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Abstract

Polymerase Chain Reaction (PCR) is the principal method of am-
plifying target DNA regions and, as such, is of great importance when
performing microbial diversity studies. An unfortunate side effect of
PCR is the formation of unwanted byproducts such as chimeras. The
main goal of the work covered in this article is the development of an
algorithm that simulates realistic chimeras for use in the evaluation
of chimera detection software and for investigations into the accuracy
of community structure analyses. Experimental data has helped to
identify factors which may cause the formation of chimeras and has
provided evidence of how influential these factors can be. This article
makes use of some of this evidence in order to build a model with which
to simulate the PCR process. This model helps to better explain the
formation of chimeras and is therefore able to provide aid to future
studies that intend to use PCR.

1 Introduction - Why is a New PCR Model Re-
quired?

Whilst a number of PCR models exist, there is a sparsity of models built
for the purpose of artificial chimera generation. Those that do simulate
chimeras, do so in such a way that the amount produced is based on the
user’s desired number of chimeras. A more realistic model would rely on the
composition of the input sequences and values of parameters modelling PCR
conditions to drive chimera generation - the number of chimeras produced
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and their composition should be dependent on the input and not prede-
termined. Simulation software meeting these requirements would be very
welcome.

An advantage of simulated data is the presence of complete informa-
tion - because the input data is known then it is possible to separate the
output data into chimeras and good reads with 100% accuracy. If, then,
the simulation proves to be realistic enough it will be extremely useful for
testing chimera detection software without the required time and expense
of experimental data.

It has been claimed that the leading chimera detection tools, Perseus
and UCHIME, can detect nearly all chimeras in a dataset with few false
positives [14] [7] but just how confidently can these assertions be made? Both
Perseus and UCHIME were tested on mock community datasets with good
results, however, it would be desirable to see how the results would compare
if they were tested using a dataset with a more realistic community structure,
chimera frequency and chimera composition. The models formulated in this
article may be used to generate in silico datasets designed for this purpose.

If chimera removal software does not perform as well as has been imag-
ined then this would be cause for concern. The presence of undetected
chimeras in datasets could give a false picture of community structure, likely
overestimating richness and diversity levels, and would ultimately add a sig-
nificant degree of uncertainty to the findings of any research that has been
carried out on such data.

The findings from Fonseca et al. [10] show that chimera formation is a
complicated process affected by a number of different factors such as re-
latedness, species diversity and nucleotide diversity. All of these factors
contribute and interact to influence the formation of chimeras in ways that
are difficult to understand using experimental data alone. It would, there-
fore, be very interesting to see whether a model designed to simulate chimera
formation could help to explain how this complex system works. If a model
could somehow incorporate all of these factors, then the different interac-
tions between them could be explored and it may be possible to determine
which factors have the most influence on the formation of chimeras.

There is the possibility that other, as yet unknown, factors could also
contribute to the level of chimera formation. In addition to this, the amount
of randomness involved is not understood. A good model of the PCR pro-
cess, designed specifically with chimera formation in mind, would allow com-
parisons to be drawn between experimental and simulated data. This would
allow improvements to be made to chimera identification and noise removal
techniques.

In conclusion, there is clearly a need for a PCR model that better sim-
ulates chimera generation.
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1.1 Existing Models of PCR

Many different studies into the simulation of PCR have been carried out in
the past. Differing limitations, areas of study and goals relating to the usage
of these simulations have led to varying levels of complexity and various
different applications.

Some existing PCR simulators operate by selecting target regions from a
set of longer genome sequences when given the primer sequences as input and
return the required amplicon sequences as output. Rubin et al. [15] present
such a model which is designed to investigate the production of non-targeted
PCR products using a simple algorithm that matches primer sequences to
suitable template DNA sequences based on a maximum mismatch threshold.
The study concludes that, according to the results of the simulation, more
unwanted PCR, products are formed in practice than predicted by the model.

Another similar PCR simulator is ecoPCR [8] which takes a primer pair
as command line input and makes use of the Wu-Manber algorithm [18]
for pattern searching. This algorithm compares two strings and indicates
whether or not the longer string contains a substring that is “approximately
equal” to the shorter string. In other words, two strings are treated as
identical if they are within a specified Levenshtein distance [12] of each of
other. The Levenshtein distance is, in basic terms, a measure of the number
of insertions, deletions or substitutions required to convert a given string into
a target string. In the context of simulating PCR, the Wu-Manber algorithm
is used to search for the optimal region of a given sequence with which to
bind a primer. Output from ecoPCR includes the amplicon sequence, its
length, the number of mismatches on each primer and various taxonomic
information relating to the sequences.

There are also several websites which offer PCR, simulation via the in-
put of sequences and primers directly into the user’s web browser as well
as changing variables relating to PCR conditions. Examples of such web-
sites are cybertory.org [3], bioinformatics.org [2] and amnh.org [1].
The usage of these tools is generally limited to data containing fewer input
sequences.

Primer Prospector [17], whilst not designed specifically as a PCR simu-
lation tool, may be used in the same way as much of the software described
in this section. The tool assesses the ability of a primer pair to act on a
dataset of sequences and outputs statistics based on the proportion of these
sequences that can be expected to amplify as well as a file containing all of
the amplicons generated.

As is the case with those outlined so far in this section, the majority
of available tools simulate PCR by extracting the targeted sequence frag-
ments from the reference. They predict probable PCR products and gener-
ate statistics about potential mismatch locations and primer efficiency but
they do not imitate a PCR process. An exception to this is Grinder [4]


https://doi.org/10.1101/072447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072447; this version posted August 31, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

which produces simulated PCR amplicons with chimeras and single-base
PCR errors included. Chimeras may be generated from an input parameter
specifying the percentage of chimeras required and, similarly, the number of
PCR errors can be controlled by inputting the required mutation rate and
distribution. In Grinder, a chimera may be generated in one of two ways -
the first method is randomly selecting a pair of parents and a random break
point and the second is similar to the method used by CHSIM. Chimeras
are then randomly added to the output data based on the required chimera
proportion.

CHSIM is the name of the chimera simulation algorithm which was used
to generate chimeras for the purpose of testing UCHIME [7]. The algorithm
selects parent sequences which share an identical sub-sequence (k-mer) of
given length, this k-mer is used as the crossover section between the two
parents (i.e. the break point is contained somewhere within this section).
Chimeras are generated at random, weighted in favour of those containing
the most abundant k-mers present in the pool of potential parents. This is
intended to make break points more likely between similar sequences in re-
gions of high sequence similarity. A preset number of chimeras are generated
in this way and added to the original pool of parents after each simulated
round of PCR.

1.2 Choosing a Good Model

In order to choose a good model for any procedure, several things should
be considered such as the model’s complexity as well as the parameters and
input required for the model. The number of different variable parameters
will impact on the model’s complexity and it may be decided that it is best
to ignore certain variables in order to simplify the model. It is important to
correctly identify the sources of variation that affect the process in practice
and to model these realistically using appropriate methods. One example of
this is the selection of appropriate probability distributions from which to
draw random variables.

A good model should also be easy to implement and run quickly enough
so as to be practical. The functionality of the model should be expressible
in the form of an algorithm that can be implemented in code. When imple-
menting the algorithm, compatibility with existing software and file formats
(for input and output) must be taken into consideration. If large amounts
of data are to be processed then it is desirable to use an algorithm that
minimises the number of calculations in order to reduce the running time.
Sometimes it may be better, or even necessary, to forfeit some accuracy in
order to produce a faster algorithm.

Most factors that should be considered when choosing a good model will
have an effect on its complexity and often a trade-off between complexity
and accuracy will be necessary. A simple model is more desirable if it is as
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effective as more complicated models. However, if a model is oversimplified
then there is a danger that its output will be unrealistic. For example, a
very simple model of PCR would be to take as input the initial abundance
of each DNA sequence and increase this amount based on the number of
PCR rounds, such that

Unew = Qold X 2"

where a,;q and a,ey, are, respectively, the original and resultant abundances
of the sequence and n is the number of PCR rounds. To calculate the new
abundance, the old abundance is multiplied by a factor of two raised to the
power of n because each sequence splits into two new sequences during each
round of PCR.

Output from this model will not be useful in practice because it does not
take into account the randomness and errors inherent in PCR amplification.
In particular, it ignores the facts that amplification is not 100% efficient and
that the amplification step can fail before completion, creating artefacts that
further complicate matters.

2 Methods

Chimera break point distributions taken from experimental and simulated
data were compared using the two sample Kolmogorov-Smirnov test [13].
This test returns a p-value to indicate the probability that the two samples
are similarly distributed. This means that an insignificant p-value (typically
p > 0.05) will reveal no information about the similarity of the two sample
distributions but it can be concluded that they are similar enough that there
is no obvious distinction.

The Kolmogorov-Smirnov test is typically used for samples with con-
tinuous data, however it has been adapted for discrete samples in the R
package, dgof, and is therefore applicable for the analysis of break point
distributions. Before each Kolmogorov-Smirnov test was carried out, the
larger of the two samples being tested was sub-sampled to the same size
of the smaller. Because different sample selections give different p-values,
the process was repeated 100 times in each case and the mean p-value was
taken.

Correlation between break point frequencies occurring in experimental
and simulated output was assessed using Pearson’s correlation coefficient,
rxy, which is calculated using the formula,

1 /X, —X\/Y,-Y
=5 (557) (5

SX Sy

where n is the number of observations in each sample (both samples must
contain the same number of observations), X; and Y; are the break point
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frequencies at position 7 in sample X and sample Y respectively, X and Y
are the mean break point frequencies across all positions in sample X and
sample Y respectively and sx and sy are the sample standard deviations. As
for the Kolmogorov-Smirnov test, the two samples were sub-sampled to the
same size 100 times and the mean of the 100 different Pearson’s correlation
coefficients was recorded.

Similarity in nucleotide composition between simulated chimeras and
chimeras generated experimentally was assessed using the ‘global search’
function in USEARCH [6]. One dataset of chimeras (e.g. experimental
chimeras) was used as a query dataset to be searched against a reference
dataset (e.g. simulated chimeras). Sequences in the query dataset were
paired with the most similar sequence in the reference dataset and a simi-
larity score was recorded (number of matching nucleotides divided by align-
ment length).

3 The PCR Process

This section presents a summary of PCR as a procedure, the steps of which
must be emulated to develop a realistic model of the process. The PCR
process is also summarised visually in Figure 1.

In order to prepare a sample for sequencing, an amplification step is
carried out using Polymerase Chain Reaction (PCR). Thermal cycling is
used to repeatedly melt and cool the DNA. When a strand of DNA is copied,
this copy can then also be copied; this leads to an exponential amplification
effect. PCR is used to amplify a particular target region of the DNA - this
is selected using primers (small pieces of DNA, complementary to the target
region).

The process typically involves 20-40 cycles of the following steps (
gives approx 1012 copies):

240

1. Denaturation — this step takes place at temperatures between 94 and
98°C for around 20 to 30 seconds. Hydrogen bonds are broken to split
the DNA into two strands.

2. Annealing — the temperature is reduced to 50-65°C. The primers bind
to both single strands of DNA. Hydrogen bonds are only able to form
when there is a close match, ensuring that the primers are annealed
to the correct region.

3. Extension — the temperature is adjusted depending on the polymerase
used. Nucleotides are attached to complete the DNA strands. These
strands can now be copied in the same way as the original.


https://doi.org/10.1101/072447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072447; this version posted August 31, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

DNA to be

amplified

Denaturatio
(DNA split
into two

strands)

Chimera

Annealing formation
(primers initiated
bind to (fragment
strands) used instead

of primer)

Extension

Complete:
2 copies Incomplete:
of original fragment(s)
sequence formed
created

Figure 1: The PCR process.
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Forward and Reverse Primers — After the annealing step, when the
DNA molecule has been split into two strands, the primer binding onto one
of these strands is called the forward primer. Extension can only occur in
the 5 — 3’ direction, this means that the primer binding to the second
strand of the complementary pair must induce extension in the opposite
direction to the first. A different primer, the reverse primer, must be used
for this.

Chimera Formation — Chimeras can be formed when the PCR exten-
sion step is incomplete. If PCR fails at a certain point then an incomplete
sequence of DNA is produced, this fragment can act as a primer for a dif-
ferent sequence in another round of PCR. This has the effect of forming a
sequence which is really a combination of two or more different partial se-
quences. The proportion of chimeras present varies from dataset to dataset.
Some datasets can be comprised of 90% chimeric reads. This is obviously a
large problem that is addressed using noise removal software.

4 Model 1

4.1 Model Outline

The repetitive cyclic nature of PCR suggests that an intuitive model is an
iterative procedure with the same steps being repeated for every simulated
round of PCR. The basic input information that will be required are the
number of rounds of PCR, the primers to be used, the DNA sequences to
be amplified and their initial abundances.

There are two factors that drive the way PCR progresses. The first of
these is the rate of failure of PCR, when the two parts of a DNA strand
do not combine with primers or fragments to begin amplification and, in-
stead, simply recombine with each other. This failure rate will depend on
the relative concentrations of sequences, primers and fragments and can be
calculated each round. The second factor is the rate of failure during exten-
sion. Parameters used in this model should be chosen with these factors in
mind.

One possible approach for modelling PCR, and the approach used in this
article, is to use integer values for the abundance of each sequence. This
means that a sequence will be treated in the model as an individual strand
of DNA and allows the model to be closely analogous to the actual process.
Because of this, discrete probability distributions, such as the binomial dis-
tribution, will be required to generate the random variables necessary for
the model.

The steps which make up the algorithm for the model are described in
detail in the remainder of this section. The complete algorithm is referred
to as Simera, a portmanteau of the words “simulation” and “chimera”. The
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e Set initial pool of sequences and abundances.

e Set empty pools of forward and reverse fragments.

e Set primer sequences and initial primer abundances, a,.
e Set .

e Set number of PCR rounds.

e For each round of PCR, r:

— Recalculate a from sequence, fragment and primer abundances.
— For each sequence s (abundance as and length ,):
x For each fragment/primer f (abundance ay):
- Calculate PCR failures as a Binomial(as,a) random variable.
- Decrease as by this amount.
- Record differences and break point for fragment f.
- Calculate weight, Wy, for fragment f.

x Generate vector of quantities [ep,c1,y- -] as
Wallenius(Xy, [ap, a1, ... ], [Wp, Wi,...]) random variable.

#* Add chimeras to pool of sequences.
* Repeat for reverse fragments/primers.
% For each fragment/primer, f (length l;) and
for each potential break point, b = (Iy +1)...(ls — 1):
- Generate number of fragments of length b as a Binomial(cy, \) ran-
dom variable.

- Add these fragments to fragment pool.
- Decrease cy.
- Double the remaining value of c; - successful amplification.

x Repeat for reverse fragments/primers.

e End of algorithm.

Figure 2: Simera algorithm for Model 1. X is the rate of failure during PCR
extension at each nucleotide point on a sequence. « is the PCR failure rate
and is calculated using the formula in Section 4.1. The fragment weightings,
Wy, are calculated using the formula in Section 4.1.
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Figure 3: PCR simulation using Model 1. This process is performed for all
sequences, s, and repeated for the desired number of PCR rounds.

10


https://doi.org/10.1101/072447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072447; this version posted August 31, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Simera algorithm is presented in Figure 2 and visualised in Figure 3.

4.1.1 Assumptions

For this model it is assumed that failures during the PCR extension step will
occur at a fixed rate. That is, extension is equally likely to fail regardless
of the position on the DNA strand being amplified and regardless of the
nucleotide content at this position.

Complete PCR failures - PCR failures without any extension - are as-
sumed to be dependent on the relative primer abundance which will decrease
in later rounds.

It is assumed that the ability of a fragment to act in place of a primer
is directly affected by its degree of similarity to the true primer. Further to
this, it is assumed that fragments generated by forward extension (5 — 3’)
may only act in place of forward primers and those generated by reverse
extension (5 +— 3') may only act in place of reverse primers.

4.1.2 Input Parameters

1. n — The number of rounds of PCR to be simulated.

2. A — This parameter is the rate of failure, during the extension step,
at each nucleotide on a sequence. It is used to determine if the first
nucleotide is duplicated, then the second, etc. until the entire sequence
has been amplified. If amplification fails at any point then a fragment
is produced. A is a probability between zero and one, and should
typically be very small. A may depend on PCR conditions so should
be variable from dataset to dataset.

4.1.3 Sequences

A list of initial sequences and their relative abundances shown as integer
values are required as input for the Simera algorithm. The sequences will
each be a string of DNA nucleotide codes [A,C,G,T] and only the region
selected for amplification need be included. In practice, for implementations
of the model, a fasta file is a good way to represent these data.

4.1.4 Primers

Information about the forward and reverse primers must be also be supplied
as input. The primers will be a string of DNA TUPAC codes [A,C,G,T]
and will typically be about 20 base pairs long. Unlike the DNA sequences,
primers may also contain ambiguous IUPAC codes [R,Y,S,W,K,M,B,D,H,V,N]
which each represent two or more of the four specific DNA nucleotides. For
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example, a primer containing the code M in the first position actually rep-
resents a collection of primers where 50% contain the A nucleotide and 50%
contain the C nucleotide in the first position.

These codes are included in primers because they are more versatile and
can, therefore, be better at selecting sequences which have a high degree of
nucleotide variation at certain points. The ambiguous IUPAC codes and the
nucleotides which they represent are shown in Table 1.

As input data, the abundance of each primer is also required. This
should be an integer value and should be greater than the number of primers
required to perfectly amplify all sequences for the given number of rounds,
n. Therefore, if the initial sequence abundance is ase, then the initial primer
abundance should be

Aprimer > Qseq X 2",

Cod Proportion of A | Proportion of C' | Proportion of G | Proportion of T
R 12 0 12 0
Y 0 1/2 0 1/2
S 0 1/2 1/2 0
w 1/2 0 0 1/2
K 0 0 1/2 1/2
M 1/2 1/2 0 0
B 0 1/3 1/3 1/3
D 1/3 0 1/3 1/3
H 1/3 1/3 0 1/3
v 1/3 1/3 1/3 0
N 1/4 1/4 1/4 1/4

Table 1: Representation of specific DNA codes by ambiguous TUPAC codes.
The non-zero entries show which of the four nucleotides (A,C,G,T) each
IUPAC code is capable of representing.

4.1.5 Fragments

Two lists of sequence fragments are also required. Initially these are empty
but, during the simulation, fragments will be generated and recorded. The
first pool is a pool of forward fragments - those generated from forward
primers - and the second is a pool of reverse fragments. The abundance of
each fragment is defined the same way as in the pool of sequences. During the
simulation the primer abundance and the abundance of incomplete sequence
fragments will be used to calculate the probability of chimera formation
where a fragment is selected in place of the primer.

4.1.6 PCR Failure

The first step in the Simera algorithm is to calculate how many copies of each
sequence fail to amplify. These sequences are determined at the beginning of

12
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each round, and their numbers are reduced accordingly so that the inactive
sequences are not referenced during the amplification step.

This will be dependent on the ratio of total sequence abundance to total
combined sequence, primer and fragment abundance - i.e. the fraction of
all elements present in PCR that are comprised of full sequences. In the
first round of PCR there will be relatively many primers (but no fragments)
and few sequences so this ratio will be small. As the rounds progress, more
sequences will be generated and primers will be used up so the ratio will
increase in size. It is logical to conclude that if primers and fragments are
in plentiful supply then there will be fewer instances when sequences fail
to bond with them to instigate amplification. This reasoning has been con-
firmed from results that show PCR efficiency is at its highest when amplicon
quantity is at its lowest and vice versa [16].

To determine how many sequences fail to amplify completely in each
round, the PCR failure rate is calculated as the parameter o and used to
generate a binomial random variable for each sequence:

sequence abundance

o= -
sequence abundance + fragment abundance + primer abundance

Failures ~ Bin(as, @)

where a, is the abundance of sequence s. The effective abundance of se-
quence s, X is the remaining number of molecules of sequence s that are
available for PCR extension and chimera formation.

X = as — Failures

4.1.7 Dealing With Reverse Primers

If the model is to follow the PCR process analogous then, when the sim-
ulation of a sequence splitting into two strands takes place, two differing
sequences should be recorded. The first will be the original sequence of nu-
cleotides and bind with the forward primer before commencing extension.
The second sequence will be the reverse complement - meaning that the
order of the sequence is reversed and that each nucleotide is swapped for its
corresponding complementary nucleotide (A < T and C < G) - of the first
sequence and will bind with the reverse primer.

In order to increase efficiency (and conserve memory in the implementa-
tion of the algorithm) a good shortcut is to use the reverse compeiment of
the reverse primer instead of the genuine reverse primer. This means that
both complementary strands for every sequence do not need to be recorded
and instead only one strand is required. Binding can be simulated by attach-
ing the forward primer and the new (reverse complement) reverse primer to
opposite ends of two copies of this strand as shown in Figure 4.

13
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Real Primers
5 — 3
Forward Primer GCTTGTCTCAAAGATTAAGC—
ARERRRRRRRRRERRRRER
Leading Strand 57 -TAATTCGAGTTTCTAATTCGGATGGCGT. .. TAGACACAGCGGACGACGGAAGGAACCT- 3~
Target Region

Comp. Strand 3?7 =GCTTGTCTCAAAGATTAAGCCTACCGCA. . . ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 5°
RERRRERRRRRRRERRRRE

Reverse Primer <GCGGACGACGGAAGGAACCT

5 3

Simulated Primers

5 — 3

Forward Primer GCTTGTCTCAAAGATTAAGC—

ARERRRRRRRRRERRRRAR
The Only Strand 57 -GCTTGTCTCAAAGATTAAGCCTACCGCA. .. ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 3’
Target Region

Duplicate Strand 57 -GCTTGTCTCAAAGATTAAGCCTACCGCA. .. ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 3?
ERERRRRRRRRRERRRRRR

Reverse Complement +—CGCCTGCTGCCTTCCTTGGA

of Reverse Primer

5 3

Figure 4: Simulated forward and reverse PCR primers. Notation referring
to the direction of each primer is relative to the leading strand.
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4.1.8 Choosing the Best Fragments for Chimera Formation

As declared in the assumptions in Section 4.1, fragments will be less effective
at binding with sequences than primers so, to make the model realistic,
fragments must be penalised by giving more weight to the probability of a
sequence binding with a primer. Some fragments will also be more adept
than others at acting as primers so this must also be taken into account.
This is done by comparing the last twenty nucleotides on the candidate
fragment with all possible positions on the sequence. The functional part
of a typical PCR primer is around twenty nucleotides long, therefore using
twenty nucleotides from a fragment is a logical choice when the fragment
will be acting as a primer.

The number of differences between the fragment and the sequence at
each point is recorded, giving the minimum number of differences and the
position at which this minimum value occurs for each candidate sequence.

Position A

Fragment GG
Sequence AA
Position B
Fragment
Sequence
Position C
Fragment
Sequence

>~ Q

Figure 5: Determining the optimal position for a fragment to act as a primer.
Position C is chosen because there are fewer differences.

In the example in Figure 5 it can be seen that position C gives the fewest
differences between the fragment and the sequence. In this case there are
zero differences compared to two and one in positions A and B respectively.
So far, only fragments acting as forward primers have been considered. Frag-
ments acting as reverse primers are analysed separately in the same way,
except that the first twenty nucleotides of the fragment are compared with
the sequences instead of the last twenty.

Once the optimal position and the number of differences has been found
for each fragment then each fragment f can be weighted based on its suit-
ability using the set of parameters
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where dy is the number of differences for fragment f and ny.,, is the total
number of fragments. This assigns higher weights to fragments with fewer
differences, as required and all weights are forced to be between zero and one.
The equation for Wy takes into account the fact that a greater quantity of
energy will be required to bind fragments with a large number of differences,
making it much less likely that these fragments will successfully bind.

A weight, W), for selecting a primer is calculated in the same way. In
the case where the primer contains ambiguous ITUPAC codes, a non integer
number of differences may be awarded if parts of the primer result in a
partial match to the sequence. For example, if the primer contains the code
M then this will result in a difference of 0.5 if it is compared with either of
the codes A or C (see Table 1). The primer is designed to be able to align
well with part of the sequence so it will, typically, have very few or zero
differences. It is easy to see that if there are zero differences between the
primer and part of the sequence then a value of W), = 1 will be calculated.

These weights, together with the set of abundances of each primer and
fragment, can be used to determine which primer or fragment each sequence
will bind with. Wallenius’ multivariate non-central hypergeometric distri-
bution can be used for this purpose because it models the selection of items
without replacement based on their abundance and allowing unequal proba-
bilities of selecting items of differing type, such as the primers and fragments
of varying quality in this model. Selection without replacement is appropri-
ate because when a primer or fragment binds with a sequence then it will
no longer be available for use in the current round.

For each sequence, random variables are drawn from the Wallenius dis-
tribution to identify the quantity of each primer or fragment to be selected
for amplification.

C ~ Wallenius(Xs, A, W)

where

C=l[cp,c1y Cuproyls A =lap,a1,...an;,, ] and W = [W,, W1, ... W, ].

© T Nfrag

The parameters a, and a; . are the abundances of the primer and

fragments respectively.

e npag

4.1.9 Amplification and Fragmentation

Each sequence can either bind with a fragment to form a chimera or bind
with the correct primer to commence amplification. Amplification can either
continue until the entire sequence has been amplified as intended or it can
fail part of the way through to form a sequence fragment. When a sequence
is ready for amplification it will be split into two strands, one will use the
forward primer (or a forward fragment) and the other will use the reverse
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primer (or a reverse fragment). This means that amplification can be split
into two separate processes. For each sequence to be amplified the abun-
dance is set to zero then increased by one if the forward strand successfully
amplifies and increased by one again if the reverse strand amplifies.

Consider the process to amplify forward strands - the reverse process
is symmetrical and will not be described in detail. The sequences can be
examined in turn. The parameter X is used to determine whether the first
nucleotide in the sequence is amplified. If it is then the second is amplified
with the same probability and so on until the entire sequence is amplified.
If at some point a nucleotide fails to amplify then amplification stops en-
tirely for the sequence and the incomplete sequence is added to the pool of
(forward) fragments. To model this, the primer and fragments are exam-
ined separately and binomial random variables are used for each possible
fragment of sequence s. In the case of the primer,

Y. ~ Bin(cp, \)

r=(,+1)... (1~ 1)

where [; and [, are the length of the sequence and the primer respectively.
The new fragment is created by joining together the [, nucleotides of the
primer with nucleotides in positions (I, + 1) to z in sequence s. Y, copies
of the fragment are added to the pool of fragments and ¢, is reduced by
Y.. The process is then repeated for each (old) fragment, f, in place of the
primer, substituting c; and [; for ¢, and I, respectively.

For each sequence there are (I — [,) possible fragments. This is the
case because amplification can fail at position (I, + 1) through to position
ls, giving (I — [,) possible failure points. The integer z is the same as the
length of the fragment created.

The PCR round is now complete and a new round can commence.

4.2 Implementation

The Simera algorithm was implemented using C++ code. This implemen-
tation makes use of the randomc and stocc libraries [9] which provide the
random number generator and probability distributions necessary to imple-
ment the algorithm. The latter of these libraries required slight modification
to enable compatibility.

The program requires as input the sequences to be amplified and their
initial abundances, the primer pair, the number of rounds of PCR to be
simulated, the number of reads to be sampled post-simulation and the value
of the parameter .

17


https://doi.org/10.1101/072447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072447; this version posted August 31, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4.2.1 Pre-processing and Formatting

The input files and parameters must be in the correct format for the Simera
program to function correctly. The number of rounds of PCR to be sim-
ulated, the number of reads to be sampled post-simulation and the value
of the parameter \ can be supplied as command line input and the primer
pair can be supplied as a fasta file. The sequences to be amplified must also
be in fasta format with each sequence having a unique name containing the
sequence’s abundance as the final part of this name. The sequences them-
selves must be truncated so that only the target regions to be amplified,
flanked on either side by the two primer-compatible regions, are present.

4.3 Calibration

To determine the value of the parameter A, simulated data were compared
with the experimental data described by Fonseca et al. [10]. To mimic
this experiment, the good sequences (as detected by Perseus) from the ex-
periments containing 12, 24 and 48 closely and distantly related nematode
species were used as input for 35 simulated rounds of PCR - the same number
of rounds as the original experiment. The same number of reads produced
for each experiment were sampled from the output of each corresponding
simulation and the number of chimeras produced in each case were recorded.
Different values for A were tried, each experiment was repeated five times
and the value that gave the closest match between the experimental data
and the simulated data was found to be A =~ 5 x 1076 as can be seen in
Figure 6.

This value for A can be considered accurate for simulations of PCR under
the same conditions as those used to generate the experimental data. To
simulate PCR with different conditions, different values for A may be more
appropriate.

4.4 Results

In order to assess the performance of the model, simulated data were again
compared with the experimental data described by Fonseca et al. [10]. The
good sequences (as detected by Perseus) from each of the closely and dis-
tantly related pooled nematode experiments were used as input for 35 simu-
lated rounds of PCR. True break points and parents are available as output
from the simulation software, however to compare the simulated data with
realistic data it was necessary to find the break points and parents in the
same way as the original experiment.

As with the analysis described by Fonseca et al. [10], the output from
Perseus returned most likely break point for each chimera based on its two
identified parent sequences. These break points were standardised for the
whole dataset by forming a four-way alignment of each chimera, its two
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Figure 6: Number of chimeras simulated using the Simera algorithm for
different values of A. The parameter A is the failure rate, during the exten-
sion step, at each nucleotide position on the query sequence. 35 rounds of
PCR were simulated using the good sequences (as detected by Perseus) from
pooled experiments on 12, 24 and 48 closely and distantly related nematodes
as input.
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parents and the C. elegans reference sequence using ClustalX [11]. The
position of each break point on the reference sequence was recorded to give
a standardised break point. The frequency of each standardised break point
could then be recorded to assess which regions of a sequence were most
susceptible to chimera formation.

Break point frequencies from the experimental and simulated data are
shown in conjunction with the equivalent results for the second algorithm
in Section 5.4 (Figure 12) and their distributions appear to be similar. A
Kolmogorov-Smirnov test, adapted for use with discrete distributions in the
dgof R package [5], was performed and yielded a p-value of 0.607, indicating
that there was no evidence that the two sets of data were drawn from distinct
distributions. In addition to this, the two sets of break point frequencies have
a Pearson’s correlation coefficient of 0.735. It can be inferred from these
results that the simulated data are distributed similarly to the experimental
data.

5 Model 2

5.1 How Can Model 1 be Improved?

It has been shown in Section 4 that the first PCR model is a faithful model
of the PCR process which can accurately simulate the generation of realistic
chimeras. The main negative issue with the model is that the implementa-
tions of it run too slowly to be useful for studies involving medium-sized to
large datasets.

Ways of generalising and adapting the model must, therefore, be sought
in order to increase the speed of simulations without significantly reducing
the accuracy and reliability of the output. This is achieved in this section by
taking a more abstract approach which involves creating a pool of the most
likely chimeras prior to the main body of the algorithm being executed. All
simulated chimeras may now only come from this pool and this, in turn,
means that individual fragments no longer need to be recorded. Instead,
only the overall number of fragments is required.

5.2 Model Outline

The updated algorithm for Model 2 is named Simera 2. The two parts
of the Simera 2 algorithm are described in detail in the remainder of this
section. The complete algorithm is presented in Figure 7 and visualised in
Figures 8 and 9.

5.2.1 Assumptions

In this model chimeras are still formed in the same way, the difference is that
rarer chimeras will now be ignored. Therefore, in addition to the assump-
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e Set initial pool of sequences and abundances, total abundance is a¢ot.
e Set empty pool of chimeras of size ciot.

e Set primer sequences and initial primer abundances, ap.

e Set A.

e Set number of PCR rounds.

e Set number of chimeras to generate, cgen.-

e Repeat cgen times:

— Select two random sequences, s; and s; of length I; and I; (I; < ;).

Generate a random break point, b, on s;.

Form chimera from first b bases of s; and the last [; — b bases of s;.
— Calculate probability of this chimera forming.

— If probability is in the highest cto+ probabilities, add to pool of chimeras.
e For each round of PCR, r:

— Set potential amplification pool:
* New Qior = old ator X 2.

— Reduce ator by PCR failures:

primer abundance+frag abundance
prim abundance-+frag abundance+seq abundance.

* Fail rate = 1— Efficiency.

x Efficiency =

* Failures = Binomial(Fail rate, atot).
— Reduce ator by fragments formed:
* Prob(fragment) -1 [1 _ )\(seq length—primer length)].

— Randomise chimeras and sequences:

* /8 _ mean primer weight X primer abundance
" mean prim weight X prim abund+mean frag weight x frag abund.

* sequences = Binomial(3, atot).
— Increase individual sequence abundances:
x Hypergeometric (sequences, old sequence abundance vector).
— Select chimeras:
* Multinomial (chimeras, chimera prob vector).
— Add selected chimeras to sequence pool.
— Reduce primer abundance by number of sequences formed.
— Increase fragment abundance by number of fragments formed.

— Reduce fragment abundance by number of chimeras formed.

e End of algorithm.

Figure 7: Simera 2 algorithm for Model 2. A is the rate of failure during
PCR extension at each nucleotide point on a sequence.
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Figure 8: PCR simulation using Model 2: Chimera formation step. This
step is to be repeated until the desired number of chimeras is reached.

tions made for Model 1, it is assumed that rare chimeras will be generated
in low enough abundances during PCR that they will not be selected when
reads are sampled during sequencing.

5.2.2 Input and Parameters

Most of the input for the second algorithm is the same as the first:
1. A list of initial sequences and their initial abundances.
2. Forward and reverse primers and their initial abundances.
3. X — The rate of failure at each nucleotide on a sequence.

4. A list of potential chimeras - a specified number of chimeras are to be
recorded for use later on in the algorithm. The pool is empty initially.

5.2.3 Chimera Formation Step

The Simera 2 algorithm comprises of two steps. The first of these involves
constructing all possible chimeras and calculating the probability of each
chimera forming. At a later stage in the algorithm, the probabilities associ-
ated with the individual chimeras will be used to select a chimera at random
when one is created. This removes the need to generate a new chimera every
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Figure 9: PCR simulation using Model 2: PCR step. Repeat this step for
the desired number of PCR rounds.
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time one is formed and, it is hoped, will not impact on the realism of the
first model.

To generate all possible chimeras, all possible fragments are aligned with
all sequences and the best chimera (fewest mismatches) is found, as described
in Section 4.1.8. The probability of a fragment of length [ forming is

Prob = A\(1 — \)*

where k = [ — p and p is the length of the primer used to form the fragment.
The integer, k, is the same value as the number of successful nucleotide
extensions prior to failure.

This probability is then combined with the relative abundance of each
sequence and the number of mismatches between the fragment and the se-
quence to calculate the probability of each chimera forming,

Prob = A(1 — A\)*a;a;e™™

where a; and a; are the relative abundances of the two sequences and m is
the number of mismatches.

A specified number of the most probable chimeras are recorded for later
use. For larger datasets, generating all possible chimeras will be too com-
putationally intensive and, instead, a predefined large number of chimeras
may be generated randomly and the most probable chimeras are selected
from these.

5.2.4 PCR Step

The following PCR step is intended to approximate the first Simera algo-
rithm outlined in Section 4, it is to be repeated for the specified number of
rounds.

PCR failures are calculated using exactly the same method as in the
original model, except they can be calculated for all sequences together
rather than each sequence separately:

Failures ~ Bin(a, o)

where a; is the total sequence abundance. The probability of a sequence
fragmenting is
Probfra, =1 — (1 — A"

which is just one minus the probability of the sequence amplifying success-
fully. This probability can then be used to calculate the number of fragments
created for each sequence in the current round:

Fragments ~ Bin(as, Probfrqg)
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where a, is the abundance of sequence s. This works the same way as
fragmentation in the first Simera algorithm but here only the number of
fragments is recorded instead of each fragment being recorded individually.
This method avoids the need to use Wallenius’ distribution to select indi-
vidual fragments based on their weightings.

The number of sequences available for amplification, as, is reduced by
the number of failures and fragmented sequences.

The number of successfully amplified sequences is determined using the
parameter 3, where

mean primer weight X primer abundance

8=

(mean prim weight x prim abundance) 4+ (mean frag weight x frag abundance);

Amplified sequences ~ Bin(ay, 3).

The number of individual sequences amplified is then found using a hy-
pergeometric random variable, as follows:

S ~ Hypergeometric(Amplified sequences, A)

where A is the vector of individual sequence abundances. This amplifies the
sequences all at once, compared with the first Simera algorithm which am-
plifies each sequence separately using successive binomial random variables.
Accuracy is lost because mean fragment weights are used rather than the
exact values.

Any remaining sequences are used to generate chimeras and this stage
is where the two algorithms differ the most. In the Simera 2 algorithm, the
chimeras are chosen from the prepared pool using a multinomial distribution
rather than being created from a fragment pool when required. This is much
quicker.

C ~ Multinomial(Remaining sequences, P)

where P is the vector of the probabilities of formation for each chimera.
Generated chimeras are then added to the pool of sequences for the next
PCR round.

5.3 Implementation

The Simera 2 algorithm was implemented using C++ and the program
has the same input requirements and dependencies as the original Simera
program.

5.4 Results

The implementation of the Simera 2 algorithm has been shown to be able
to handle large, realistic datasets. To verify that this algorithm is a good
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approximation of Simera, both algorithm implementations were used to sim-
ulate chimeras for the same datasets - the closely and distantly related ne-
matode pools which were also used in Section 4.4 - with the same input
parameters (35 rounds of PCR and A = 5 x 107%). It was not possible to
compare the models using larger datasets because of the inhibitive speed of
the original Simera implementation. However, it was theorised that if the
models work comparably on smaller datasets then the same should also be
the case for larger datasets.

When the simulated output from the Simera 2 algorithm was subsam-
pled, using the same sample size as that used for the original Simera data,
the average number of chimeras produced was 42.2, compared with 44.6 for
the original Simera data and 43.2 for the real experimental data.

To compare the type of chimeras which were formed, the break points
were again observed. On this occasion there was no need to use the method
involving Perseus and the C. elegans reference sequence because all break
points were available as output from the simulation software. The break
points of all chimeras generated in each of the simulated experiments were
compared, and the distributions of these are shown in Figure 10.

Simulated Data: Model 1

100 150

Frequency
50

0

Simulated Data: Model 2

100 150

Frequency
50

0

— T T T T 1
0 50 100 150 200 250

Break Point

Figure 10: Break point frequencies for simulated data comparing results
from the Simera and Simera 2 algorithms. For each algorithm, 35 rounds
of PCR were simulated using the good sequences (as identified by Perseus)
from pooled experiments on 12, 24 and 48 closely and distantly related
nematodes as input. Break points are returned as output from the Simera
and Simera 2 implementations.

The two distributions appear very alike, suggesting that both models
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produce the same chimeras and that Model 2 is an excellent approximation
of Model 1. To verify these assertions, a Kolmogorov-Smirnov test, again
using the dgof package in R, was performed on the two sets of frequency
data. A p-value of 0.970 was returned, indicating that there was no evidence
that the two datasets were drawn from distinct distributions. Additionally,
the two datasets of break point frequencies are closely correlated, as can be
seen in Figure 11, with a Pearson’s correlation coefficient of 0.914. These
results provide strong evidence that the two algorithms generate very similar
output when provided with identical input.

In addition to the true break points provided by the software, the break
points found by aligning each chimera, its parents (as detected by Perseus)
and the C. elegans reference sequence were also recorded and again com-
pared with those from the experimental data. The break point frequencies
are shown in Figure 12 and they appear to be distributed similarly to the
experimental break points as well as the break points generated using the
Simera 1 algorithm. A two sample Kolmogorov-Smirnov test between the
Simera 2 break points and the experimental break points returned a p-value
of 0.592, meaning that there was no evidence to suggest that the two samples
were differently distributed, and the two samples were positively correlated
with a Pearson’s correlation coefficient of 0.682.

The quality of chimeras generated with the Simera algorithms was com-
pared with that of those generated using the existing PCR simulator, Grinder
0.5.3. Two different methods of chimera generation were used. The first was
Grinder’s default method which simply creates chimeras based on a ran-
dom break point, the second method applies the same technique as used by
CHSIM which requires both parents to share an identical k-mer of length 10.
In order to specify the required k-mer length, Grinder must be supplied with
the input parameter, ‘ck’, so the first method has ck = 0 and the second
has ck = 10.

Break points for the chimeras generated by Grinder were found using the
same method as was used to find the break points of those generated using
the Simera algorithms, and the distributions are shown in Figure 13. As
expected, the distribution when ck = 0 is fairly flat and bears little similarity
to the distribution of the experimental break points. The distribution when
ck = 10 seems more realistic with some peaks and troughs appearing in
the same regions. However, there is an excessively large number of break
points over 200 and the remainder of the peaks are not as high as their
experimental counterparts. Overall, to the naked eye, the distribution does
not seem as realistic as those generated from the Simera algorithms.

All simulated sets of break points were compared with the set of ex-
perimental break points and the Kolmogorov-Smirnov p-values, along with
the Pearson’s correlation coefficients, are displayed in Table 2. The p-value
of 0.471 and correlation coefficient of 0.520 give no indication that chimera
break points generated using Grinder with ck = 10 are distributed differ-
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ently from the experimental data but these numbers are lower than those
found using the Simera algorithms which means that there can be greater
confidence that the Simera-generated chimera break points share the ex-
perimental distribution. The very low p-value shown supplies very strong
evidence that the break points generated using Grinder with ck = 0 are not
distributed in the same way as the experimental break points.
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Figure 11: Break point frequencies for simulated data generated using the
Simera algorithm plotted against the same data generated using the Simera
2 algorithm. 35 rounds of PCR were simulated using the good sequences (as
identified by Perseus) from pooled experiments on 12, 24 and 48 closely and
distantly related nematodes as input. Break points are returned as output
from the Simera and Simera 2 implementations.

Simulation Method | K-S Test p-value | Pearson’s Correlation
Simera 1 0.607 0.735
Simera 2 0.592 0.682
Grinder (ck=0) 0.000005 0.289
Grinder (ck=10) 0.471 0.520

Table 2: Kolmogorov-Smirnov test p-values and Pearson’s correlation coef-
ficients returned when various sets of simulated break points were compared
with experimental break points.

To investigate sequence similarity between simulated and real data, the
chimeras generated from the closely and distantly related experiments were
compared with the chimeras generated from the corresponding simulations
using both algorithms. Using the good sequences which were detected by
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Figure 12: Break points of chimeras generated from the Simera and Simera
2 algorithms compared with those from pooled experiments on 12, 24 and
48 closely and distantly related nematodes. For the simulated chimeras, 35
rounds of PCR were simulated using the good sequences (as identified by
Perseus) from the pooled experiments as input. In all three cases a four
way alignment was formed, using ClustalX, between each chimera, its two
parents (as identified by Perseus) and the C. elegans reference sequence.
The number of break points (as identified by Perseus) at each point on the
alignment were recorded.
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Figure 13: Break points of chimeras generated from Grinder, using both
ck = 0 and ck = 10, compared with those from pooled experiments on 12, 24
and 48 closely and distantly related nematodes. For the simulated chimeras,
35 rounds of PCR were simulated using the good sequences (as identified
by Perseus) from the pooled experiments as input. In all three cases a four
way alignment was formed, using ClustalX, between each chimera, its two
parents (as identified by Perseus) and the C. elegans reference sequence.
The number of break points (as identified by Perseus) at each point on the
alignment were recorded.
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using Perseus on the experimental output, each simulation was repeated five
times and the generated chimeras were pooled to create reference datasets
for each simulated experiment. The reference datasets were subsampled so
that both Simera and Simera 2 reference datasets were the same size for
each experiment. USEARCH was used to find the closest matches between
chimeras in the query dataset and those in the reference datasets and the
number of exact matches (100% similarity) and matches with greater than
99% similarity were recorded. The two simulated datasets were compared
against each other in the same way to see how many chimeras were present
in both.

Figure 14 shows the results from this analysis. The output from Simera
contained slightly more identical matches to the experimental chimeras than
the Simera 2 output (31.5% versus 28.8%) and also slightly more near (>
99%) matches (59.7% versus 53.2%). The two simulations were shown to
be producing similar chimeras with approximately 80% of the chimeras pro-
duced using Simera 2 closely matching (> 99%) those produced by Simera.

100
|

B 100% similarity
3 > 99% similarity

W 100% similarity
| > 99% similarity

| 100% similarity
= >99% similarity

80
1

60

Percentage of total chimeras
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Reference: Simera data Reference: Simera 2 data Reference: Simera data

Figure 14: Sequence similarities (using USEARCH) when comparing experi-
mental chimeras against datasets of simulated chimeras and when comparing
datasets generated using the two different Simera algorithms.

The number of exact matches between experimental chimeras and those
simulated for the reference sets was far greater than would be expected for
randomly generated chimeras. Examining, for example, the experiment on
24 closely related nematodes, the number of different potential chimeras can
be calculated. Each of the 24 input sequences is 220 base pairs in length,
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Species Number of | Number of Chimeras | Expected 100% | 100% Matches | 100% Matches
Relatedness Species in Reference Databases Matches (Simera) (Simera 2)
Close 12 4744 18.0% 20.0% 20.0%
Close 24 7309 6.6% 38.1% 42.9%
Close 48 15822 3.5% 18.4% 15.8%
Distant 12 2442 9.3% 44.4% 38.9%
Distant 24 5093 4.6% 35.6% 26.4%
Distant 48 11018 2.4% 32.7% 28.8%

Table 3: Expected 100% matches for experimental chimeras versus actual
100% matches when compared with reference datasets of chimeras gener-
ated using the Simera and Simera 2 algorithms. USEARCH was used to
determine percentage similarity between sequences.

meaning that there are 200 potential break points on each sequence. This
results in 200 different potential fragments for each sequence which, multi-
plying by 24, makes 4800 total potential fragments. Each of these fragments
can form one chimera when paired with any of the 23 other sequences, so
there are 23 x 4800 = 110400 possible chimeras resulting from this dataset.
As there were only 7309 chimeras generated for the reference datasets used
for this experiment then, under a random uniform model of chimera gen-
eration, the expected proportion of the experimental chimeras appearing in
the reference datasets is 7309/110400 = 0.066 or 6.6%. This result contrasts
with the actual percentage of matches for this experiment which were 38.1%
for the reference dataset of chimeras generated using the Simera algorithm
and 42.9% for the reference dataset of chimeras generated from the Simera
2 algorithm.

Table 3 shows the expected exact matches for each of the six experiments.
In every instance these are significantly lower than the actual exact matches
which is strong evidence that the simulated chimeras are more realistic than
uniform randomly generated chimeras. Expected matches are lower for ex-
periments with a higher number of input sequences because there are more
potential chimeras for these. This analysis does not consider chimeras gen-
erated from other chimeras but the inclusion of these would further increase
the number of different potential chimeras and, therefore, further decrease
the amount of expected matches.

6 Discussion

The model presented in Section 4 provides an accurate representation of
PCR. It has few parameters and assumptions and the output is shown to
reflect real experimental results. The drawbacks of this model are related to
speed limitations associated with the implementation of the algorithm and
its usage is restricted to very small datasets which mean that it can’t be
used for the majority of analyses.

A second model is presented in Section 5, the algorithm of which solves
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the problems associated with Model 1. Furthermore, the results obtained
from simulations utilising the second model’s methodology show no indica-
tion of being any less accurate than those obtained from simulations involv-
ing the first model’s methodology.

The abundance and nucleotide composition of chimeras generated, both
in wvitro and in silico, can vary somewhat even when PCR is performed
under the same conditions on identical samples. This is, presumably, caused
by the random occurrences of PCR extension failure and makes it difficult
to determine the degree of realism present in the data output from the
simulations. However, results show that around a quarter of the chimeras
found in the experimental data involving pooled nematode samples were
reproduced perfectly during the simulated experiments and around a half
were reproduced at a level of better than 99% similarity. Because of the
potential for PCR and sequencing noise, it is reasonable to suggest that
some of the closely matching chimeras were, in fact, exact matches.

The fact that many chimeras were reproduced exactly is encouraging,
as are the results showing that the chimera break points are distributed
similarly in experimental and simulated datasets. This is evidence that the
chimeras are being generated in the same way, i.e. that the same ‘type’ of
chimeras are being produced, even if their nucleotide composition is sub-
ject to natural variance. Furthermore, the distributions of break points on
chimeras generated using the Simera algorithms compare favourably to the
distributions of those on chimeras generated using Grinder. This is evidence
that Simera generates more realistic chimeras than the best existing PCR
simulators.

Section 1.1 discusses some existing PCR simulation software and notes
that most available tools involve the selection of amplicons from a refer-
ence database by matching primer sequences to areas of similarity on the
reference sequences. Because both Simera algorithms require ready-made
amplicons as input, the models presented in this article work best when
used in conjunction with existing software. For example, amplicons can
be selected from a reference database using Primer Prospector and these
amplicons can then be used as input for one of the Simera algorithms.

Overall, it can be concluded that both models presented in this article
can be used to produce realistic simulated PCR output, particularly with re-
spect to the chimeras generated during the process. In addition, the Simera
2 algorithm can be implemented sufficiently well to allow these simulations
to be carried out on large, realistic datasets.
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