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Abstract

Our work addresses two key challenges, one biological and one methodological. First,
we aim to understand how proliferation and cellular migration rates in the intestinal
epithelium are related under healthy, damaged (Ara-C treated) and recovering
conditions, and how these relations can be used to identify mechanisms of repair and
regeneration. We analyse new data, presented in more detail in a companion paper, in
which BrdU/IdU cell-labelling experiments were performed under these respective

conditions. Second, in considering how to more rigorously process these data and
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interpret them using mathematical models, we develop a probabilistic, hierarchical
framework. This framework provides a best-practice approach for systematically
modelling and understanding the uncertainties that can otherwise undermine drawing
reliable conclusions - uncertainties in experimental measurement and treatment,
difficult-to-compare mathematical models of underlying mechanisms, and unknown or
unobserved parameters. Both discrete and continuous mechanistic models are
considered and related via hierarchical conditional probability assumptions. This
allows the incorporation of features of both continuum tissue models and discrete
cellular models. We perform model checks on both in-sample and out-of-sample
datasets and use these checks to illustrate how to test possible model improvements
and assess the robustness of our conclusions. This allows us to consider - and
ultimately decide against - the need to retain finite-cell-size effects to explain a small
misfit appearing in one set of long-time, out-of-sample predictions. Our approach
leads us to conclude, for the present set of experiments, that a primarily
proliferation-driven model is adequate for predictions over most time-scales. We
describe each stage of our framework in detail, and hope that the present work may
also serve as a guide for other applications of the hierarchical approach to problems in

computational and systems biology more generally.

Author Summary

The intestinal epithelium serves as an important model system for studying the
dynamics and regulation of multicellular populations. It is characterised by rapid rates
of self-renewal and repair; failure of the regulation of these processes is thought to
explain, in part, why many tumours occur in the intestinal and similar epithelial
tissues. These features have led to a large amount of work on estimating rate
parameters in the intestine. There still remain, however, large gaps between the raw
data collected, the experimental interpretation of these data and speculative
mechanistic models for underlying processes. In our view hierarchical statistical
modelling provides an ideal - but currently underutilised - method to begin to bridge

these gaps. This approach makes essential use of the distinction between
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‘measurement’, ‘process’ and ‘parameter’ models, giving an explicit framework for
combining experimental data and mechanistic modelling in the presence of multiple
sources of uncertainty. As we illustrate, the hierarchical approach also provides a
suitable framework for addressing other methodological questions of broader interest
in systems biology: how to systematically relate discrete and continuous mechanistic
models; how to formally interpret and visualise statistical evidence; and how to

represent the notion of causal mechanism as invariance under intervention.

Introduction

Motivation

The intestinal epithelium provides crucial barrier, transport and homeostatic functions.
These requirements lead it to undergo constant repair and regeneration, and
dysfunctions can result in pathologies such as tumorigenesis [1-7]. While much work
has been carried out on estimating the rate parameters in the intestine and other
epithelia [1, 8-10], attempts to interpret these experimental data using mechanistic
modelling remain inconclusive (see e.g. [11-14]). A key issue in drawing reliable
conclusions is the lack of consistent and reproducible frameworks for comparing
models representing conjectured biological mechanisms, both to each other and to

experimental data.

This challenge goes in both directions: using experimental data (taken to be ‘true’) to
parameterise and test mathematical or computational formalisations of mechanistic
theories, and using these models (taken to be ‘true’) to predict, interpret and question
experimental results. Both experimental measurements and mathematical models are
subject to uncertainty, and we hence need systematic ways of quantifying these
uncertainties and attributing them to the appropriate sources. Furthermore,
establishing a common framework for analysing experimental results, formulating
mechanistic models and generating new predictions has many potential advantages for
enabling interdisciplinary teams to communicate in a common language and efficiently

discover and follow promising directions as and when they arise.
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Approach

We address the above issues by developing a best-practice hierarchical Bayesian
framework for combining measurements, models and inference procedures, and
applying it to a tractable set of experiments targeting mechanisms of repair and
regeneration in the intestinal epithelium. These experiments were performed ourselves
and are presented in more detail in [15]. The aim of these experiments was to identify
how proliferation rates, tissue growth and cellular migration rates are related under
healthy, damaged (Ara-C treated) and recovering conditions, and how these relations

can be used to identify mechanisms of repair and regeneration.

A notable feature of the Bayesian approach to probabilistic modelling is that all
sources of uncertainty are represented via probability distributions, regardless of the
source of uncertainty (e.g. physical or epistemic) [16-18]. We will adopt this
perspective here, and thus we consider both observations and parameters to be
random variables. Within a modelling or theoretical context, uncertainty may be
associated with (at least): parameters within a mechanistic model of a biological or
physical process, the mechanistic model of the process itself and the measurements of
the underlying process. This leads to the existence (at least in principle) of a full joint
probability distribution for observable, unobservable/unobserved variables, parameters

and data.

Another key feature of the Bayesian perspective, of particular interest here, is that it
provides a natural way of decomposing such full joint models in a hierarchical manner,
e.g. by separating out processes occuring on different scales and at different analysis
stages. A given set of hierarchical assumptions corresponds to assuming a factorisation
of the full joint distribution mentioned above, and gives a more interpretable and

tractable starting point.

Our overall factorisation follows that described in [18-21]. This comprises: a
‘measurement model’, which defines the observable (sample) features to be considered
reproducible and to what precision they are reproducible (the measurement scale); an
underlying ‘process’ model, which captures the key mechanistic hypotheses of

spatiotemporal evolution, and a prior parameter model which defines a broad class of
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a priori acceptable possible parameter values.

This hierarchical approach is being increasingly adopted - especially in areas such as
environmental and geophysical science [22, 23], ecological modelling [24, 25], as well as
in Bayesian statistical modelling and inverse problems more generally [17-21, 26]. In
our view, however, many of the advantages of hierarchical Bayesian modelling remain
under-appreciated and it offers many opportunities for formulating more unified
frameworks for model-data and model-model comparison. Furthermore, we note that a
similar hierarchical approach has recently received significant development in the
context of the non-Bayesian ‘extended-likelihood’ statistical modelling framework
[27-29]. Thus, in our view, many of the benefits of the present approach can be

attributed to its hierarchical aspect in particular ([20] also emphasise this point).

As illustration of some of the modelling benefits of the hierarchical approach, we show
how both discrete and continuous process models can be derived and related using the
hierarchical perspective. This thus provides a clear, unified approach for
understanding different - yet related - models and derivations, and for embedding
models within a data-driven parameter estimation framework. The hierarchical
perspective also provides a natural guide to exploring robustness to model closure
assumptions, investigating model misfit and checking for invariance of proposed
mechanisms under in/out-of-sample and treated/untreated conditions. These
considerations are necessary since, despite the utility of statistical methods for
obtaining parameter estimates and model predictions based on an assumed-to-be-true
model and assumed-to-be-true datasets, it is also well-known that ‘all models are
wrong’ [30] and that purely statistical modelling is generally inadequate for drawing
causal conclusions without additional assumptions [31, 32]. We adopt a
straightforward conditional/hierarchical interpretation of causal modelling (see [33, 34]
for clear overviews) and emphasise the distinct roles of (Bayesian) predictive
distributions vs. parameter distributions for model checking and the assessment of

evidence, respectively (see [17, 30, 35-37] for clear discussion of these distinctions).
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Conclusions

For predictions over moderate time-scales a primarily proliferation-driven model
appears adequate as a sound starting point. Our framework offers a systematic,
hierarchical modelling perspective for exploring and testing possible improvements,
and using Bayesian inference for estimating parameters and generating model
predictions. Our interdisciplinary approach, mixing new experimental work with
mathematical and computational modelling, enables us to more reliably consider and
test various hypotheses than would likely be obtained using only one or the other

approach.

Structure

Our article is structured as follows. We first outline the experimental procedures
(which are also described in more detail in [15]). We then show in detail how we build
up our mathematical model, beginning from the data available, the resolution of the
measurement process and a hypothesised underlying ‘true’ or ideal population from
which samples are assumed to be drawn. We then consider both discrete and
continuous representations of the spatiotemporal evolution of the underlying
population, their relation to each other and some of the strengths and weaknesses of
different representations. We then present the methods and results for our baseline
and Ara-C-treated experiments, using our modelling and exploratory data analysis to
interpret them. Each stage is described in quite some detail in order to demonstrate
how the present framework may be adapted and used for other problems of

computational biology more generally.

Materials and methods I: Experimental treatments

Homeostasis mouse model

To obtain estimates of intestinal epithelial proliferation and migration rates under

normal, homeostatic conditions in healthy mice, we used standard methods of
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proliferative cell labelling and tracing [1, 8-10] (see also [15] for full details). Actively
proliferating cells in the intestinal crypts were labelled by single injection of the
thymine analogue 5-bromo-2-deoxyuridine (BrdU) and labelled cells detected by
immunostaining of intestinal sections collected from different individuals over time.
Migration of labelled cells traced from the base of crypts to villus tips was monitored

over the course of 96 hours (5760 min).

Blocked-proliferation mouse model

To assess the effects of proliferation inhibition on crypt/villus migration, migrating
and proliferating epithelial cells were monitored by double labelling with two thymine
analogues (BrdU and IdU), administered sequentially a number of hours apart and
subsequently distinguished by specific immunostaining in longitudinal sections of small
intestine. Following initial IdU labelling of proliferating cells at t=-17h (-1020 min,
relative to Ara-C treatment), mice were then treated with cytosine arabinoside
(Ara-C) at 250 mg/keg body weight, a dose reported to inhibit proliferation without
causing major crypt cell atrophy (see [15] and references therein for full details).
Tissues were collected over 24 hours, with BrdU administered one hour prior to
collection to check for residual proliferation. Successful inhibition of proliferation
following treatment with Ara-C was confirmed by an absence of BrdU (S-phase) and
phospho-Histone H3 (pH3) staining (M-phase) in longitudinal sections of small

intestine (again, see [15] for full details).

Recovering-proliferation mouse model

The above Ara-C treatment effect was observed to last for at least 10h (600 min). Cell
proliferation resumed to near normal levels in samples obtained 18h (1080 min)
post-Ara-C treatment. We hence considered samples collected at least 10h post-Ara-C

treatment as corresponding to ‘recovering-proliferation’ conditions.

PLOS 7/42


https://doi.org/10.1101/072561
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072561; this version posted October 25, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@.PLOS | susmissioN

aCC-BY-NC-ND 4.0 International license.

Materials and methods II: Mathematical framework

Overview

Here we build up a hierarchical probability model on the basis of conditional
probability assumptions which are used to factor out a measurement model, a
mechanistic model and a parameter model. We will interpret and visualise this
hierarchical model in an operational manner i.e. as defining various ensembles

(e.g. prior and/or posterior parameter and/or predictive ensembles) consisting of
sequences of draws from the component distributions of the full product (see e.g.
[38—40] for discussion of simulation-based interpretations of Bayesian models). We first
discuss the model components, after which we summarise the overall model structure
and computational implementation of the model in the ‘Computational methods’

section that follows.

Measurement model

Observable features and underlying population

Our aim is to connect experimental measurements to mechanistic models. Rather than
begin from mechanistic hypotheses before considering the connection to available data,
here we explicitly begin by thinking about the available data, how it is obtained and
what the key features of interest are. These key features will then be considered to
define an ideal ‘underlying population’ from which samples are considered to be drawn
or to which they are to be compared. This means that we begin the construction of

our hierarchical model in a ‘top-down’ (data-to-parameter) manner.

With reference to Fig 1, we consider a collection of one-dimensional ‘strips’ of cells.
These strips run from the base of the crypt to the tip of the villus, i.e. along the
so-called ‘crypt-villus’ axis, and correspond to how strips are collected experimentally.
Each of these strips can be considered as arising from a ‘measurement’ from the
(hypothesised) ‘true underlying population’ of such strips. Equivalently, the underlying
population can be considered to define the ‘reference frame’ with respect to which the

(finite) samples are analysed (and without which samples have little meaning).
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Figure 1. The (a) intestinal epithelium, (b) individual measurements as strips of cells
and (c) collection of strips, where ‘C’ and ‘V’ indicated ‘crypt’ and ‘villus’ respectively.

Measurements can be given a spatial location index ¢ and a time label ¢; we will

represent these by a single index parameter s := (i,t), when notationally convenient.

In our case we assume each strip is independent of the others as, in general, strips are
taken from different crypt-villus units and/or animals after ‘identical preparation’
Thus we do not ever directly possess, for example, measurements of a particular crypt
with dimensions given in terms of a certain number of strips, though we will
distinguish between the underlying population of strips (full ensemble) and a
particular sample of strips at hand. Characterising a ‘typical’ reference crypt-villus
unit by the two vectors (L, n), where L is the vector of labelled fractions at each grid
point and n is the vector of number of samples at each grid point, gives a useful
reduction of the (spatially) two-dimensional dynamics to a (spatially) one-dimensional
problem. In general the dynamics of strips in a given crypt may be affected by those

in the same crypt but we will not consider this additional complexity at present.

Given our choice of key observable as y, the vector of counts of labelled cells at each
grid point, and key ‘ideal characteristics’ of comparison (L, n), we will assume that all
observations at a given grid point s are exchangeable (see [16, 17] for a formal
definition and further discussion) conditional on (L,n). Satisfying this exchangebility
condition implies the existence of a Bayesian probability model and is, in essence, a
statistical reduction/symmetry assumption [16, 17]. Thus we will assume the existence
of some p(y|L,n), which links observables to an underlying population. Note that we

will consider different experimental treatment conditions F, but the measurement
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component will be taken to be independent of FE - i.e. treatment will be taken to affect
the underlying process parameters only (this is discussed in more detail in ‘Summary

of hierarchical structure’).

A slight strenghtening [16, 17] of the general exchangeability assumption (which leads
to a pure existence theorem) to the independence assumption discussed above leads to
a particular model for the number of labelled cells y, drawn in a collection of n, cells
at grid location s. This corresponds to a binomial distribution B with probability L,

at each grid location, giving the factorisation

plylL.n) = T B(n,. L) 1)

Note that this certainly does not imply that the underlying parameters L(i,t) are
independent, rather that if the true parameters are known at each location then

observations can be made independently at those locations (as discussed in the above).

Likelihood and normal approximation

The above justifies a measurement component p(y|L,n) of the full sampling model for
the probability of a set of observed labelled cells y in samples of sizes n given the
vector of modelled underlying labelled fractions L. This also gives a likelihood function
£ for this measurement model, which is proportional to the probability given by the

sampling model evaluated for the observed data and considered as a function of L, i.e.

S—1 S—1
L(Lyy,m) = TLLE (1= L™ o< p(y[L,n) = T B(n,, L,). (2)

It is also helpful to note that, for each s, if n, is sufficiently large and L, is not too
close to 0 or 1 (e.g. n,L, and n (1 — L,) > 5 is typical) then we may replace the
binomial distributions B(n,, L,) by their normal approximations
N(ngLg,ngLy(1—L,)). In this case we can use, denoting the set of all measured

labelled fractions through the (useful, but slightly non-standard) notation

y/n=(y/nys . ys/ng),
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y y S=1 1 (3= —L,)*
L(Lin, =) =p(=|L,n) = 1II —_
(Lin, 3 = plm) = T oxp (= ) 3)
where the standard deviations are given by o, = L.0-L.)  Since these standard

nS

deviations depend on the L, in addition to the n, we cannot drop them from the
likelihood function. This normal approximation formulation is useful for the
construction of approximate uncertainty intervals and, as we illustrate later, checking

model misfit.

Process models

Discrete, measurement-grid-level process model

Here we first consider a formulation of our governing ‘process’ equations as a discrete
probabilistic model. This captures the evolution of the (population) ‘measurement’
probability (labelled fraction) at the scale of the measurement grid. We will later
consider an underlying continuous approximation to this model which discards some
arbitrary details of the discrete model and so, though an approximation, it may in
another sense be more generally applicable. It introduces a finer, continuous, spatial
scale than the discrete measurement grid. The relationships between discrete and
continuous representations motivates various possible modifications to, and

interpretations of, our process equations, which we discuss later.

Again with reference to Fig 1, we consider a collection of one-dimensional ‘strips’ of
cells. For our probabilistic discrete model, we use I; € {0,1} as an indicator variable
denoting the occupancy status of site 7 of a given strip. The full state of this strip is
then given by the vector 1 = (Iy,1,...lg_;). We first seek a description of the
probabilistic dynamics in terms of a discrete-time Markov chain for the probability
distribution of the full state p(1,t) [39, 41]. Though we will begin from an explicit joint
distribution for the full state we will show this reduces here to a description in terms

of the set of ‘single-site’ probability distributions p(l,,t) for each site .

For the following derivations it is helpful to adopt an explicit notation. Thus we will

denote the probabilities of occupancy and vacancy at site ¢ at time ¢ by p(l;(t) = 1)
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and p(l;(t) = 0) respectively, and note that since p({;(t) = 1) + p(l;(t) = 0) = 1 we only
need to consider the probability of occupancy to fully characterise the distribution

p(l;(t)) (and, of course, similar properties hold for conditional distributions - see

below).

The equation of evolution for this probability can be conveniently derived by
considering conservation of probability in terms of probability fluxes in and out,

giving, to first order in At

pi(t+At) =1) —p(l;(t) = 1) =

zﬂii%@@qﬁkﬂﬂxﬂ:mfpﬁqﬁ%:QMQZD] (4)

§=0
The first term on the right represents a net ‘influx of occupancy probability’ due to a
single division event somewhere at site j < i, each division event having a probability
given by k;At. This flux leads to the value of the state variable [;(t) = 0 being
replaced, at the next time step, by the value of [,_;(¢t) = 1. The second term similarly
represents a net ‘outflux of occupancy probability’ due to a division event somewhere
at site j < 1.
We can further simplify this due to the binary nature of the occupancy state. To do

this, note that since [;(t) = 0 and [;(t) = 1 partition the event space of I;(t), we have

Pl () = 1,1(t) = 0) = p(l,_1(t) = 1) = p(l;_1 (1) = 1,1;(t) = 1) ()

and similarly, since I;_;(¢) =0 and I, ;(¢) = 1 partition the event space of I, ,(¢), we

have

Pl (1) = 0,1,(t) = 1) = p(l;(t) = 1) —p(l; 1 (t) = 1L, 1;(t) = 1). (6)

This leads to the above-mentioned simplification in terms of only single-site

probability distributions
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Underlying continuous model

Here we introduce a smooth parameter field of ‘true’ labelled fractions L(zx,t), now
defined over a continuous space-time domain, and which corresponds to a further
idealisation of the ‘underlying population’ from which we envisage the strips are
sampled. The smoothness assumption, while not strictly necessary, means we will be
able to give an interpretation of some model properties in terms of local derivatives; it
also makes future comparisons with off-lattice and/or continuum models (see [42] for a
review of various model types) more directly possible, and reduces arbitrary

dependence on discrete grid features.

The position x is taken to be a continuous coordinate passing through the discrete cell
indices, e.g. x = 0 denotes the coordinate of the cell labelled ‘0’ (base of the crypt),
while = 0.5 is the location halfway between the cell labelled ‘0’ and that labelled 1°.
We will indicate sample locations consisting of space-time pairs by s = (x,t,). Then,
for sample locations (i,t) corresponding to cell indices and arbitrary times, we match

the discrete model and continuous model using

pl(t) = 1|L(i,t)) = L(i, 1) (8)

i.e. L(i,t) serves as the parameter for a single measurement modelled as a Bernoulli

trial at that sample location (as in the above measurement model section).

Now, we consider how the discrete dynamics of p(l,(t) = 1) can be transferred to the
continuous L(z,t) dynamics. In particular, since L(z,t) is a smooth function, we can

make the correspondence
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Pl (t) = 1L(i = 1,1)) = L(i — 1,1)

SO0 | Ax? 9L 1)

Py (8) = UL, 0), Ly (3,8), .., Ax) = L(i,t) = Ao " = (9)

where Az =i — (i — 1) = 1 is the normalised cell length and we have also conditioned

etc. Here the continuous

on knowledge of the spatial derivatives at i, L, (i,t) = %

T

spatial field can be considered to be interpolating between - i.e. internal to - points of
the discrete grid, making use of local derivative information. Substituting the above

Taylor series, and similar expressions, into the discrete Markov equation 7 leads to

OLG,t) . -
ot TUO—%, =3

OL(i,t) 1 (Am (i 9?L(i,t) At82L(i,t)> (10)

= v(i

) Oz ot?
where we have, for completeness, also retained higher order terms in At for the
continuous model. We have also similarly assumed the existence of smooth functions

k(x,t) and v(x,t) that satisfy the discrete relations

v(i, t) = 12_: kAr = /i k(x,t)dx + v(0). (11)
=0 0

We will assume k(z,t) = k(z), v(z,t) = v(z) and v(0) = 0 in what follows.

Now we obtain closure for the continuous model by keeping only the lowest order terms
in both time and space, and further asserting that the equation structure obtained
should hold for all (continuous) x and not just (discrete) ¢ (this can also be motivated

by an assumption of grid translation invariance). This gives the advection equation

OL(z,1)

OL(z,t)
—5r +v(x)————=

=0 (12)

with
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v(x) = /I k(x")dx'. (13)

0

The above partial differential equation (PDE) has a straightforward continuum
interpretation as the advection of a tracer in an incompressible fluid field with a
source, and is sometimes referred to in this context as the ‘colour equation’ [43]. We
will take advantage of this in analysing model properties. Furthermore, it is
straightforward to show that incorporating cell death, with discrete rates d;, leads to
the same equations with k replaced by k — d, where d(z,t) is defined similarly to

k(z,t), and hence we will interpret k in the above as the net cell production rate.

Higher-order spatial effects Our smooth interpolation of the discrete set of
equations into a continuous equation is a process of ‘continualisation’ - the reverse
process of discretising a continuous equation to obtain a numerical scheme (see e.g.
[44] and [43] Section 8.6 for similar ideas). Thus we might expect that a better
continuum approximation could be obtained by retaining higher-order spatial

derivatives and hence finite-cell-size effects.

As one possible model improvement and/or perturbation, here we reconsider the
continuous approximation of our discrete Markov equation. In particular we consider
retaining the higher-order spatial derivative. This naturally gives rise to a
Fokker-Planck equation containing a diffusion term [41]. Equations of this (and
similar) form have been derived before, also based on continuous approximations to
discrete master equations (e.g. [45-48] also contain similar ideas; [42] give additional

references).

Reconsidering the expansion in 10, we will again neglect all terms of order At; however

we now retain the next order spatial derivative leading to

OL(z,t) OL(z,t)
—a Tv@)—p — =Dz)

O?L(z,t)
0x2

where D(z) = (1/2)Azv(z).

Here retaining the second spatial derivative amounts to accounting for spatial effects
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due to finite cell sizes. Though we will first evaluate our original ‘zeroth-order’
(advection) model against our data, we will later examine the extent to which

higher-order spatial terms such as those considered here may account for any misfits.

Parameter model

Within a Bayesian approach the choice of prior distribution is as important a part of
model construction as the choice of sampling model (measurement and process
components) and can be used to include relevant scientific information and constrain
or ‘regularise’ the physical and mathematical characteristics of solutions ([17] provides
an applied account of this approach while [37] presents a more philosophical
perspective). In particular we can constrain the variability of the (here) spatially
varying parameter field a priori to help avoid unphysical solutions, as well as vary

these prior assumptions to explore the solution dependence on parameter variability.

We represent possible proliferation profiles, varying with cell locations, as realisations
from a prior given in terms of a discretised random field (a random vector) k of length

m, modelled as a multivariate Gaussian N (u, C) with joint distribution

1

(27)"/det(C)

The properties of this distribution are determined by its mean vector g and covariance

p(k) = exp(—(k — )" C (k — p)/2). (15)

matrix C. Furthermore, we decompose the latter into a standard deviation matrix
given by the outer (tensor) product of the standard deviation vector for each variable,
S = oo’ and correlation matrix R. These multiply element-wise to give Ci; = SR,

(no summation).

Another common, equivalent, representation is C = DRD where D is a diagonal
matrix with diagonal entries D,; = 0;. Decomposing the covariance into these separate
parts makes clearer how we can control the smoothness and magnitude of variations

via off-diagonal and diagonal terms, respectively, in addition to the mean response.

We will assume that the correlation matrix R is obtained from the

(z—=')?

squared-exponential (Gaussian) correlation function k(z, ") = exp(“5

) where [ is
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a parameter controlling the characteristic length-scale of the correlations - e.g. the
scale over which the correlation function decays to 1/e - and x and 2’ are two spatial
locations. This allows us to control the ‘smoothness’ of the realisations from the prior,
in the sense that as [ is increased the values at x and z’ tend to be more similar. We
generate the matrix R by evaluating this correlation function at the locations of a
discretised grid of proliferation activity (here chosen to be coarser than the cell index
grid), and [, can then also be interpreted as a ‘parameter correlation length’, a
measure number of the parameters over which the correlations decay. We will typically

consider correlation lengths of 1-2 parameters.

In line with our approach of providing a ‘simulation’ or ‘sampling-based’
interpretation of a given model structure, it is typically most informative to visualise
realisations of the whole function from the resulting prior rather than simply give the
individual parameters/matrices separately ([18] discusses this in more detail). These

will be discussed and displayed in more detail in the Results section below.

Summary of hierarchical structure

Here we show how to piece together the above model components.

We begin from a full joint distribution for a given experimental treatment E and

known sample size vector n, decomposing it according to

p(y,L,k|n, E) = p(y|L,n)p(L|k)p(k|E). (16)

This hierarchical factorisation makes clear the conditional independence closure
assumptions which separate the dependencies of the various levels, i.e.

p(y|L;k,n, E) = p(y|L,n), p(Lk,n, E) = p(L|k) and p(k|n, E) = p(k|E).
Furthermore, a ‘causal’ - structural invariance - assumption is made in assuming that
the experimental treatment condition only affects the process parameter k but not the
structure of the measurement or process models (see e.g [31-34, 49-52] for discussions

of causal modelling and structural invariance).

The above factorisation can, and will, be checked to some extent in what follows. In
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particular, we distinguish working ‘within’ the model - e.g. parameter estimation
assuming the model and factorisation is valid - and working ‘outside’ the model -

e.g. checking the validity of the model structural assumptions themselves (see [17, 36,
37] for relevant discussion of the distinction). From now on we will suppress the
sample size n as it will be taken to be fixed and known, and will also in general

suppress the conditioning on E (keeping in mind that it only affects k).

As implicit in the model derivations above, we use a deterministic expression of
conservation of probability (as is typical for Markov/master /Fokker-Planck equations;
see [41]) for our process model and so the relationship between any set of process
parameters k and the output process variable L, p(L|k), can be (formally) taken to be
a Dirac delta function centred on the relationship described by the ‘true’ model (see
e.g.[18]). It suffices for our purposes to simply replace all functional dependencies on

the process variable above with a dependence on the process parameters.

Computational methods
Interpretation and implementation of model updating and inference

The above provides a ‘predictive’ or ‘generative’ probabilistic model. Thus, given an
initial specification (‘prior parameter model’ and ‘forward/process model’) of each of

these parts we can construct ‘prior predictions’ according to (see e.g. [17, 42])

y ~ ply) = / p(y1 () p(k) di (17)

where we have made use of the aforementioned deterministic link between a given
sample of process parameters and the output process variable, L = f(k). Here we
follow statistical standard notation where ~ denotes ‘distributed as’, or more

relevantly, ‘samples drawn according to’.

If, or when, new data y, become available one can update the parameters of the
model to improve the predictive model and hence pass to a ‘posterior predictive’

model (again, see e.g. [17])
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¥1¥o ~ p(¥lyo) = / p(¥1£(0))p(Klyo)dk (18)

where we have introduced the conditional probability closure assumption
p(y|f(k),yo) = p(y|f(k)). This closure assumption may be interpreted as maintaining
our same mechanistic model despite new observations, and thus again connects well
with current theories of causality as based on ideas of structural invariance [31-34,

49-52].

The logical flow is depicted in Fig 2. If we consider proceeding from the ‘lowest’ level
to the ‘highest’ level, then each lower level draw gives a parameter (or set of
parameters) to be plugged into the higher level distributions and generate further
draws, ultimately producing predictions to be compared to actual data. Distributions
are updated in the ‘reverse’ manner by conditioning at the highest level and
propagating the implications of this back down the hierarchy. The conditional
independence probability statements separating the levels may be considered as

testable modelling ‘closure’ assumptions.

To implement the updating from prior to posterior parameter distributions, given
measurements, we used Monte Carlo Markov Chain (MCMC) sampling (see [54] for a
comprehensive reference). In particular, we used the (open source) Python package
emcee (http://dan.iel.fm/emcee/) which implements an ‘affine-invariant ensemble
sampler’ MCMC algorithm and has been applied in particular to astrophysics
problems (see [55] for details). Given samples from the resulting prior and posterior
parameter distributions, respectively, prior and posterior predictive distributions were
obtained by forward simulation as described above. Note that each candidate
proliferation rate vector k is connected to the measurements y via the latent vector L;
since this step is deterministic, however, no additional sampling steps are required for

the process model component.

Interpretation of statistical evidence

As discussed above, our interpretation of mechanism/causality is as structural

invariance under different scenarios. Even given this, we still need to provide an
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Figure 2. Illustration of the Bayesian predictive and parameter inference processes.
Following the arrows (1) to (2) we move from a prior parameter model (left, black) to
associated predictive distribution (right, black) via the process and measurement
models. Following the arrows (3) to (4) we condition on observed data to obtain a
posterior parameter model (left, blue) and associated predictive distribution (right,
blue). Our structural assumptions mean that the information gained is represented in
updates of the parameter model while the process and measurement models maintain
the same form. Modified from [42], which was based on [53].
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interpretation of the ‘evidence’ that a set of measurements provides about parameter
values within a fixed model structure. There is still a surprising amount of controversy
and debate about fundamental principles and definitions of (statistical) evidence,

however (see e.g. [56, 57]).

Following our conditional modelling approach, here we adopt the simple - yet generally
applicable - principle of evidence based on conditional probability: if we observe b and
p(alb) > p(a) then we have evidence for a. A ‘gold-standard’ theory of statistical
evidence starting from this premise has been developed and defended recently by
Evans in a series of papers (summarised in [36]). Besides simplicity, a nice feature of
this approach that we will use is that it can be applied both to prior and posterior
predictive distribution comparisons such as p(y|yq) ; p(y), as well as to prior and
posterior parameter distribution comparisons such as p(k|yg) ; p(k). In practice, we
emphasise the visual comparison of various prior and posterior distributions ([18]
advocates a similar ‘movie strategy’ for the interpretation of statistical evidence and

inference procedures).

Differential equation solvers

In all sections other than the later section in which we include higher-order spatial
effects, we solve the differential equation model using the PyCLAW [58, 59] Python
interface to the CLAWPACK [60] set of solvers for hyperbolic PDEs. We adapted a
Riemann solver for the colour equation available from the Riemann solver repository
(https://github.com/clawpack/riemann). For testing the inclusion of higher-order
spatial effects (thus changing the class of our equations from hyperbolic to parabolic)

we used the Python finite-volume solver FiPy [61].

Jupyter Notebook and summary of main packages used

Our code is available in the form of a Jupyter (previosuly IPython) Notebook
(http://ipython.org/notebook.html) in the Supplementary Information. To run these
we used the Anaconda distribution of Python

(https://store.continuum.io/cshop/anaconda) which is a (free) distribution bundling a
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number of scientific Python tools. Any additional Python packages and instructions

which may be required are listed at the beginning of our Jupyter Notebook.

Results

Parameter inference under homeostatic (healthy) conditions

Fig 3 illustrates the process of updating from (realisations from) the prior (pre-data)
distributions of the proliferation and velocity fields to (realisations from) their
posterior (post-data) distributions. The left-hand side of the figure shows simulations
from the prior distribution for proliferation field (top) and realisations from the
induced distribution for the velocity field (bottom), respectively. The right-hand side
shows the corresponding simulations after the prior parameter distribution has been
updated to a posterior parameter distribution. The prior-to-posterior parameter
estimation was carried out using the MCMC sampling approach described above with
t =120 min (2 h) as an initial condition and ¢ = 360 min (6 h) and 600 min (10 h) as
given data. The initial condition for the underlying labelled fraction was determined
by fitting a smoothing spline to the data. The prior distribution for the proliferation
field shown in Fig 3 incorporated a weak mean trend in net proliferation rates, rising
from the crypt base to the mid crypt before falling exponentially to zero over the last
few parameter regions post-crypt end, and a parameter correlation length of 1. These
assumptions can be relaxed /varied with little effect, though typically a non-zero
parameter correlation length and a shut-off in proliferation after the crypt end
produce more stable (well-identified) estimates. As mentioned, the code is available for

use and so these assumptions are able to be varied by future researchers.

Parameter inference for blocked proliferation conditions

Fig 4 is the same as Fig 3 described in the previous section, but this time under
treatment by Ara-C. The previous results from the baseline case are shown in grey,
while the new results under Ara-C treatment are shown in blue. Here 1140 min (19 h

post IdU labelling, 2 h post Ara-C treatment) was used as the initial condition and
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Figure 3. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom). After data are
obtained the posterior distributions are much more tightly-constrained, and are
picking out biologically plausible results (see main text).

1500 min (25 h post IdU labelling, 8 h post Ara-C treatment) used for fitting. The
intermediate time 1260 min (21 h post IdU labelling, 4 h post Ara-C treatment) and
later time 1620 min (27 h post IdU labelling, 10 h post Ara-C treatment) were used as

out-of-sample comparisons (see later).

As can be seen, there is a clear inhibition of proliferation and an even clearer effect on
the migration (growth) velocity. The underlying parameter results are clearly more
variable than those in the baseline case. This may indicate, for example, greater
parameter underdetermination and/or inconsistency of the model. This is not
surprising as we expect all the proliferation parameters to be reduced to similar (low)

values and hence the parameters become less distinguishable.

To add additional stability to the results we can attempt to reduce
underdetermination in the parameters by increasing the parameter correlation length
and inducing an effectively more ‘lumped’ representation of the parameter field (since
values tend to stick together more). Doing this removed the more extreme negative

net proliferation in the posterior profile, however it still allowed for small amounts of
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Figure 4. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom) under Ara-C
treatment (blue) as compared to no treatment (grey). The velocities are reduced to
near zero, as are the proliferation rates, though the latter are noisier.
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negative net proliferation/velocity (the available Jupyter notebook can be used to

explore various prior assumptions).

Again, the need to introduce more stability is likely due to some combination of the
limitations of resolution, a consequence of trying to fit the data too closely, or an
indication of model inadequacies. In particular, under inhibited-profileration
conditions the effective number of parameters would be expected to be reduced. When
fitting the full model, with largely independent parameters for each region, it is to be

expected that some additional regularisation would be required for greater stability.

Parameter inference for recovering proliferation conditions

Ara-C is metabolised between 10-12 h post-treatment. The two times considered here,
1620 min and 2520 min, correspond to 10 h and 25 h post Ara-C-treatment,
respectively, i.e to the end of the effect and after the resumption of proliferation.
Hence, to check for the recovery of proliferation, we fitted the model using 1620 min as

the initial condition and 2520 min as the final time.

Fig 5 is the same as Fig 3 and Fig 4 described in the previous sections, but this time
after/during recovering from treatment by Ara-C. The previous results from the
baseline case are shown in grey, while the new results following recovery from Ara-C
treatment are shown in blue. Here 1620 min (27 h post IdU labelling, 10 h post Ara-C
treatment) was used as the initial condition and 2520 min (42 h post IdU labelling, 25
h post Ara-C treatment) used for fitting. We did not make additional out-of-sample
comparisons in this case, though in-sample posterior predictive checks were still

carried out (see later).

Here the proliferation and velocity profiles indicate that proliferation has resumed, as
expected. The rates of proliferation appear to be lower than under fully healthy
conditions, however, perhaps due to incomplete recovery (the initial condition being
right at the beginning of the recovery period). The timing of the recovery of
proliferation and the well-identified proliferation and velocity profiles inferred give no

indication that any other mechanism is required to account for these data, however.
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Figure 5. Simulated realisations from the prior (left) and posterior (right)
distributions for proliferation profiles (top) and velocities (bottom) after recovery from
Ara-C treatment (blue) as compared to no treatment (grey). The velocities and
proliferation rates show a clear recovery towards healthy conditions, though not to the
full level.
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Predictive checks under homeostatic (healthy) conditions

Fig 6 illustrates simulations from the predictive distributions corresponding to the
prior and posterior parameter distributions of Fig 3. This enables a first
self-consistency check - i.e. can the model re-simulate data similar to the data to which
it was fitted [17, 62]. If this is the case then we can (provisionally) trust the parameter
estimates in the previous figure; if this was not the case then the parameter estimates
would be unreliable, no matter how well-determined they seem. Here the model

appears to adequately replicate the data used for fitting.
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Figure 6. Simulated realisations from prior (top) and posterior (bottom) predictive
distributions (grey) for label data at fitted times (120 min, 360 min and 600 min i.e. 2
h, 6 h and 10 h). Actual data are indicated by black lines. Again the posterior
distributions are much more constrained than the prior distributions, representing the
gain in information from collecting (and fitting to) experimental data. The first profile
in each panel is held as a constant initial condition in this example.

Fig 7 and Fig 8 illustrate two additional ways of visualising replicated datasets. The
former visualises the label profile along the crypt-villus axis at the future

unfitted /out-of-sample time 1080 min (18 h), while the latter visualises both fitted
(120 min/2 h, 360 min/6 h and 600 min/10 h) and unfitted /out-of-sample (1080
min/18 h) predictions plotted in the characteristic plane (¢, ) in which the slopes
along lines of constant colour should be inversely proportional to the migration
velocities at that point, due to the (hyperbolic) nature of our ‘colour’ equation (see e.g.
[43]). We have interpolated between the dotted grid lines. These figures, in
combination with Fig 6 above, indicate that the model is capable of reliably

reproducing the data to which it was fitted, as well as predicting key features of
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unfitted datasets such as the rate of movement of the front. On the other hand, there
is clearly a greater misfit with the predicted rather than fitted data. In order to locate
the possible source of misfit we considered various model residuals and error terms -

see ‘Locating model misfit’ below.

‘ Time: 1080 min ‘
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Figure 7. Simulated realisations from prior (left) and posterior (right) predictive
distributions (grey) for label data at the unfitted (out-of-sample) time 1080 min (18 h).
Actual data are indicated by black lines. The model appears to give reasonable
predictions capturing the main effects, but there is also clearly some misfit to be
explored further.
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Figure 8. Actual (smoothed) data (left, black box) and one replication based on the
model (right; plotting the latent/measurement-error-free process) as visualised in the
characteristic plane. This has been discretised and interpolated between the dotted
lines to facilitate fair but coarse-grained comparisons. The model structure implies
that there should be lines of constant colour tracing out curves with slopes inversely
proportional to the migration velocities at that point. The model again captures a
number of these key qualitative features, but also fits less well for the out-of-sample
(above the horizontal gap at 600 min/10 h) data. There is little variability in the
latent model process and so only one replication is shown.
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Predictive checks under blocked proliferation conditions

Here 1140 min (19 h; post IdU labelling) was used as the initial condition and 1500
min (25 h) used for fitting. 1260 min (21 h) and 1620 min (27 h) were used as
out-of-sample (non-fitted) comparisons. Fig 9 is analogous to Fig 6 in the healthy case.
In general all of the features up to 1620 min (27 h) in Fig 9, and for both fitted and
predicted times, appear to be reasonably well captured. The fit at 1620 min is
generally good, but perhaps worse than the other cases. This could be due to both
errors in longer-time predictions and to the beginning of proliferation recovery. We

explore both longer-time misfits and recovering proliferation conditions in what

follows.

Time: 1140 min 1.00 Time: 1260 min

Labelled fraction

Labelled fraction

0 10 20 30 40 5 0 10 20 30 40 50
Location index (crypt-villus axis) Location index (crypt-villus axis)

‘ Timg: 15OQ min ‘ 1.00 ' Timg: 1620 min

Labelled fraction
Labelled fraction

0001020 30 40 50 S0 10 20 80 40 50
Location index (crypt-villus axis) Location index (crypt-villus axis)
Figure 9. Simulated realisations from posterior predictive distributions (grey) for
label data at 1140 min (initial condition), 1500 min (fitted time) and at two
out-of-sample/unfitted times (1260 and 1620 min). The posterior distributions appear
to adequately capture the actual label data (black).

Predictive checks under recovering proliferation conditions

As discussed above, Ara-C is metabolised between 10-12 h post-treatment. The two

times considered here, 1620 min and 2520 min, correspond to 10 h and 25 h post

PLOS 29/42


https://doi.org/10.1101/072561
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072561; this version posted October 25, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@. PLOS aCC-BY-NC-ND 4.0 International license.
B | SUBMISSION

Ara-C-treatment, respectively, i.e to the end of the effect and after the resumption of

proliferation.

Again, as expected, the label has resumed movement in concert with the resumption

in proliferation. The model appears to fit reasonably well
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Figure 10. Simulated realisations from posterior predictive distributions (grey) for
label data at 1620 min (initial condition) and 2520 min (fitted). These indicate that
proliferation has resumed, consistent with the time taken to metabolise Ara-C - see
the main text for more detail.

Summary so far

We conclude that, despite some minor misfit, especially for the longest-time
out-of-sample simulations and for the post-treatment conditions, the model behaves
essentially as desired under experimental perturbation and indicates that it is likely

capturing the essential features of interest.

Next we consider how we might explore possible sources of misfit.

Locating model misfit

Here we consider how to unpick the contributions of the various model parts to the
above re-simulated and out-of-sample datasets. We base this on assessing the model
adequacy under baseline (healthy) conditions as we are more confident of the

experimental effects under this scenario.

Fig 11 shows the following checks: measurement error as determined by subtracting a
smoothed spline from the observed data (dark line) and comparing these to the results

obtained by subtracting the process model from the simulated data (panels 1-4,
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moving left-to-right and top-to-bottom, showing fitted - 120 min/2 h, 360 min/6 h and
600 min/10 h - and unfitted /out-of-sample - 1080 min/18 h - times). This
presentation follows the noise-checking approach in [63], as well as the general
recommendations given in [17, 62]. Reliable interpretation of these as ‘true’
measurement residuals depends on the validity of the normal approximation 3 since
these expressions are not directly interpretable in terms of the discrete binomial model
(see e.g. [17, 62]). These are also visualised in terms of the corresponding cumulative
distributions in the middle panel (panel 5, following as above). Panels 6-9 show the
differences between the underlying process model and the smoothed spline fitted to
the data. As can be seen, the measurement model appears approximately valid at all
times, while the process model appears to have non-zero error for the 1080 min sample.

We consider this in more detail next.

Possible model improvement and robustness - higher-order

spatial effects

As discussed in the process model section above, the presence of cellular structure in
the epithelial tissue means that higher-order spatial effects may be present. Here we

consider to what extent these may account for the minor misfit identified above.

To give an idea of the qualitative differences induced by including these higher-order
terms, consider Fig 12 in which we compare to the (healthy) 1080 min (18 h) data in
which we found some indication of a process model error. Note that while this model
appears slightly better able to fit the qualitative features of the data, both models
require similar modification of the parameter values to quantitatively improve the fit
to our out-of-sample data (we have illustrated both for a case where parameter values
are reduced by 20%). Thus the key (yet relatively small) difference between the model
and out-of-sample data is likely due to an effect other than finite-cell sizes; for
example it may be due to time-variation in parameter values due to circadian rhythms
(we have assumed steady-state parameter values), label dilution or an unmodelled
mixing phenomenon in the full two-dimensional case. We note however that these
effects are small and appear to be important primilarily for predicting much further

ahead in time than the fitted data and the steady-state parameter assumption is likely
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Figure 11. Model and data residual components. Panels 1-4, moving left-to-right
and top-to-bottom, shows measurement error as determined by subtracting a
smoothed spline from the observed data (dark line) and comparing this to the results
obtained by subtracting the process model for fitted - 120, 360 and 600 mins - and
unfitted /out-of-sample - 1080 min - times from the realised data (grey). These
measurement error distributions are also visualised in terms of the corresponding
cumulative distributions in the middle panel (panel 5, following as above. Black -
actual data, grey - model simulations). Panels 6-9 show the differences between
realisations of the underlying process model and the smoothed spline fitted to the
data. As can be seen across panels, the measurement model appears approximately
valid at all times, while the process model appears to have non-zero error for the 1080
min sample. This observation is discussed in the text.
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valid for reasonable time intervals. This means that the more easily interpretable

original model may be sufficient for many purposes.
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Figure 12. Comparison of the modified process model which includes higher-order
spatial terms (blue) to the original model (grey, dashed), both at lowered proliferation
rates (decreased 20%), which is required for a better fit to the data. The original
model at the original fitted proliferation rates is also shown (grey, solid). Although the
model with higher-order spatial terms gives a better qualitative fit to the data for the
same proliferation rates, it is clear that the dominant cause of misfit is better
attributed to (time) varying proliferation rates (in the context of the present set of
models).

Discussion

Understanding the complicated dynamics of the intestinal epithelium requires an
interdisciplinary approach involving experimental measurements, mathematical and
computational modelling, and statistical quantification of uncertainties. While a
diverse range of mathematical models have been constructed for epithelial cell and
tissue dynamics (reviewed in [64-68]), from compartment models to individual-based
models to continuum models, we lack consistent and reproducible frameworks for
comparing models representing conjectured biological mechanisms both to each other
and to experimental data (for an overview, see our review [42]). These shortcomings

may explain why questions such as the connection between proliferation and migration
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and its variation under experimental perturbations remain open, despite much

investigation [8-14].

The aim of the present work was to acknowledge and confront these difficulties
explicitly, and to present some initial constructive steps in establishing such a
framework. To do this we carried out new experiments (described more fully in a
companion paper [15]) aimed at determining how proliferation rates, tissue growth and
cellular migration rates are related in the intestinal epithelium under healthy,
damaged (Ara-C treated) and recovering conditions. We performed BrdU/IdU
cell-labelling experiments under these respective conditions. In considering how to
best process these data and interpret them using mathematical models, we then

developed a probabilistic, hierarchical (conditional) framework.

Our hierarchical framework provides a best-practice approach for systematically
modelling and understanding the uncertainties that have, in our view, prevented past
studies in this area from providing reliable mechanistic conclusions - uncertainties in
experimental measurement and treatment, difficult-to-compare mathematical models
of underlying mechanisms, and unknown or unobserved parameters. Our approach
was influenced by recognising the benefits that the hierarchical Bayesian approach has
demonstrated in applications across a number of different disciplines (e.g. in
environmental and geophysical science as in [22, 23]; ecological modelling as in [24, 25];
and in Bayesian statistical modelling and inverse problems more generally as in [17-21,
26]). We also note that a hierarchical approach can have significant benefits outside
the Bayesian framework (see for example the ‘extended likelihood’ approach described

in [27-29]).

The hierarchical approach has advantages not only in terms of providing a framework
for combining disparate sources of uncertainty, but also as a framework for facilitating
modelling derivations and relating discrete and continuous models. Though the
resulting measurement, process and parameter models can or have all been derived by
other means, as far as we are aware this particular perspective has not been
systematically utilised in the same manner as considered here - at the very least it
appears uncommon within the mathematical /systems/computational biology

communities. Furthermore, in the main text we noted the connections of our
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conditional, probabilistic approach for relating discrete and continuous models to
similar procedures in the numerical analysis literature. This raises exciting connections

to the developing field of probabilistic numerical methods and computing [69].

We also note the connection between the choice of a measurement model as required
here (and/or process model error, and following e.g. [18-22, 70]), and the development
of approximate sampling and parameter fitting procedures, which are particularly
useful for analytically difficult models. A key concern of the latter is the appropriate
choice of summary statistics for constructing a ‘synthetic likelihood’ [71] or
similarly-modified posterior target for Approximate Bayesian Computation (ABC)
[72-74]. This choice determines (implicitly or explicitly) in which ways a given model
or set of models can be considered an ‘adequate’ representation of the data, which
features are considered to be reproducible and what the associated ‘noise’ structure
should be ([75] presents an alternative approach to characterising data features and
model adequacy). These issues are crucial in deciding how to model the complexity of
epithelial cell and tissue dynamics. An important next step, as described above, would
be to bring more process model types and explicit measurement modelling into this
framework and to evaluate and compare them under carefully modelled experimental
conditions. Extensions incorporating other mechanical and/or cellular-level

information (e.g. [11, 12]) would provide a natural next step.

As a final methodological point, by making our code and data available, as well as
leveraging already-available open-source scientific Python software, we open up our

work to other researchers to build on.

The main results established using the above framework were
e An adequate description of intestinal epithelial dynamics is achievable using a
model based on purely proliferation-driven growth

o This model is consistent with healthy, proliferation-inhibited (Ara-C-treated)

and recovering conditions

e The measurement and process model errors can be reasonably distinguished and

checked separately

PLOS

35/42


https://doi.org/10.1101/072561
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072561; this version posted October 25, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@PLOS | susmissioN

aCC-BY-NC-ND 4.0 International license.

o This checking indicates that much of the natural variability is directly
attributable to the collection process and this process can be modelled in a

simple manner

e Possible model errors can also be identified and proposed explanations
incorporated and tested within our framework, and thus the proper
interpretation of experimental procedures is aided by using an explicit

mathematical model and its predictive simulations

¢ Including finite-cell-size effects gives a slightly better qualitative fit to
experimental data, but the dominant sources of the long-time misfits are likely
due to some other factor such as (relatively slowly) time-varying proliferation

rates (e.g. due to circadian rhythms) or label dilution.
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