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Abstract

Our work addresses two key challenges, one biological and one methodological. First,

we aim to understand how proliferation and cellular migration rates in the intestinal

epithelium are related under healthy, damaged (Ara-C treated) and recovering

conditions, and how these relations can be used to identify mechanisms of repair and

regeneration. We analyse new data, presented in more detail in a companion paper, in

which BrdU/IdU cell-labelling experiments were performed under these respective

conditions. Second, in considering how to more rigorously process these data and
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interpret them using mathematical models, we develop a probabilistic, hierarchical

framework. This framework provides a best-practice approach for systematically

modelling and understanding the uncertainties that can otherwise undermine drawing

reliable conclusions - uncertainties in experimental measurement and treatment,

difficult-to-compare mathematical models of underlying mechanisms, and unknown or

unobserved parameters. Both discrete and continuous mechanistic models are

considered and related via hierarchical conditional probability assumptions. This

allows the incorporation of features of both continuum tissue models and discrete

cellular models. We perform model checks on both in-sample and out-of-sample

datasets and use these checks to illustrate how to test possible model improvements

and assess the robustness of our conclusions. This allows us to consider - and

ultimately decide against - the need to retain finite-cell-size effects to explain a small

misfit appearing in one set of long-time, out-of-sample predictions. Our approach

leads us to conclude, for the present set of experiments, that a primarily

proliferation-driven model is adequate for predictions over most time-scales. We

describe each stage of our framework in detail, and hope that the present work may

also serve as a guide for other applications of the hierarchical approach to problems in

computational and systems biology more generally.

Author Summary

The intestinal epithelium serves as an important model system for studying the

dynamics and regulation of multicellular populations. It is characterised by rapid rates

of self-renewal and repair; failure of the regulation of these processes is thought to

explain, in part, why many tumours occur in the intestinal and similar epithelial

tissues. These features have led to a large amount of work on estimating rate

parameters in the intestine. There still remain, however, large gaps between the raw

data collected, the experimental interpretation of these data, and speculative

mechanistic models for underlying processes. In our view hierarchical statistical

modelling provides an ideal, but currently underutilised, method to begin to bridge

these gaps. This approach makes essential use of the distinction between
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‘measurement’, ‘process’ and ‘parameter’ models, giving an explicit framework for

combining experimental data and mechanistic modelling in the presence of multiple

sources of uncertainty. As we illustrate, the hierarchical approach also provides a

suitable framework for addressing other methodological questions of broader interest

in systems biology: how to systematically relate discrete and continuous mechanistic

models; how to formally interpret and visualise statistical evidence; and how to

express causal assumptions in terms of conditional independence.

Introduction 1

Motivation 2

The intestinal epithelium provides crucial barrier, transport and homeostatic functions. 3

These requirements lead it to undergo constant repair and regeneration, and 4

dysfunctions can result in pathologies such as tumorigenesis [1–7]. While much work 5

has been carried out on estimating the rate parameters in the intestine and other 6

epithelia [1, 8–10], attempts to interpret these experimental data using mechanistic 7

modelling remain inconclusive (see e.g. [11–14]). A key issue in drawing reliable 8

conclusions is the lack of consistent and reproducible frameworks for comparing 9

models representing conjectured biological mechanisms, both to each other and to 10

experimental data. 11

This challenge goes in both directions: using experimental data (taken to be ‘true’) to 12

parameterise and test mathematical or computational formalisations of mechanistic 13

theories, and using these models (taken to be ‘true’) to predict, interpret and question 14

experimental results. Both experimental measurements and mathematical models are 15

subject to uncertainty, and we hence need systematic ways of quantifying these 16

uncertainties and attributing them to the appropriate sources. Furthermore, 17

establishing a common framework for analysing experimental results, formulating 18

mechanistic models and generating new predictions has many potential advantages for 19

enabling interdisciplinary teams to communicate in a common language and efficiently 20

discover and follow promising directions as and when they arise. 21
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Approach 22

We address the above issues by developing a best-practice hierarchical Bayesian 23

framework for combining measurements, models and inference procedures, and 24

applying it to a tractable set of experiments targeting mechanisms of repair and 25

regeneration in the intestinal epithelium. These experiments were performed ourselves 26

and are presented in more detail in [15]. The aim of these experiments was to identify 27

how proliferation rates, tissue growth and cellular migration rates are related under 28

healthy, damaged (Ara-C treated) and recovering conditions, and how these relations 29

can be used to identify mechanisms of repair and regeneration. 30

A notable feature of the Bayesian approach to probabilistic modelling is that all 31

sources of uncertainty are represented via probability distributions, regardless of the 32

source of uncertainty (e.g. physical or epistemic) [16–18]. We will adopt this 33

perspective here, and thus we consider both observations and parameters to be 34

random variables. Within a modelling or theoretical context, uncertainty may be 35

associated with (at least): parameters within a mechanistic model of a biological or 36

physical process, the mechanistic model of the process itself and the measurements of 37

the underlying process. This leads, initially, to postulating a full joint probability 38

distribution for observable, unobservable/unobserved variables, parameters and data. 39

Another key feature of the Bayesian perspective, of particular interest here, is that it 40

provides a natural way of decomposing such full joint models in a hierarchical manner, 41

e.g. by separating out processes occurring on different scales and at different analysis 42

stages. A given set of hierarchical assumptions corresponds to assuming a factorisation 43

of the full joint distribution mentioned above, and gives a more interpretable and 44

tractable starting point. 45

Our overall factorisation follows that described in [18–21]. This comprises: a 46

‘measurement model’, which defines the observable (sample) features to be considered 47

reproducible and to what precision they are reproducible (the measurement scale); an 48

underlying ‘process’ model, which captures the key mechanistic hypotheses of 49

spatiotemporal evolution, and a prior parameter model which defines a broad class of 50

a priori acceptable possible parameter values. 51
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This hierarchical approach is being increasingly adopted - especially in areas such as 52

environmental and geophysical science [22, 23], ecological modelling [24, 25], as well as 53

in Bayesian statistical modelling and inverse problems more generally [17–21, 26]. In 54

our view, however, many of the advantages of hierarchical Bayesian modelling remain 55

under-appreciated and it offers many opportunities for formulating more unified 56

frameworks for model-data and model-model comparison. Furthermore, we note that a 57

similar hierarchical approach has recently received significant development in the 58

context of the non-Bayesian ‘extended-likelihood’ statistical modelling framework 59

[27–29]. Thus, in our view, many of the benefits of the present approach can be 60

attributed to its hierarchical aspect in particular ([20] also emphasises this point). 61

As illustration of some of the modelling benefits of the hierarchical approach, we show 62

how both discrete and continuous process models can be derived and related using the 63

hierarchical perspective. We discuss the connection of conditional/hierarchical 64

modelling to the causal modelling literature (see [30–32] for reviews) and illustrate the 65

distinct roles of (Bayesian) predictive distributions vs. parameter distributions for 66

model checking and the assessment of evidence, respectively (see [17, 33–36] for 67

discussion of these distinctions). 68

Conclusions 69

Our hierarchical Bayesian framework incorporates measurement, process and 70

parameter models and facilitates separate checking of these components. This 71

checking indicates, in the present application to the spatiotemporal dynamics of the 72

intestinal epithelium, that much of the observed measurement variability is adequately 73

captured by a simple measurement model. Similarly we find that a relatively simple 74

process model can account for the main spatiotemporal dynamics of interest; however, 75

model checking also identifies a minor misfit in the process model appearing over long 76

time-scales. This motivates possible model improvements: we consider the inclusion of 77

additional finite-cell-size effects in the process model, derived from a discrete process 78

model and a subsequent continuum approximation formulated in terms of conditional 79

probability. This only gives a slightly better qualitative fit to experimental data, 80

however. We instead find that the dominant sources of the long-time misfits are 81
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probably due to some other factors - most likely relatively slow, time-varying 82

proliferation rates (e.g. due to circadian rhythms). In summary, a primarily 83

proliferation-driven model appears adequate for predictions over moderate time-scales. 84

Materials and methods I: Experimental treatments 85

and data processing 86

Homeostasis mouse model 87

To obtain estimates of intestinal epithelial proliferation and migration rates under 88

normal, homeostatic conditions in healthy mice, we used standard methods of 89

proliferative cell labelling and tracing [1, 8–10, 37–39] (see also [15] for full details). 90

Actively proliferating cells in the intestinal crypts were labelled by single injection of 91

the thymine analogue 5-bromo-2-deoxyuridine (BrdU) and labelled cells detected by 92

immunostaining of intestinal sections collected from different individuals over time. 93

Migration of labelled cells traced from the base of crypts to villus tips was monitored 94

over the course of 96 hours (5760 min). At least 30 strips were analysed per mouse. 95

The figures presented in [15] show that strips were independent and obtained from 96

one-cell thick sections. All strips in which the base of the crypt and the tip of the 97

villus were clearly observed were considered. All sides of the crypt that were visible 98

and connected to entire villi were analysed. There was no arbitrary selection of strips. 99

A typical image from those analysed in [15] is also reproduced in the Supplementary 100

information. 101

Blocked-proliferation mouse model 102

To assess the effects of proliferation inhibition on crypt/villus migration, migrating 103

and proliferating epithelial cells were monitored by double labelling with two thymine 104

analogues (BrdU and IdU), administered sequentially a number of hours apart and 105

subsequently distinguished by specific immunostaining in longitudinal sections of small 106

intestine. Following initial IdU labelling of proliferating cells at t= -17h (-1020 min, 107
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relative to Ara-C treatment), mice were then treated with cytosine arabinoside 108

(Ara-C) at 250 mg/kg body weight, a dose reported to inhibit proliferation without 109

causing major crypt cell atrophy (see [15] and references therein for full details). 110

Tissues were collected over 24 hours, with BrdU administered one hour prior to 111

collection to check for residual proliferation. Successful inhibition of proliferation 112

following treatment with Ara-C was confirmed by an absence of BrdU (S-phase) and 113

phospho-Histone H3 (pH3) staining (M-phase) in longitudinal sections of small 114

intestine (again, see [15] for full details). 115

Recovering-proliferation mouse model 116

The above Ara-C treatment effect was observed to last for at least 10h (600 min). Cell 117

proliferation resumed to near normal levels in samples obtained 18h (1080 min) 118

post-Ara-C treatment. We hence considered samples collected at least 10h post-Ara-C 119

treatment as corresponding to ‘recovering-proliferation’ conditions. 120

Data processing: reference grid and key observable features 121

To connect experimental measurements to the models discussed below we specified a 122

reference grid and defined the key features of the data relative to this grid. These key 123

features established an ideal ‘underlying population’ from which samples were 124

considered to be drawn. This also allowed us to construct our hierarchical model in a 125

‘top-down’ (data-to-parameter) manner, starting from a measurement model. 126

With reference to Fig 1, we considered the data to consist of a collection of 127

one-dimensional ‘strips’ of cells. These strips ran from the base of the crypt to the tip 128

of the villus, along the so-called ‘crypt-villus’ axis. This corresponds to how strips 129

were collected experimentally, but does not account for possible biases due to ‘angled’ 130

sampling [40, 41]. Each measurement was given a spatial cell location index 𝑖 and a 131

time label 𝑡. The location index was measured in number of cells along the crypt-villus 132

axis, starting from the crypt base, and hence defined a discrete one-dimensional grid. 133

The two labels 𝑖 and 𝑡 were also combined into a single index parameter 𝑠 ∶= (𝑖, 𝑡) 134

when notationally convenient, which then defined a two-dimensional grid of space-time 135
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Figure 1. The (a) intestinal epithelium, (b) individual measurements as strips of cells
and (c) collection of strips, where ‘C’ and ‘V’ indicated ‘crypt’ and ‘villus’ respectively.

points. A ‘typical’ reference crypt-villus unit was characterised by the two vectors 136

(L, n), where L is the vector of labelled fractions at each grid point and n is the vector 137

of number of samples at each grid point. This defines a useful reduction of the system 138

from two spatial dimensions to one. 139

We assumed that each strip was independent of the others as, in general, strips are 140

taken from different crypt-villus units and/or animals after ‘identical preparation’. 141

Thus we did not ever directly possess, for example, measurements of a particular crypt 142

with dimensions given in terms of a certain number of strips. We note, however, that 143

in general the dynamics of strips in a given crypt may be affected by those in the same 144

crypt. We did not consider this additional complexity in the present work, and so this 145

complication should be kept in mind when interpreting the results. 146

Materials and methods II: Mathematical framework 147

Our hierarchical probability model was constructed on the basis of conditional 148

probability assumptions. These allowed us to factor out a measurement model, a 149

mechanistic model and a parameter model. 150
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Overall hierarchical structure 151

Our overall model structure consisted of a full joint distribution, conditioned on a 152

given experimental treatment 𝐸 and known sample size vector n, decomposed 153

according to 154

𝑝(y, L, k|n, 𝐸) = 𝑝(y|L, n)𝑝(L|k)𝑝(k|𝐸). (1)

where k are the cellular proliferation rates (these are discussed more fully in the 155

Process models and Parameter model sections below). This hierarchical factorisation 156

corresponds to the assumption of conditional independence between the various levels, 157

i.e. 𝑝(y|L, k, n, 𝐸) = 𝑝(y|L, n), 𝑝(L|k, n, 𝐸) = 𝑝(L|k) and 𝑝(k|n, 𝐸) = 𝑝(k|𝐸). The 158

first term, 𝑝(y|L, n) is the measurement model; the second term 𝑝(L|k) is the 159

underlying process model, and the last term 𝑝(k|𝐸) is a prior parameter model. These 160

are discussed in more detail below. 161

Notably, a ‘causal’ (structural invariance) assumption [30–32, 42–47] is made by 162

assuming that the experimental treatment condition affects the process parameter k 163

but not the structure of the measurement or process models. In general, we 164

suppressed, in our notation, the explicit conditioning on sample size n, since it was 165

taken to be fixed and known, as well as the conditioning on 𝐸 (keeping in mind that it 166

only affects k). 167

The assumptions underlying the above factorisation could be checked to some extent. 168

This relied on a distinction between working ‘within’ the model - e.g. parameter 169

estimation assuming the model and factorisation is valid - and working ‘outside’ the 170

model, e.g. checking the validity of the model structural assumptions themselves [17, 171

35, 36]. This distinction is made in the Results section. 172

Implicit in the model derivations, discussed below, we used a deterministic expression 173

of conservation of probability for the process model, as is typical for such equations 174

[48]. It sufficed for the presentation here to simply replace all functional dependencies 175

on the process variable above with a dependence on the process parameters [18]. 176
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Bayesian framework for predictions and incorporating 177

information from observations 178

The overall model of the previous section defined our initial ‘generative’ probabilistic 179

model, prior to explicitly incorporating the information from our experimental data. 180

This enabled samples to be drawn from both prior predictive and prior parameter 181

models, in the usual way (see e.g. [17, 49] and the Computational methods section 182

below). In particular, the prior predictive distribution was used in its usual form 183

y ∼ 𝑝(y) = ∫ 𝑝(y|𝑓(k))𝑝(k)𝑑k (2)

which incorporates the aforementioned deterministic link between a given sample of 184

process parameters and the output process variable, L = 𝑓(k). Note that here ∼ 185

denotes ‘distributed as’, or more relevantly, ‘samples drawn according to’. 186

To incorporate new data y0 we updated the parameters of the model, hence passing to 187

a ‘posterior predictive’ model [17] 188

y|y0 ∼ 𝑝(y|y0) = ∫ 𝑝(y|𝑓(k))𝑝(k|y0)𝑑k (3)

where we used the conditional probability closure assumption 189

𝑝(y|𝑓(k), y0) = 𝑝(y|𝑓(k)). This closure assumption can be interpreted as maintaining 190

our same mechanistic model despite new observations. This also connects well with 191

current theories of causality as based on ideas of structural invariance [30–32, 42–47]. 192

The logical flow of the updating process we used is depicted in Fig 2. This depicts the 193

‘forward’ predictive processes as arising from sequences of draws going from 194

‘lower-level’ to ‘higher-level’ distributions (though this does not correspond directly to 195

the implementation - see Computational methods for specifics). Distributions were 196

updated in the ‘reverse’ manner by conditioning at the highest level and propagating 197

the implications of this back down the hierarchy. 198
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Process
model

Prior prediction

Posterior predictionPosterior
for
parameters

Prior for
parameters

Observed data

p(k) p(L|k) = δ(L− f(k)) p(y|L) = p(y|f(k))

Measurement
model

Parameter
model

y0

p(y|y0)

Condition on observations

p(k|y0)

Bayesian
update of
components

p(y)

(1) (2)

(3)

(4)

Figure 2. Illustration of the Bayesian predictive and parameter inference processes.
Following the arrows (1) to (2) we move from a prior parameter model (left, black) to
associated predictive distribution (right, black) via the process and measurement
models. Following the arrows (3) to (4) we condition on observed data to obtain a
posterior parameter model (left, blue) and associated predictive distribution (right,
blue). Our structural assumptions mean that the information gained is represented in
updates of the parameter model while the process and measurement models maintain
the same form. Modified from [49], which was based on [50].
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Measurement model 199

The measurement model 𝑝(y|L, n) component was taken to be a binomial distribution 200

ℬ of the form 201

𝑝(y|L, n) =
𝑆−1
Π

𝑠=0
ℬ(𝑛𝑠, 𝐿𝑠). (4)

This related our ‘raw’ observable y, the vector of counts of labelled cells at each grid 202

point, to ‘ideal characteristics’ of comparison (L, n), 203

This was developed as follows. Firstly we assumed that all observations at a given grid 204

point 𝑠 were exchangeable (see [16, 17] for a formal definition and further discussion) 205

conditional on (L, n). Such exchangeability conditions imply the existence of Bayesian 206

probability models and correspond, in essence, to statistical reduction/symmetry 207

assumptions [16, 17]. We then adopted a slight strengthening [16, 17] of the general 208

exchangeability assumption - which only leads to a pure existence theorem - to an 209

assumption of conditional independence. This assumes that if the true parameters are 210

known at each location then observations can be made independently at those 211

locations. 212

This latter strengthening assumption is worth noting because it is related to the issue, 213

discussed in the section on experimental methods above, of taking each strip to be 214

independent and the corresponding reduction from two spatial dimensions to one 215

spatial dimension. As such it represents a simplifying approximation and should be 216

kept in mind when interpreting the subsequent results. 217

We also took the measurement component to be independent of 𝐸 - i.e. treatment was 218

assumed to affect the underlying process parameters only (this is discussed in more 219

detail in ‘Overall hierarchical structure’ above, and corresponds to a ‘causal’ 220

assumption). 221
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Likelihood and normal approximation 222

The above defined our measurement component 𝑝(y|L, n) of the full sampling model 223

for the probability of a set of observed labelled cells y in samples of sizes n given the 224

vector of modelled underlying labelled fractions L. This then defined a likelihood 225

function ℒ for this measurement model, which is proportional to the probability given 226

by the sampling model evaluated for the observed data and considered as a function of 227

L, i.e. 228

ℒ(L; y, n) =
𝑆−1
Π

𝑠=0
𝐿𝑦𝑠𝑠 (1 − 𝐿𝑠)𝑛𝑠−𝑦𝑠 ∝ 𝑝(y|L, n) =

𝑆−1
Π

𝑠=0
ℬ(𝑛𝑠, 𝐿𝑠). (5)

We also used, for interpreting model misfit, the fact that for each 𝑠, if 𝑛𝑠 is sufficiently 229

large and 𝐿𝑠 is not too close to 0 or 1 (e.g. 𝑛𝑠𝐿𝑠 and 𝑛𝑠(1 − 𝐿𝑠) > 5 is typical), then 230

the binomial distribution ℬ(𝑛𝑠, 𝐿𝑠) can be replaced by the normal approximation 231

𝒩(𝑛𝑠𝐿𝑠, 𝑛𝑠𝐿𝑠(1 − 𝐿𝑠)). In this case, denoting the set of all measured labelled fractions 232

through the (useful, but slightly non-standard) notation y/n ∶= (𝑦1/𝑛1, ..., 𝑦𝑆/𝑛𝑆), 233

ℒ(L; n, y
n

) = 𝑝(y
n

|L, n) =
𝑆−1
Π

𝑠=0
1

𝜎𝑠
√

2𝜋 exp (−
( 𝑦𝑠𝑛𝑠

− 𝐿𝑠)2

2𝜎2𝑠
) (6)

where the standard deviations are given by 𝜎𝑠 = √ 𝐿𝑠(1−𝐿𝑠)
𝑛𝑠

. This normal 234

approximation formulation was not used in the model fitting but provided a useful 235

guide for checking model misfit based on residuals. 236

Process models 237

Our process model was developed in a number of stages and considered at different 238

levels of resolution. Firstly, we considered a discrete probabilistic model at the level of 239

our measurement grid defined above. Then we considered two different continuous 240

approximations to this - one excluding explicit cell-scale effects and one including 241

explicit cell-scale effects. 242
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Discrete, measurement-grid-level process model 243

Our basic ‘process’ model described the evolution of the (population) ‘measurement’ 244

probability (labelled fraction) at the scale of the measurement grid. This was derived 245

as follows. 246

With reference to Fig 1, we considered a collection of one-dimensional ‘strips’ of cells. 247

We used 𝑙𝑖 ∈ {0, 1} as an indicator variable denoting the occupancy status of site 𝑖 of a 248

given strip. The full state of this strip was given by the vector l = (𝑙0, 𝑙1, ...𝑙𝑆−1). 249

We then sought a description of the probabilistic dynamics in terms of a discrete-time 250

Markov chain for the probability distribution of the full state 𝑝(l, 𝑡) following standard 251

arguments [48, 51]. 252

We began from an explicit joint distribution for the full state and then reduced it to 253

description in terms of the set of ‘single-site’ probability distributions 𝑝(𝑙𝑖, 𝑡) for each 254

site 𝑖. This derivation was aided by adopting an explicit notation: the probabilities of 255

occupancy and vacancy at site 𝑖 at time 𝑡 were denoted by 𝑝(𝑙𝑖(𝑡) = 1) and 𝑝(𝑙𝑖(𝑡) = 0) 256

respectively. Since 𝑝(𝑙𝑖(𝑡) = 1) + 𝑝(𝑙𝑖(𝑡) = 0) = 1 we only needed to consider the 257

probability of occupancy to fully characterise the distribution 𝑝(𝑙𝑖(𝑡)). 258

The equation of evolution for this probability was derived by considering conservation 259

of probability in terms of probability fluxes in and out, giving, to first order in Δ𝑡 260

𝑝(𝑙𝑖(𝑡 + Δ𝑡) = 1) − 𝑝(𝑙𝑖(𝑡) = 1) =

Δ𝑡
𝑖−1
∑
𝑗=0

𝑘𝑗 [𝑝(𝑙𝑖−1(𝑡) = 1, 𝑙𝑖(𝑡) = 0) − 𝑝(𝑙𝑖−1(𝑡) = 0, 𝑙𝑖(𝑡) = 1)] . (7)

The first term on the right gave a net ‘influx of occupancy probability’ due to a single 261

division event somewhere at site 𝑗 < 𝑖, each division event having a probability given 262

by 𝑘𝑗Δ𝑡. This flux meant the value of the state variable 𝑙𝑖(𝑡) = 0 could be replaced, at 263

the next time step, by the value of 𝑙𝑖−1(𝑡) = 1. The second term similarly represented a 264

net ‘outflux of occupancy probability’ due to a division event somewhere at site 𝑗 < 𝑖. 265

Since 𝑙𝑖(𝑡) = 0 and 𝑙𝑖(𝑡) = 1 partitioned the event space of 𝑙𝑖(𝑡), we could use 266
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𝑝(𝑙𝑖−1(𝑡) = 1, 𝑙𝑖(𝑡) = 0) = 𝑝(𝑙𝑖−1(𝑡) = 1) − 𝑝(𝑙𝑖−1(𝑡) = 1, 𝑙𝑖(𝑡) = 1) (8)

and similarly, since 𝑙𝑖−1(𝑡) = 0 and 𝑙𝑖−1(𝑡) = 1 partitioned the event space of 𝑙𝑖−1(𝑡), 267

we had 268

𝑝(𝑙𝑖−1(𝑡) = 0, 𝑙𝑖(𝑡) = 1) = 𝑝(𝑙𝑖(𝑡) = 1) − 𝑝(𝑙𝑖−1(𝑡) = 1, 𝑙𝑖(𝑡) = 1). (9)

This led to the simplification in terms of only single-site probability distributions 269

𝑝(𝑙𝑖(𝑡 + Δ𝑡) = 1) − 𝑝(𝑙𝑖(𝑡) = 1) = Δ𝑡
𝑖−1
∑
𝑗=0

𝑘𝑗 [𝑝(𝑙𝑖−1(𝑡) = 1) − 𝑝(𝑙𝑖(𝑡) = 1)] . (10)

Underlying continuous model - zeroth-order approximation 270

To aid model interpretation and model cross comparisons we introduced a smooth 271

parameter field of underlying labelled fractions 𝐿(𝑥, 𝑡), defined over a continuous 272

space-time domain. This gave a further idealisation of the ‘underlying population’ 273

from which we envisaged the strips were sampled. This smoothness assumption, while 274

not strictly necessary, meant some model properties could be interpreted in terms of 275

local derivatives; it also reduced arbitrary dependence on discrete grid features, aiding 276

future comparisons with off-lattice and/or continuum models (see [49] for a review of 277

various model types). 278

To derive the continuous approximation we first defined the position 𝑥 as a continuous 279

coordinate passing through the discrete cell indices. For example 𝑥 = 0 denoted the 280

coordinate of the cell labelled ‘0’ (base of the crypt), while 𝑥 = 0.5 was the location 281

halfway between the cell labelled ‘0’ and that labelled 1’. Sample locations consisting 282

of space-time pairs were denoted by 𝑠 = (𝑥𝑠, 𝑡𝑠). Then, for sample locations (𝑖, 𝑡) 283

corresponding to cell indices and arbitrary times, we matched the discrete model and 284

continuous model using 285

𝑝(𝑙𝑖(𝑡) = 1|𝐿(𝑖, 𝑡)) = 𝐿(𝑖, 𝑡) (11)
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i.e. 𝐿(𝑖, 𝑡) served as the parameter for a single measurement modelled as a Bernoulli 286

trial at that sample location (as in the above Measurement model section). 287

Next, the discrete dynamics of 𝑝(𝑙𝑖(𝑡) = 1) were ‘transferred’ to the continuous 𝐿(𝑥, 𝑡) 288

dynamics. In particular, since 𝐿(𝑥, 𝑡) was taken to be a smooth function, we made the 289

correspondence 290

𝑝(𝑙𝑖−1(𝑡) = 1|𝐿(𝑖 − 1, 𝑡)) = 𝐿(𝑖 − 1, 𝑡)

≡

𝑝(𝑙𝑖−1(𝑡) = 1|𝐿(𝑖, 𝑡), 𝐿𝑥(𝑖, 𝑡), ..., Δ𝑥) = 𝐿(𝑖, 𝑡) − Δ𝑥𝜕𝐿(𝑖, 𝑡)
𝜕𝑥 + Δ𝑥2

2
𝜕2𝐿(𝑖, 𝑡)

𝜕𝑥2 − ... (12)

where Δ𝑥 = 𝑖 − (𝑖 − 1) = 1 was the normalised cell length and we also conditioned on 291

knowledge of the spatial derivatives at 𝑖, 𝐿𝑥(𝑖, 𝑡) = 𝜕𝐿(𝑖,𝑡)
𝜕𝑥 etc. The continuous spatial 292

field effectively interpolated between - i.e. internal to - points of the discrete grid, 293

making use of local derivative information. Substituting the above Taylor series, and 294

similar expressions, into the discrete Markov equation 10 led to 295

𝜕𝐿(𝑖, 𝑡)
𝜕𝑡 + 𝑣(𝑖)𝜕𝐿(𝑖, 𝑡)

𝜕𝑥 = 1
2 (Δ𝑥𝑣(𝑖)𝜕2𝐿(𝑖, 𝑡)

𝜕𝑥2 − Δ𝑡𝜕2𝐿(𝑖, 𝑡)
𝜕𝑡2 ) + ... (13)

where, for completeness, we also retained higher order terms in Δ𝑡 for the continuous 296

model. We similarly assumed the existence of smooth functions 𝑘(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) that 297

satisfied the discrete relations 298

𝑣(𝑖, 𝑡) =
𝑖−1
∑
𝑗=0

𝑘𝑗Δ𝑥 = ∫
𝑖

0
𝑘(𝑥, 𝑡)𝑑𝑥 + 𝑣(0). (14)

Furthermore, we assumed 𝑘(𝑥, 𝑡) = 𝑘(𝑥), 𝑣(𝑥, 𝑡) = 𝑣(𝑥) and 𝑣(0) = 0 in what follows. 299

This assumption is discussed further in the Results section. 300

We obtained ‘closure’ for the continuous model by keeping only the lowest order terms 301

in both time and space, and further asserting that the equation structure obtained 302

held for all continuous 𝑥 and not just discrete 𝑖 (this could also be motivated by an 303
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assumption of grid translation invariance). This gave the advection equation 304

𝜕𝐿(𝑥, 𝑡)
𝜕𝑡 + 𝑣(𝑥)𝜕𝐿(𝑥, 𝑡)

𝜕𝑥 = 0 (15)

with 305

𝑣(𝑥) = ∫
𝑥

0
𝑘(𝑥′)𝑑𝑥′. (16)

When we incorporated cell death, with discrete rates 𝑑𝑖, this led to the same equations 306

with 𝑘 replaced by 𝑘 − 𝑑, where 𝑑(𝑥, 𝑡) was defined similarly to 𝑘(𝑥, 𝑡). Hence we 307

interpreted 𝑘 in the above as the net cell production rate (which hence could be 308

negative). 309

The above partial differential equation has an interpretation as the advection of a 310

tracer in an incompressible fluid field with a source, and is sometimes referred to in 311

this context as the ‘colour equation’ [52]. 312

Underlying continuous model - higher-order spatial effects 313

Our ‘zeroth-order’ continuous approximation above was obtained by neglecting all 314

higher-order terms in Δ𝑥. We conceived of this as a process of ‘continualisation’ - the 315

reverse process of discretising a continuous equation to obtain a numerical scheme (see 316

e.g. [53] and [52] Section 8.6 for similar ideas). We thus expected that a better 317

continuum approximation could be obtained by retaining higher-order spatial 318

derivatives and hence finite-cell-size effects. 319

As described below, retaining the higher-order spatial derivative naturally gave rise to 320

a Fokker-Planck equation containing a diffusion term [48]. Equations of this (and 321

similar) form have been derived before, also based on continuous approximations to 322

discrete master equations (e.g. [54–57] also contain similar ideas; [49] gives additional 323

references). 324

To derive this higher-order approximation we reconsidered the expansion in 13. We 325

again neglected all terms of order Δ𝑡, but here retained the next order spatial 326
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derivative leading to 327

𝜕𝐿(𝑥, 𝑡)
𝜕𝑡 + 𝑣(𝑥)𝜕𝐿(𝑥, 𝑡)

𝜕𝑥 = 𝐷(𝑥)𝜕2𝐿(𝑥, 𝑡)
𝜕𝑥2 (17)

where 𝐷(𝑥) = (1/2)Δ𝑥𝑣(𝑥). 328

Retaining the second spatial derivative hence amounted to accounting for spatial 329

effects due to finite cell sizes. We first evaluated our original ‘zeroth-order’ (advection) 330

model against our data, but also examined the extent to which higher-order spatial 331

terms such as those considered above could account for any misfits. 332

Parameter model 333

Since we adopted a Bayesian perspective in this work we required a parameter prior 334

model to express additional modelling assumptions ([17] provides an applied account 335

of the role of priors in Bayesian inference, while [36] presents a more philosophical 336

perspective). 337

Candidate proliferation profiles, varying with cell locations, were represented as 338

realisations from a prior given in terms of a discretised random field (a random vector) 339

k of length 𝑚 = 5, modelled as a multivariate Gaussian 𝒩(𝝁, C) with joint 340

distribution 341

𝑝(k) = 1
(2𝜋)𝑚√det(C)

exp(−(k − 𝝁)𝑇 C−1(k − 𝝁)/2) (18)

characterised by its mean vector 𝝁 and covariance matrix C. This parameter prior 342

constrained the variability of the spatially varying parameter field a priori to help 343

avoid unphysical solutions. 344

The covariance matrix was first decomposed into a standard deviation matrix given by 345

the outer (tensor) product of the standard deviation vector for each variable, 346

S = 𝝈𝝈𝑇 , and correlation matrix R. These multiply element-wise to give 𝐶𝑖𝑗 = 𝑆𝑖𝑗𝑅𝑖𝑗 347

(no summation). We then adopted the common, equivalent, representation C = DRD 348

where D is a diagonal matrix with diagonal entries 𝐷𝑖𝑖 = 𝜎𝑖. 349
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This decomposition of the covariance matrix into separate parts was adopted because 350

it we felt it presented a clearer picture of how the smoothness and magnitude of 351

variations are controlled via off-diagonal and diagonal terms, respectively, in addition 352

to the mean response. We also varied these prior assumptions to explore the solution 353

dependence on parameter variability (and, as discussed below, our code is made 354

available for further sensitivity tests). 355

We took the correlation matrix R to have the squared-exponential (Gaussian) 356

correlation function 𝑘(𝑖, 𝑗) = exp( (𝑖−𝑗)2

2𝑙2𝑐
), where 𝑙𝑐 is a parameter controlling the 357

characteristic length-scale of the correlations in terms of number of indices of k. This 358

characteristic length scale gives the number of k indices over which the correlation 359

function decays to 1/𝑒. This allowed us to control the ‘smoothness’ of the realisations 360

from the k prior, in the sense that as 𝑙𝑐 is increased the values k𝑖 and k𝑗 tend to be 361

more similar. 362

The matrix R was generated by evaluating this correlation function at discrete 363

locations along the crypt-villus axis. This discretisation was chosen to be coarser than 364

the measurement grid and gave a variation somewhat similar to compartment-style 365

regions of proliferation activity. This corresponded to assuming that the cell-type and 366

associated proliferation rates varied on a coarser scale than individual cells, and was 367

thus somewhat similar to a compartment-style assumption [58, 59], though the 368

resulting proliferation rate function is defined for all values of the finer, individual-cell 369

scale 𝑥. The parameter 𝑙𝑐 could also be interpreted as a ‘parameter correlation length’ 370

for the proliferation rates, a measure of the number of parameters - or number of 371

‘compartments’ - over which the correlations decay. We considered correlation lengths 372

of 1-2 parameters. 373

We found it most informative to visualise realisations of the whole function from the 374

resulting prior rather than simply give the individual parameters/matrices separately 375

([18] discusses this visualisation approach to priors in more detail). These are hence 376

discussed and displayed in more detail in the Results section below. 377
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Computational methods 378

Implementation of MCMC sampling and Bayesian updating 379

To implement the updating from prior to posterior parameter distributions, given 380

measurements, we used Monte Carlo Markov Chain (MCMC) sampling (see [60] for a 381

comprehensive reference). In particular, we used the (open source) Python package 382

emcee (http://dan.iel.fm/emcee/) which implements an ‘affine-invariant ensemble 383

sampler’ MCMC algorithm and has been applied in particular to astrophysics 384

problems (see [61] for details). Given samples from the resulting prior and posterior 385

parameter distributions, respectively, prior and posterior predictive distributions were 386

obtained by forward simulation of the process model described below. We note that 387

each candidate proliferation rate vector k is connected to the measurements y via the 388

latent vector L; since this step is deterministic, however, no additional sampling steps 389

were required for the process model component. 390

Differential equations 391

For the results in all sections other than the final results section in which we include 392

higher-order spatial effects, we solved the differential equation model using the 393

PyCLAW [62, 63] Python interface to the CLAWPACK [64] set of solvers for 394

hyperbolic PDEs. We adapted a Riemann solver for the colour equation available from 395

the Riemann solver repository (https://github.com/clawpack/riemann). For testing 396

the inclusion of higher-order spatial effects (thus changing the class of our equations 397

from hyperbolic to parabolic) we used the Python finite-volume solver FiPy [65]. 398

Data and source code availability 399

Our code is available in the form of a Jupyter Notebook 400

(http://ipython.org/notebook.html) in the Supplementary Information. To run these 401

we used the Anaconda distribution of Python 402

(https://store.continuum.io/cshop/anaconda) which is a (free) distribution bundling a 403

number of scientific Python tools. Any additional Python packages and instructions 404

which may be required are listed at the beginning of our Jupyter Notebook. 405
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Interpretation of statistical evidence 406

We have described above how mechanistic or causal assumptions relate to assumptions 407

of structural invariance under different scenarios. In order to interpret the results that 408

follow, however, we also required an interpretation of the ‘statistical evidence’ that a 409

set of measurements provided about parameter values within a fixed model structure. 410

This proved a surprisingly controversial topic and we encountered continuing debate 411

about fundamental principles and definitions of statistical evidence [35, 66–69]. 412

Following our conditional modelling approach, we decided to adopt the simple - yet 413

quite generally applicable - principle of evidence based on conditional probability: if 414

we observe 𝑏 and 𝑝(𝑎|𝑏) > 𝑝(𝑎) then we have evidence for 𝑎. A ‘gold-standard’ theory 415

of statistical evidence starting from this premise has been developed and defended 416

recently by Evans in a series of papers (summarised in [35]). Besides simplicity, a nice 417

feature of this approach, that we used below, is that it can be applied both to prior 418

and posterior predictive distribution comparisons such as 𝑝(y|y0) ?> 𝑝(y), as well as to 419

prior and posterior parameter distribution comparisons such as 𝑝(k|y0) ?> 𝑝(k). This 420

approach is not without criticism, however (again, see [35, 66–69] for an entry point to 421

the ongoing debates). 422

Another notable feature of the interpretation of statistical evidence that we adopted 423

below is that we emphasised the visual comparison of various prior and posterior 424

distributions, rather than adopting arbitrary numerical standards ([18] advocates a 425

similar ‘movie strategy’ for the interpretation of statistical evidence and inference 426

procedures, [17, 36, 70, 71] similarly emphasise the benefits of graphical visualisation 427

methods in statistics). 428

Results 429

Parameter inference under homeostatic (healthy) conditions 430

Fig 3 illustrates the process of updating from realisations of the prior distributions of 431

the proliferation and velocity fields to realisations of their posterior (post-data) 432

distributions. The left-hand side of the figure shows simulations from the prior 433
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distribution for proliferation field (top) and realisations from the induced distribution 434

for the velocity field (bottom), respectively. The right-hand side shows the 435

corresponding simulations after the prior parameter distribution has been updated to 436

a posterior parameter distribution. The prior-to-posterior parameter estimation was 437

carried out using the MCMC sampling approach described above with 𝑡 = 120 min (2 438

h) as an initial condition and 𝑡 = 360 min (6 h) and 600 min (10 h) as given data. The 439

initial condition for the underlying labelled fraction was determined by fitting a 440

smoothing spline to the data. The prior distribution for the proliferation field shown in 441

Fig 3 incorporated a weak mean trend in net proliferation rates, rising from the crypt 442

base to the mid-crypt before falling exponentially to zero over the last few parameter 443

regions post-crypt end, and a parameter correlation length of 1. These assumptions 444

can be relaxed/varied with little effect, though typically a non-zero parameter 445

correlation length and a shut-off in proliferation after the crypt end produce more 446

stable (well-identified) estimates. As mentioned, the code is available for use and so 447

these assumptions are able to be varied by future researchers. Additional visualisations 448

of the parameter inferences are also provided in the Supplementary information. 449
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Figure 3. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom). After data are
obtained the posterior distributions are much more tightly-constrained, and are
picking out biologically plausible results (see main text).
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Parameter inference for blocked proliferation conditions 450

Fig 4 is the same as Fig 3 described in the previous section, but this time under 451

treatment by Ara-C. The previous results from the baseline case are shown in grey, 452

while the new results under Ara-C treatment are shown in blue. Here 1140 min (19 h 453

post IdU labelling, 2 h post Ara-C treatment) was used as the initial condition and 454

1500 min (25 h post IdU labelling, 8 h post Ara-C treatment) used for fitting. The 455

intermediate time 1260 min (21 h post IdU labelling, 4 h post Ara-C treatment) and 456

later time 1620 min (27 h post IdU labelling, 10 h post Ara-C treatment) were used as 457

out-of-sample comparisons (see later). 458
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Figure 4. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom) under Ara-C
treatment (blue) as compared to no treatment (grey). The velocities are reduced to
near zero, as are the proliferation rates, though the latter are noisier.

As can be seen, there is a clear inhibition of proliferation and an even clearer effect on 459

the migration (growth) velocity. The underlying parameter results are clearly more 460

variable than those in the baseline case. This may indicate, for example, greater 461

parameter underdetermination and/or inconsistency of the model. This is not 462

surprising as we expect all the proliferation parameters to be reduced to similar (low) 463
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values and hence the parameters become less distinguishable. 464

To add additional stability to the results we can attempt to reduce 465

underdetermination in the parameters by increasing the parameter correlation length 466

and inducing an effectively more ‘lumped’ representation of the parameter field (since 467

values tend to stick together more). Doing this removed the more extreme negative 468

net proliferation in the posterior profile, however it still allowed for small amounts of 469

negative net proliferation/velocity (the available Jupyter notebook can be used to 470

explore various prior assumptions). 471

Again, the need to introduce more stability is likely due to some combination of the 472

limitations of resolution, a consequence of trying to fit the data too closely, or an 473

indication of model inadequacies. In particular, under inhibited-proliferation 474

conditions the effective number of parameters would be expected to be reduced. When 475

fitting the full model, with largely independent parameters for each region, it is to be 476

expected that some additional regularisation would be required for greater stability. 477

Parameter inference for recovering proliferation conditions 478

Ara-C is metabolised between 10-12 h post-treatment. The two times considered here, 479

1620 min and 2520 min, correspond to 10 h and 25 h post Ara-C treatment, 480

respectively, i.e to the end of the effect and after the resumption of proliferation. 481

Hence, to check for the recovery of proliferation, we fitted the model using 1620 min as 482

the initial condition and 2520 min as the final time. 483

Fig 5 is the same as Fig 3 and Fig 4 described in the previous sections, but this time 484

after/during recovering from treatment by Ara-C. The previous results from the 485

baseline case are shown in grey, while the new results following recovery from Ara-C 486

treatment are shown in blue. Here 1620 min (27 h post IdU labelling, 10 h post Ara-C 487

treatment) was used as the initial condition and 2520 min (42 h post IdU labelling, 25 488

h post Ara-C treatment) used for fitting. We did not make additional out-of-sample 489

comparisons in this case, though in-sample posterior predictive checks were still 490

carried out (see later). 491

Here the proliferation and velocity profiles indicate that proliferation has resumed, as 492
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expected. The rates of proliferation appear to be lower than under fully healthy 493

conditions, however, perhaps due to incomplete recovery (the initial condition being 494

right at the beginning of the recovery period). The timing of the recovery of 495

proliferation and the well-identified proliferation and velocity profiles inferred give no 496

indication that any other mechanism is required to account for these data, however. 497
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Figure 5. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom) after recovery from
Ara-C treatment (blue) as compared to no treatment (grey). The velocities and
proliferation rates show a clear recovery towards healthy conditions, though not to the
full level.

Predictive checks under homeostatic (healthy) conditions 498

Fig 6 illustrates simulations from the predictive distributions corresponding to the 499

prior and posterior parameter distributions of Fig 3. This enables a first 500

self-consistency check - i.e. can the model re-simulate data similar to the data to which 501

it was fitted [17, 70]. If this is the case then we can (provisionally) trust the parameter 502

estimates in the previous figure; if this was not the case then the parameter estimates 503

would be unreliable, no matter how well-determined they seem. Here the model 504
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appears to adequately replicate the data used for fitting. 505
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Figure 6. Simulated realisations from prior (top) and posterior (bottom) predictive
distributions (grey) for label data at fitted times (120 min, 360 min and 600 min i.e. 2
h, 6 h and 10 h). Actual data are indicated by black lines. Again the posterior
distributions are much more constrained than the prior distributions, representing the
gain in information from collecting (and fitting to) experimental data. The first profile
in each panel is held as a constant initial condition in this example.

Fig 7 and Fig 8 illustrate two additional ways of visualising replicated datasets. The 506

former visualises the label profile along the crypt-villus axis at the future 507

unfitted/out-of-sample time 1080 min (18 h), while the latter visualises both fitted 508

(120 min/2 h, 360 min/6 h and 600 min/10 h) and unfitted/out-of-sample (1080 509

min/18 h) predictions plotted in the characteristic plane (𝑡, 𝑥) in which the slopes 510

along lines of constant colour should be inversely proportional to the migration 511

velocities at that point, due to the (hyperbolic) nature of our ‘colour’ equation (see e.g. 512

[52]). We have interpolated between the dotted grid lines. These figures, in 513

combination with Fig 6 above, indicate that the model is capable of reliably 514

reproducing the data to which it was fitted, as well as predicting key features of 515

unfitted datasets such as the rate of movement of the front. On the other hand, there 516

is clearly a greater misfit with the predicted rather than fitted data. In order to locate 517

the possible source of misfit we considered various model residuals and error terms - 518

see ‘Locating model misfit’ below. 519
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Figure 7. Simulated realisations from prior (left) and posterior (right) predictive
distributions (grey) for label data at the unfitted (out-of-sample) time 1080 min (18 h).
Actual data are indicated by black lines. The model appears to give reasonable
predictions capturing the main effects, but there is also clearly some misfit to be
explored further.
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Figure 8. Actual (smoothed) data (left, black box) and one replication based on the
model (right; plotting the latent/measurement-error-free process) as visualised in the
characteristic plane. This has been discretised and interpolated between the dotted
lines to facilitate fair but coarse-grained comparisons. The model structure implies
that there should be lines of constant colour tracing out curves with slopes inversely
proportional to the migration velocities at that point. The model again captures a
number of these key qualitative features, but also fits less well for the out-of-sample
(above the horizontal gap at 600 min/10 h) data. There is little variability in the
latent model process and so only one replication is shown.
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Predictive checks under blocked proliferation conditions 520

Here 1140 min (19 h; post IdU labelling) was used as the initial condition and 1500 521

min (25 h) used for fitting. 1260 min (21 h) and 1620 min (27 h) were used as 522

out-of-sample (non-fitted) comparisons. Fig 9 is analogous to Fig 6 in the healthy case. 523

In general all of the features up to 1620 min (27 h) in Fig 9, and for both fitted and 524

predicted times, appear to be reasonably well captured. The fit at 1620 min is 525

generally good, but perhaps worse than the other cases. This could be due to both 526

errors in longer-time predictions and to the beginning of proliferation recovery. We 527

explore both longer-time misfits and recovering proliferation conditions in what 528

follows. 529
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Figure 9. Simulated realisations from posterior predictive distributions (grey) for
label data at 1140 min (initial condition), 1500 min (fitted time) and at two
out-of-sample/unfitted times (1260 and 1620 min). The posterior distributions appear
to adequately capture the actual label data (black).

Predictive checks under recovering proliferation conditions 530

As discussed above, Ara-C is metabolised between 10-12 h post-treatment. The two 531

times considered here, 1620 min and 2520 min, correspond to 10 h and 25 h post 532
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Ara-C treatment, respectively, i.e to the end of the effect and after the resumption of 533

proliferation. 534

Again, as expected, the label has resumed movement in concert with the resumption 535

in proliferation. The model appears to fit reasonably well. 536
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Figure 10. Simulated realisations from posterior predictive distributions (grey) for
label data at 1620 min (initial condition) and 2520 min (fitted). These indicate that
proliferation has resumed, consistent with the time taken to metabolise Ara-C - see
the main text for more detail.

Locating model misfit 537

While the zeroth-order model behaves essentially as desired under experimental 538

perturbation, and is likely capturing the essential features of interest, we observed 539

some some minor model misfit. We used posterior predictive checks to unpick the 540

contributions of the various model parts and determine the source(s) of misfit. This in 541

turn motivated potential model improvements. These checks were carried out under 542

baseline (healthy) conditions as we were more confident of the experimental effects 543

under this scenario, but they can equally be carried out for the other datasets. Note, 544

however, that time-varying effects are not expected to be as relevant under conditions 545

of inhibited proliferation. 546

Fig 11 shows the following checks: measurement error as determined by subtracting a 547

smoothed spline from the observed data (dark line) and comparing these to the results 548

obtained by subtracting the process model from the simulated data (panels 1-4, 549

moving left-to-right and top-to-bottom, showing fitted - 120 min/2 h, 360 min/6 h and 550

600 min/10 h - and unfitted/out-of-sample - 1080 min/18 h - times). This 551
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presentation follows the noise-checking approach in [72], as well as the general 552

recommendations given in [17, 70]. Reliable interpretation of these as ‘true’ 553

measurement residuals depends on the validity of the normal approximation 6 since 554

these expressions are not directly interpretable in terms of the discrete binomial model 555

(see e.g. [17, 70]). These are also visualised in terms of the corresponding cumulative 556

distributions in the middle panel (panel 5, following as above). Panels 6-9 show the 557

differences between the underlying process model and the smoothed spline fitted to 558

the data. As can be seen, the measurement model appears approximately valid at all 559

times, while the process model appears to have non-zero error for the 1080 min sample. 560

We consider this in more detail next. 561
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Figure 11. Model and data residual components. Panels 1-4, moving left-to-right
and top-to-bottom, shows measurement error as determined by subtracting a
smoothed spline from the observed data (dark line) and comparing this to the results
obtained by subtracting the process model for fitted - 120, 360 and 600 mins - and
unfitted/out-of-sample - 1080 min - times from the realised data (grey). These
measurement error distributions are also visualised in terms of the corresponding
cumulative distributions in the middle panel (panel 5, following as above. Black -
actual data, grey - model simulations). Panels 6-9 show the differences between
realisations of the underlying process model and the smoothed spline fitted to the
data. As can be seen across panels, the measurement model appears approximately
valid at all times, while the process model appears to have non-zero error for the 1080
min sample. This observation is discussed in the text.
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Possible model improvement and robustness - higher-order 562

spatial effects 563

As discussed in the process model section above, the presence of cellular structure in 564

the epithelial tissue means that higher-order spatial effects could be present. One way 565

of deciding whether these are important is to consider the extent to which these may 566

account for the minor misfit identified above, as opposed to other factors such as 567

time-varying proliferation rates. To do this we considered both uniform percentage 568

reductions of the original parameter estimates (approximating time-varying rates) and 569

the inclusion of higher-order spatial terms. 570

Fig 12 gives an idea of the qualitative differences induced by including the 571

higher-order spatial terms and those that could be induced by time-varying 572

proliferation rates. This figure is based on the (healthy) 1080 min (18 h) data in which 573

we found some indication of a process model error. 574

We see that while the higher-order model appears to give a slightly better qualitative 575

fit to the data, both the higher-order and lower-order models require similar reductions 576

of the parameter values to quantitatively improve the fit to our out-of-sample data. 577

The reduced parameter values shown in Fig 12 correspond to a reduction of 20%, 578

which was chosen visually as a reduction accounting for the bulk of the misfit. 579

Thus the key (yet relatively small) difference between the model and out-of-sample 580

data is likely due to an effect other than finite-cell sizes; in this case it is likely due to 581

time-variation in parameter values due to circadian rhythms (we have assumed 582

steady-state parameter values). Other potential factors include label dilution or an 583

unmodelled mixing phenomenon in the full two-dimensional case. We note however 584

that these effects are small and appear to be important primarily for predicting much 585

further ahead in time than the fitted data and the steady-state parameter assumption 586

is likely valid for reasonable time intervals. This means that the more easily 587

interpretable original model may be sufficient for many purposes. 588
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Figure 12. Comparison of the modified process model which includes higher-order
spatial terms (blue) to the original model (grey, dashed), both at lowered proliferation
rates (decreased 20%), which is required for a better fit to the data. The original
model at the original fitted proliferation rates is also shown (grey, solid). Although the
model with higher-order spatial terms gives a better qualitative fit to the data for the
same proliferation rates, it is clear that the dominant cause of misfit is better
attributed to (time) varying proliferation rates (in the context of the present set of
models).
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Discussion 589

Understanding the complicated dynamics of the intestinal epithelium requires an 590

interdisciplinary approach involving experimental measurements, mathematical and 591

computational modelling, and statistical quantification of uncertainties. While a 592

diverse range of mathematical models have been constructed for epithelial cell and 593

tissue dynamics (reviewed in [58, 59, 73–75]), from compartment models to 594

individual-based models to continuum models, we lack consistent and reproducible 595

frameworks for comparing models representing conjectured biological mechanisms 596

both to each other and to experimental data (for an overview, see our review [49]). 597

These shortcomings may explain why questions such as the connection between 598

proliferation and migration and its variation under experimental perturbations remain 599

open, despite much investigation [8–14]. 600

The aim of the present work was to acknowledge and confront these difficulties 601

explicitly, and to present some initial constructive steps in establishing such a 602

framework. To do this we carried out new experiments (described more fully in a 603

companion paper [15]) aimed at determining how proliferation rates, tissue growth and 604

cellular migration rates are related in the intestinal epithelium under healthy, 605

damaged (Ara-C treated) and recovering conditions. We performed BrdU/IdU 606

cell-labelling experiments under these respective conditions. In considering how to 607

best process these data and interpret them using mathematical models, we then 608

developed a probabilistic, hierarchical (conditional) framework. 609

Our hierarchical framework provides a best-practice approach for systematically 610

modelling and understanding the uncertainties that could lead to unreliable 611

mechanistic conclusions - uncertainties in experimental measurement and treatment, 612

difficult-to-compare mathematical models of underlying mechanisms, and unknown or 613

unobserved parameters. Our approach was influenced by recognising the benefits that 614

the hierarchical Bayesian approach has demonstrated in applications across a number 615

of different disciplines (e.g. in environmental and geophysical science as in [22, 23]; 616

ecological modelling as in [24, 25]; and in Bayesian statistical modelling and inverse 617

problems more generally as in [17–21, 26]). We also note that a hierarchical approach 618
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can have significant benefits outside the Bayesian framework (see for example the 619

‘extended likelihood’ approach described in [27–29]). 620

The hierarchical approach has advantages not only in terms of providing a framework 621

for combining disparate sources of uncertainty, but also as a framework for facilitating 622

modelling derivations and relating discrete and continuous models. Though the 623

resulting measurement, process and parameter models can or have all been derived by 624

other means, as far as we are aware this particular perspective has not been 625

systematically utilised in the same manner as considered here - at the very least it 626

appears uncommon within the mathematical/systems/computational biology 627

communities. Furthermore, in the main text we noted the connections of our 628

conditional, probabilistic approach for relating discrete and continuous models to 629

similar procedures in the numerical analysis literature. This raises exciting connections 630

to the developing field of probabilistic numerical methods and computing [76]. 631

We also note the connection between the choice of a measurement model as required 632

here (and/or process model error, and following e.g. [18–22, 77]), and the development 633

of approximate sampling and parameter fitting procedures, which are particularly 634

useful for analytically difficult models. A key concern of the latter is the appropriate 635

choice of summary statistics for constructing a ‘synthetic likelihood’ [78] or 636

similarly-modified posterior target for Approximate Bayesian Computation (ABC) 637

[79–81]. This choice determines (implicitly or explicitly) in which ways a given model 638

or set of models can be considered an ‘adequate’ representation of the data, which 639

features are considered to be reproducible and what the associated ‘noise’ structure 640

should be ([71] presents an alternative approach to characterising data features and 641

model adequacy). These issues are crucial in deciding how to model the complexity of 642

epithelial cell and tissue dynamics. 643

An important next step, as described above, would be to bring more process model 644

types into this framework and to evaluate and compare them under carefully modelled 645

experimental conditions. Extensions incorporating other mechanical and/or 646

cellular-level information (e.g. [11, 12]) into process models would provide a natural 647

next step. Importantly, due to the separation between measurement and process 648

model components, these more complex process models could be incorporated into our 649
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present framework simply by replacing our process model component with a new 650

model, while retaining the same measurement model. Of course additional parameters 651

would require additional prior assumptions, and if additional data features were of 652

interest then these would need to be incorporated into a modified measurement model. 653

The benefit of a hierarchical framework is that it offers an explicit guide as to where 654

such modifications should be incorporated. 655

We also agree with the view expressed by [17] that the cycle, adopted here, of model 656

construction, parameter estimation, (graphical) model checking and model expansion 657

is typically more informative than ‘model selection’ as traditionally understood - 658

especially when this latter activity is based on Bayes factors or other assignments of 659

single numerical quantities to complex models. We generally advocate understanding 660

and comparing models in terms of predictive checks and identifying which features 661

particular models capture well and which they miss. That is, we do not believe that 662

there is much to gain from choosing one model as ‘best’ - rather that we should 663

understand in which respects our models are ‘useful’ [33, 34]. Part of our goal here 664

was to encourage more researchers to think in these terms and point out that the 665

hierarchical approach has the potential to facilitate such analyses for a range of 666

different model types. 667

As a final methodological point, by making our code and data available, as well as 668

leveraging already-available open-source scientific Python software, we open up our 669

work to other researchers to build on. 670

In summary, the main results established using the above framework were 671

• An adequate description of intestinal epithelial dynamics is achievable using a 672

model based on purely proliferation-driven growth 673

• This model is consistent with healthy, proliferation-inhibited (Ara-C treated) 674

and recovering conditions 675

• The measurement and process model errors can be reasonably distinguished and 676

checked separately 677

• This checking indicates that much of the natural variability is directly 678
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attributable to the collection process and this process can be modelled in a 679

simple manner 680

• Possible model errors can also be identified and proposed explanations 681

incorporated and tested within our framework, and thus the proper 682

interpretation of experimental procedures is aided by using an explicit 683

mathematical model and its predictive simulations 684

• Including finite-cell-size effects gives a slightly better qualitative fit to 685

experimental data, but the dominant sources of the long-time misfits are likely 686

due to some other factor such as (relatively slowly) time-varying proliferation 687

rates (e.g. due to circadian rhythms) or label dilution. 688
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