Toshiba TELI CSDCL).

A craniotomy of –mm was opened above the region of strongest intrinsic signal
response, which we assumed to be centred over V. We then injected the genetic-
ally encoded calcium indicator GCaMPm (Chen et al. )
(AAV.Syn.GCaMPm.WPRE.SV; UPenn) around µm below the cortical
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surface to target superficial layer neurons. – injections were made in a single
animal and a volume of approximately nl was injected at each location. The
craniotomy was sealed with a glass window and a metal post for head fixation was
implanted on the skull with dental acrylic, contralateral to the cranial window. For
several days after implantation, animals were handled to reduce stress during
experiments.

For imaging, animals were anaesthetised with isoflurane at % for induction, then
head fixed. Isoflurane concentration was lowered to .–.% during the experi-
ment. We maintained the animal’s body temperature at ºC using a rectal ther-
mometer probe and a heating pad placed under the animal. Silicon oil was applied
to the eyes to keep them moist.

In vivo / in vitro characterisation of function and connectivity Methods for
obtaining visual responses in vivo and measuring synaptic connectivity in vitro are
described in (Cossell et al. ). Briefly, young C/BL mice (P–) were
anaesthetised (fentanyl, midazolam and medetomidine) and injected with OGB
calcium indicators, lightly anaesthetised with isoflurane (.–.%) and head
fixed. Two-photon imaging of calcium responses was used to record the response
of neurons to a sequence of natural images ( individual images). After in vivo
imaging experiments, simultaneous whole-cell recordings of up to six neurons at a
time were performed in vitro. Evoked spikes and recorded EPSPs were used to
identify synaptically connected pairs of neurons.

Visual stimulation

Visual stimuli for receptive field characterisation, drifting gratings and plaids and
masked natural movies were provided by an LCD monitor (.×. cm; BenQ)
placed – cm from the eye of the animal and covering approximately ×
visual degrees (v.d.; Fig. a). The monitor was calibrated to have a linear intensity
response curve. Contrast-oscillating grating and plaid stimuli were presented on
an LCD monitor (.×. cm; Xenarc) placed  cm from the eye of the animal
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and covering ×v.d. The same screen was used for stimulus presentation
during intrinsic imaging to locate visual cortex and during two-photon imaging.
The open-source StimServer toolbox was used to generate and present visual
stimuli via the Psychtoolbox package (Kleiner et al. ; Muir and Kampa
).

Stimuli for receptive field characterisation comprised a × array of masked high
contrast drifting gratings (v.d. wide; overlapping by %; v.d. per cycle; Hz
drift rate; .Hz rotation rate) presented for  s each in random order, separated
by a blank screen of  s duration, with % luminance (example calcium response
shown in Fig. b). Full-field high-contrast drifting gratings (.v.d. per cycle;
Hz drift rate) were presented drifting in one of  directions for  s each in
random order, separated by a  s period of blank screen with % luminance
(example calcium response shown in Fig. c). Full-field % contrast drifting grat-
ings (v.d. per cycle; Hz drift rate) were presented drifting in one of  direc-
tions for  s each in random order. Full-field drifting plaid stimuli were construc-
ted additively from % contrast grating components (v.d. per cycle; Hz drift
rate;  s duration). Full-field natural movies consisted of a  s continuous
sequence with three segments (example calcium response shown in Fig. d). Full-
field contrast-oscillating gratings and plaid stimuli were composed of bars of v.d.
width which oscillated at Hz between black and white on a % grey back-
ground, and with a spatial frequency of v.d./cycle (example calcium response
shown in Fig. e). On each subsequent oscillation cycle the bars locations shifted
phase by º. Static gratings were used to avoid introducing a movement com-
ponent into the stimulus. A base orientation for the gratings of either horizontal
or vertical was chosen, and five orientations spanning ±deg. around the base
orientation were used. Contrast-oscillating plaids were composed of every pos-
sible combination of the five oscillating grating stimuli, giving  grating and 
plaid stimuli for each experiment. A single trial consisted of a blank period (%
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luminance screen) presented for  s, as well as presentations of each of the grat-
ings and plaids for  s each, preceded by  s of a blank % luminance screen, all
presented in random order.

Analysis of calcium transients

Analysis of two-photon calcium imaging data was conducted in Matlab using the
open-source FocusStack toolbox (Muir and Kampa 2015). During acquisition,
individual two-photon imaging trials were visually inspected for Z-axis shifts of
the focal plane. Affected trials were discarded, and the focal plane was manually
shifted to align with previous trials before acquisition continued. Frames recorded
from a single region were composed into stacks, and spatially registered with the
first frame in the stack to correct lateral shifts caused by movement of the animal.
Only pixels for which data was available for every frame in the stack were
included for analysis. A background fluorescence region was selected in the
imaged area, such as the interior of a blood vessel, and the spatial average of this
region was subtracted from each frame in the stack.The baseline fluorescence dis-
tribution for each pixel was estimated by finding the mean and standard deviation
of pixel values during the  s blank periods, separately for each trial. Regions of
interest (ROIs) were selected either manually, or by performing low-pass filtering
of the OGB (green) and sulforhodamine (red) channels, subtracting red from
green and finding the local peaks of the resulting image.

A general threshold for responsivity was computed to ensure that ROIs con-
sidered responsive were not simply due to neuropil activity. The responses of all
pixels outside any ROI were collected (defined as “neuropil”), and the Z-scores of
the mean &F/F0 responses during single visual stimulus presentations were com-
puted per pixel, against the  s baseline period. A threshold for single-trial
responses to be deemed significant (ztrial) was set by finding the Z-score which
would include only % of neuropil responses ('= %). A similar threshold was set
for comparison against the strongest response of an ROI, averaged over all trials
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(zmax). These thresholds always exceeded , implying that single-trial responses
included for further analysis were at least  standard deviations higher than the
neuropil response. Note that this approach does not attempt to subtract neuropil
activity, but ensures that any ROI used for analysis responds to visual stimuli with
calcium transients that can not be explained by neuropil contamination alone.

The response of a ROI to a stimulus was found on a trial-by-trial basis by first
computing the spatial average of the pixels in a ROI for each frame.The mean of
the frames during the blank period preceding each trial was subtracted and used
to normalise responses (&F/F0), and the mean &F/F0 of the frames during the
trial was computed. The standard deviation for the baseline of a neuron was
estimated over all &F/F0 frames from the long baseline period and the pre-trial
blank periods. ROIs were included for further analysis if the ROI was visually
responsive according to trial Z-scores (maximum response> zmax) and reliable
(trial response> ztrial for more than half of the trials).The response of a neuron to a
stimulus was taken as the average of all single-trial &F/F0 responses.

Receptive fields of neurons recorded under natural movie and drifting grating
stimulation were characterised by presenting small, masked high-contrast drifting
gratings from a × array, in random order (see above; Fig. b). A receptive field
for each neuron was estimated by a Gaussian mixture model, composed of circu-
larly symmetric Gaussian fields ("= .v.d.) placed at each stimulus location and
weighted by the response of the neuron to the grating stimulus at that location.
The centre of the receptive field was taken as the peak of the final Gaussian mix-
ture. Neurons were included for further analysis if the centre of their receptive
field lay within a .v.d. circle placed at the centre of the natural movie visual
stimulus. Example single-trial and trial-averaged calcium responses to natural
movie stimuli are shown in Fig. d.
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Additional responses were recorded while stimulating with contrast-oscillating
grating and plaid stimuli. Since stationary stimuli were used, signals were less
robust than for drifting high-contrast grating stimuli. An example single-trial cal-
cium response is shown in Fig. e.

Response similarity measures and response metrics

The similarity in response between two neurons was measured independently for
grating and plaid stimuli.The set of grating responses for each neuron were com-
posed into vectors R1g and R2 g . Similarity in grating response was then given
by the Pearson’s correlation coefficient between R1g and R2 g :
ρg=corr R1g ,R2 g( ) (see Fig. c, inset).The similarity in response to plaid stimuli
was computed analogously over the sets of plaid responses R1 p and R2 p :
ρ p=corr R1 p ,R2 p( ) (see Fig. e, inset). Similarity was only measured between
neurons recorded in the same imaging site.

The similarity between neurons in their responses to movie stimuli ("m) was
measured by computing the signal correlation as follows. The calcium response
traces for a pair of neurons were averaged over trials.The initial  s segment of the
traces following the onset of a movie segment were excluded from analysis, to
reduce the effect of transient signals in response to visual stimulus onset on ana-
lysed responses. The Pearson’s correlation coefficient was then calculated between
the resulting pair of traces ("m; see Fig. d, inset). Note that correlations intro-
duced through neuropil contamination were not corrected for, with the result that
the mean signal correlation is positive rather than zero. For this reason we used
thresholds for “high” correlations based on percentiles of the correlation distribu-
tion, rather than an absolute correlation value.

The similarity between neurons in their responses to flashed natural stimuli ("Ca;
Fig.c) was measured as the linear correlation between the vector of responses of
a single neuron to a set of  natural stimuli.
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The Orientation Selectivity Index (OSI) of a neuron was estimated using the for-
mula OSI= max Rg( )−min Rg( )⎡

⎣⎢
⎤
⎦⎥ sum Rg( ) , where Rg is the set of responses of a

single neuron to the set of grating stimuli.

The Plaid Selectivity Index (PSI) of a neuron, describing how selective a neuron is
over a set of plaid stimuli, was calculated using the formula
PSI=1−−1+ Rp, j max Rp( )j∑⎡

⎣⎢
⎤
⎦⎥ # Rp( )−1⎡
⎣⎢

⎤
⎦⎥ , where # Rp( ) is the number of

stimuli in Rp (Muir et al. ).The PSI of a neuron ranges .., where a value of
 indicates a highly selective response, where a neuron responds to only a single
stimulus; a value of  indicates equal, nonselective responses to all stimuli.

A plaid Modulation Index (MI), describing the degree of facilitation or suppres-
sion of a neuron in response to plaid stimuli, was calculated using the formula
MI= max Rp( )−max Rg( )⎡

⎣⎢
⎤
⎦⎥ max Rp( )+max Rg( )⎡
⎣⎢

⎤
⎦⎥ , where Rp is the set of

responses of a single neuron to the set of plaid stimuli (Muir et al. ).The MI
of a neuron ranges –... Values of MI < indicate stronger responses to grating
stimuli compared with plaid stimuli; values of MI > indicate stronger responses
to plaid stimuli. A value of MI =– indicates that a neuron responds only to grat-
ing stimuli; a value of MI =  indicates that a neuron responses to only plaid
stimuli.

The proportion of facilitating and suppressing neurons was compared between
mouse V and model responses using two-tailed Fisher’s exact tests. The popula-
tion of responsive neurons was divided into three groups: facilitating (MI >.);
suppressing (MI<–.); and non-modulated (–.<= MI <=.). These cat-
egories were arranged into three × contingency tables, with each table tested to
compare facilitation and suppression between mouse V and one model.
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Generation of V1 control responses

We used single-cell, single-trial responses to oscillating contrast grating stimuli to
explore whether we could distinguish between correlated and decorrelated
responses to plaid stimuli, given experimental variability and noise. For each cell
in the experimentally-recorded data set, we used the set of grating responses Rg to
generate plaid responses Rp for the same cell, under the assumption that the
response to a plaid was linearly related to the sum of the responses to the two
grating components. For each plaid, we randomly selected a single-trial response
for each of the grating components of the plaid. The predicted single-trial plaid
response was the sum of the two grating responses. We generated  bootstrap
samples for each experimental population, with each sample consisting of the
same number of trials and neurons as the experimental population. We then
quantified the relationship between grating and plaid responses as described for
the experimental data.

Models of mouse V1

We designed a model of the superficial layers of mouse primary visual cortex, to
explore the effect of different connectivity rules on information processing within
the cortex. A simple version of this model, comprising only five neurons with
mean-field connectivity, was used for analytical exploration (“analytical model”;
Fig., Fig., Figure —Figure supplement , Figure —Figure supplement ). A
large-scale version, comprising , neurons with sparse connectivity, was used
for direct comparison with experimental results (Fig.–). A full list of parameters
for both models is given in Table .
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Common model dynamics Individual excitatory neurons (approximating layer /
pyramidal cells) and inhibitory neurons (approximating layer / basket cells)
were modelled as linear-threshold units, with equal time constants and thresholds
set to zero.The dynamics of each rate-coded neuron in the large- and small-scale
models was governed by the differential equation

τi⋅ xi=−xi+ g j ⋅ni , j ⋅α j
j

NN

∑ x j−β j⎡
⎣

⎤
⎦
+
+I i t( )+σi⋅ζi t( ) , ()

where τi is the time constant of neuron i; xi is the instantaneous current being
injected into neuron i; [ ]+ denotes the linear-threshold transfer function
x[ ]+=max x,0( ); β j is the activation threshold of neuron j; I i t( ) is the stimulus

input current provided to neuron i at time t; σi⋅ζi t( ) is a white noise process
included to approximate the barrage of spontaneous E- and I-PSPs experienced
by cortical neurons; and NN is the total number of neurons in the model. The
total directed connection strength between two neurons j and i is given in Eq. ()
by g j ⋅ni , j ⋅α j , where g j is the charge injected by a synapse from neuron j to
neuron i and ni , j is the number of synapses made by neuron j onto neuron i; α j

is the gain of neuron j.

Synaptic input Synapses were modelled as constant current sources that injected
an amount of charge per second related to the average firing rate of the presyn-
aptic neuron, modulated by the synaptic release probability. Single excitatory syn-
apses were assigned a weight of . pC/spike / synapse; single inhibitory syn-
apses were considered to be  times stronger (Binzegger et al. ). Excitatory
and inhibitory neurons were assigned output gains of . spikes /pC (Ahmed
et al. ).

Analytical model To explore the basic stability and computational consequences
of non-random excitatory connectivity, we built a small five-node model (four
excitatory and one inhibitory neuron; Fig., Fig.). Connections within this
model were defined to approximate the average expected connectivity between
populations of neurons in layers / of mouse V. Excitatory neurons were
grouped into two subnetworks, and a proportion s of synapses from each excitat-
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ory neurons was reserved to be made within the same subnetwork. When s=,
E↔E synapses were considered to be made randomly, such that each connection
in the small model approximated the average total connection strength expected
in mouse V. When s= , all E↔E synapses were considered to be specific within
the same subnetwork, such that no synapses were made between excitatory neur-
ons in different subnetworks. Connections to and from the inhibitory node were
considered to be made randomly in every case. The resulting weight matrix for
this network is therefore given by

W=

a a b b −wie

a a b b −wie

b b a a −wie

b b a a −wie

wei wei wei wei −wI ⋅ f I

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, where ()

a=wS /2+wN /4 is the excitatory weight between neurons in the same subnet-
work; b=wN /4 is the excitatory weight between neurons in different subnet-
works; wie=wI ⋅ 1− f I( )/4 is the nonspecific inhibitory to excitatory feedback
weight; wei=wE ⋅ f I is the nonspecific excitatory to inhibitory weight;
wS=wE ⋅ 1− f I( )⋅s is the specific weight component, wN=wE ⋅ 1− f I( )⋅ 1−s( ) is
the nonspecific weight component, wE is the total synaptic weight from a single
excitatory neuron, wI is the total synaptic weight from a single inhibitory neuron
and f I=1/5 is the proportion of inhibitory neurons. Preferred orientations for
each excitatory neuron are indicated in Fig. and Fig.. When a stimulus
matched the preferred orientation of a neuron, a constant input current was injec-
ted ( I i t( )=ι ); when a stimulus did not match the preferred orientation, no input
current was provided to that neuron ( I i t( )=0 ).

Measuring stability and competition To determine network stability in the ana-
lytical model, we performed an eigenvalue analysis of the system Jacobian, given
by J= (W–I)./T, where W is the system weight matrix as given above, I is the
identity matrix, T is the matrix composed of time constants for each post-synaptic
neuron corresponding to elements in W and A./B indicates element-wise division


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between matrices A and B.The network was considered stable if all eigenvalues of
J as well as the trace of the Jacobian Tr( J) were non-positive.The non-linear dyn-
amical system was linearised about the fixed point where all neurons are active; if
this fixed point is unstable then the system operates in either a hard winner-take-
all mode if a different partition is stable, or is globally unstable (Hahnloser ;
Muir and Cook ). Either of these modes is undesirable for cortex.

To determine whether the parameter regimes place the network in an inhibition-
stabilised (ISN) regime, we performed an eigenvalue analysis of the system in
which all inhibitory connections were removed (i.e. wI=0 ). To be in an ISN
regime, either one eigenvalue of the corresponding Jacobian JE of the excitatory-
only network or the system trace Tr( JE) must be positive, but the system including
inhibitory feedback must be stable.

The presence and strength of competition in Fig.– was determined by injecting
current into a single excitatory neuron and recording the net current received by
an excitatory neuron in the opposite subnetwork at the network fixed point (see
Fig.a). Negative net currents correspond to competition between the stimulated
and recorded excitatory neurons (shown as shading in Figure —Figure supple-
ment ).

Large-scale model To construct the large-scale simulation model of mouse V,
, linear-threshold neurons were each assigned a random location ui∈T2

where T defines the surface of a virtual torus of size .×.mm. Excitatory and
inhibitory neurons were placed with relative densities appropriate for layers 
and  of mouse cortex (Schüz and Palm ).

To determine patterns of synaptic connectivity, we calculated for each neuron the
probability distribution of forming a synaptic connection with all other neurons
in the model. A fixed number of synapses was drawn from this distribution; the
number was chosen as an estimate of the number of synapses formed with other
superficial layer neurons in rodent cortex ( from each excitatory and 
from each inhibitory neuron; (Binzegger et al. ; Schüz and Palm )).
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Since a simulation with the full density of cortical neurons was computationally
infeasible, the size of the simulations was scaled to % of estimated cortical
density. The sparsity of local synaptic connectivity was maintained by also scaling
the number of synapses made by each neuron, while maintaining the total syn-
aptic conductance formed by each neuron.

Axonal and dendritic densities for each neuron were described by a two-dimen-
sional Gaussian field

G v,ui ,ρi( )=exp v,ui
2

2ρi 2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

, ()

where ρi is a field dispersion parameter associated with neuron i and v,u is the
Euclidean distance between v and u, computed over the surface of a D torus. In
our models, each neuron had a Gaussian dendritic field of "d = µm (approximate
width of µm; (Hellwig )); and axonal field of "a,e =µm for excitatory
neurons (approximate width of µm; (Boucsein et al. ; Holmgren et al.
; Hellwig )) and "a,i = µm for inhibitory neurons (approximate width
of µm; (Binzegger et al. )).

Anatomical connectivity rule Our default rule for forming synapses was based
on Peters’ Rule, in that the probability of forming a synapse was proportional to
the overlap between axonal and dendritic fields (Peters ; Braitenberg and
Schüz ). This was estimated by computing the integrated product of axonal
and dendritic fields

pPeters= G v,u j ,ρ j( )G v,u j ,ρ j( )dv
T∫∫

!
"#

$
%& , ()

where pPeters is the probability of forming a single synapse between neurons i and
j, and the notation   indicates that the expression between the double brackets
is normalised to form a probability density function, such that if summed across
all possible target neurons the total will be equal to .

Like-to-like connectivity rule We investigated two rules for anatomical
specificity in intra-cortical excitatory recurrent connections. The first such rule
corresponds to the case where local recurrent connectivity is aligned with match-
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ing feedforward visual properties (preferred orientation, in our case). We therefore
assumed that the probability of forming a synapse is modulated by the similarity
in preferred orientation between two excitatory neurons (“Like-to-Like” rule; see
Fig.a). The probability of connection between two neurons was proportional to

pconn∝ pPeters s1 pori! "+ 1−s1( )( ) , where ()
pori=vonmises θi ,θ j ,κ( ); pPeters is the connection probability under non-specific

Peters’ rule connectivity, defined above; and s1 is the proportional strength of
specificity [..]. If s1 = then Eq. () becomes equivalent to Peters’ rule. When
s1 =  then the probability of connecting orthogonally tuned neurons is zero.

Feature-binding connectivity rule The second rule for anatomical connection
specificity corresponds to the case where local recurrent connectivity is not
aligned with feedforward visual properties. Instead, it was designed to explore
binding of simple visual features (“Feature-Binding” specificity; see Fig.e). Under
this rule, a subnetwork combined neurons with a number ( of different orienta-
tion preferences. The preferred orientations used to compose a subnetwork in the
Feature-Binding specificity model were chosen from periodic filtered noise fields.

Each noise field Zk ,q was built by generating a unit-magnitude complex number
z j=exp −iζ j( ) for each neuron in the model, with uniformly-distributed orienta-
tions ζ j ranging [−π,π) . Here “i” represents the complex number −1 ; k
ranges ..NS , where NS is the number of subnetworks in the model; q ranges
..ϑ , where ϑ is the number of preferred orientations per subnetworks. In our
models described in this paper, NS = and ϑ =.

A field Zk ,q was defined by placing each z j at the location u j of the correspond-
ing neuron. Each complex field Zk ,q was spatially filtered by convolving with a
Gaussian field Gρ on a torus, with a spatial std.dev. of ρ =µm (approximate
width µm). The angles from the resulting field of complex numbers was used
as one orientation component for one subnetwork, at each point in simulated
space. The composition of each subnetwork therefore changed smoothly across
cortical space, so that nearby neurons in the same subnetwork had similar func-
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tional selectivity. Therefore, ∠ Z!Gρ( ) defines a Ns×ϑ matrix of numbers where
each element determines one preferred orientation component of the correspond-
ing subnetwork.

Neurons were assigned to one of the NS subnetworks, according to the max-
imum similarity between a neuron’s preferred orientation and the orientation
composition of the set of subnetworks at the location of the neuron’s soma. The
similarity between a neuron’s preferred orientation and a subnetwork orientation
was computed using a von Mises function with width parameter )2, such that the
membership probability was proportional to

pm k,θi( )∝ max vonmises θi ,θk ,1 ,κ2( ), vonmises θi ,θk ,2 ,κ2( )⎡
⎣

⎤
⎦

 , ()
where k is the index of an SSN consisting of preferred orientations θk ,1 and θk ,2 ;
θi is the preferred orientation of a neuron under consideration; and the expression
within the double brackets   was normalised to be a valid probability density
function over k. A neuron was assigned membership of an SSN according to the
formula

M i( )=argmax
k

pm k,θi( )( ), ()

where M i( )  gives the index of the SSN of which neuron i is a member.

The probability of connection between two neurons under the feature-binding
model is therefore given by

pconn∝(1−s2 ) pPeters s1⋅ pori! "+1−s1( )+s2 bSSN ⋅pPeters! ", ()
where parameter s1 determines the relative contribution of Non-Specific versus
orientation-tuned Like-to-Like specificity as in Eq. (); s2 determines the relative
contribution of Feature-Binding specificity; pori=vonmises θi ,θ j ,κ1( ) as in Eq. ();
and bSSN is a value equal to  when the two neurons fall within the same subnet-
work; that is

bSSN=
1iff M i( )=M j( )

0 otherwise
⎧
⎨
⎪⎪

⎩
⎪⎪

()
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Network input Input was provided to the network as a simulation of orienta-
tion-tuned projections from layer  to layers / (Niell and Stryker ; Medini
). Each excitatory neuron was assigned an orientation tuning curve based on
a von Mises function (a circular, Gaussian-like function), with a randomly chosen
preferred orientation θi and a common input tuning curve width )=.
vonmises ⋅( )  is the non-normalised von Mises function with values [..], given by

vonmises t ,θ,κ( )=exp κcos2 t−θ( )[ ] . ()
Current was injected into each simulated neuron proportional to the orientation
tuning curve of that neuron, according to the orientation content of the stimulus:

I i t( )∝A t( )
NN

vonmises θg t( ),θi ,κi( ), ()

where A t( ) is the amplitude of the stimulus at time t; θg t( ) is the orientation of
a grating stimulus at time t; θi is the preferred orientation of neuron i; κi is the
tuning curve width of neuron i; NN is the total number of neurons in the net-
work. The input to the network is normalised such that the total current injected
into the network is equal to A t( ) . For a simulated plaid stimulus composed of
the two component orientations θg1 and θg 2 , input to a neuron was the linear
average of input associated with each grating component, given by

I i t( )∝ A t( )
2NN

vonmises θg1,θi ,κi( )+vonmises θg 2 ,θi ,κi( )( ). ()

Both grating and plaid stimuli were considered to cover the full visual field. Tuned
input currents were injected only into excitatory neurons, because we wanted to
investigate the effect of excitatory recurrence on cortical information processing.
Providing untuned feedforward input to inhibitory neurons can produce the illu-
sion of competition between excitatory neurons, merely due to the thresholding
effect of feedforward inhibitory input shared between those neurons.

Inclusion of experimental response variability We simulated large-scale networks
as described above, and obtained responses to simulated visual stimuli. In order to
mimic the response variability due to experimental conditions, such as recording
noise and intrinsic neuronal response variability, we introduced a random com-
ponent to the model responses.
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For each presented stimulus i (e.g. a grating of a given orientation), we obtained a
set Si of single-trial responses ri,j for a single neuron such that ri , j∈Si , and the
trial-averaged response ri= ri , j Tj=1..T∑ , where T is the number of trials collec-
ted for that stimulus. Over the full set of stimuli for a given neuron, we determ-
ined the maximum trial-averaged response rmax=max

i
ri . We then measured the

standard deviation σ over the collection of all single-trial responses over all stim-
uli for a given neuron normalised by rmax , such that σ=std Si /rmax

i
∪
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ . The

estimated experimental variability σ̂ was defined as the median σ over all recor-
ded neurons.

A similar procedure in reverse was applied to model-simulated visual responses, to
mimic experimental variability. Activity of single neurons in response to a simu-
lated stimulus i was interpreted as the mean response ri , with rmax defined as
above. Single-trial model responses were then generated as ri , j=ri+N 0,σ̂⋅rmax( ) ,
where N µ,σ( ) generates a single normally-distributed random variate with
mean µ and standard deviation σ . Twelve trials were generated for each stimulus
(i.e. T=), and single-trial responses were then analysed as described for experi-
mentally recorded responses.

Estimation of parameters for connection rules Ko and colleagues characterised
functional specificity in mouse primary visual cortex, by recording in slice from
pairs of neurons that were functionally characterised in vivo (Ko et al. ). We
fit our function pconn (Eq. ()) to their measurements of the probability of connec-
tion between neurons tuned for orientation, giving estimates for both )1 and s1

( κ̂1 =.; ŝ1 =.). These parameters correspond to fairly weak functional
specificity. We found that in the Like-to-Like specificity model, in order to have
an appreciable network effect we had to increase the strength of functional
specificity to s1 =. (with )1 =.). The connectivity measurements of Yoshimura
and Callaway suggest that on the order of N =– subnetworks exist in layers /
of rodent cortex (Yoshimura et al. ). For the Feature-Binding specificity
model, we took the parameters s1 =., s2 =., )1 =., )2 =, N =, (=.
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Statistical methods

We used a sample size commensurate with those used in the field, and sufficient
for statistical analysis of our observations. No explicit sample size computation
was performed.

Two-sided, non-parametric statistical tests were used unless stated otherwise in
the text.
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Tables

Table 1: Summary of nominal model parameters and model variables. Abbreviations: Exc:

Excitatory; Inh: Inhibitory; Prop: proportion.
Parameter Description Nominal value

τi Lumped neuron time constant for neuron i 10ms

g j
Nominal charge injected by synapses from 
neuron j

Exc.: 0.01 pC/ spike / synapse
Inh.:10×0.01 pC/ spike / synapse

α j
Nominal output gain of neuron j 0.066 spikes /pC

ni , j
Number of synapses made from neuron j to neuron i

β j
Threshold of neuron j Zero

σi⋅ζi t( ) Noise current injected into neuron i. Wiener 
process with std. dev. σi  after 1 sec.

σi =5 mA

NN
Number of neurons in simulation 80,000 (10% of cortical density)

Prop. inh. Proportion of inhibitory neurons 18%
Dimensions of simulated torus space 2.2×2.2mm

Si
Nominal number of synapses made by neuron i
(within superficial layers only)

Exc.: 8142 Inh.: 8566

σd ,i Std. Dev. of Gaussian dendritic field of neuron 
i

75µm (approx. width 300µm)

σa ,i Std. dev. of Gaussian axonal field of neuron i Exc.: 290µm (approx. width 1100µm)
Inh.: 100µm (approx. width 400µm)

κi Input orientation tuning width parameter for 
neuron i

4

s1 Degree of like-to-like modulation of anatomical connection probability

s2 Degree of feature-binding modulation of connection probability

κ1 Orientation tuning of like-to-like connection probability

κ2 Orientation tuning of subnetwork membership probability

NS
Number of subnetworks that exist at a point in cortex

ϑ Number of preferred orientations bound in an subnetwork
Network configuration Parameter values
Random connectivity model s1 =0, s2 =0
Like-to-like specificity model s1 =0.8, s2 =0, κ1 =0.5
Feature-binding specificity model s1 =0.1, s2 =0.25, κ1 =0.5, κ2 =4,

NS =6, ϑ =2
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