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 23 

Abstract 24 

Background 25 

A recent study of the gene expression patterns of Zika virus (ZIKV) infected human neural 26 

progenitor cells (hNPCs) revealed transcriptional dysregulation and identified cell-cycle-related 27 

pathways that are affected by infection. However deeper exploration of the information present 28 

in the RNA-Seq data can be used to further elucidate the manner in which Zika infection of 29 

hNPCs affects the transcriptome, refining pathway predictions and revealing isoform-specific 30 

dynamics. 31 

 32 

Methodology/Principal Findings 33 

We analyzed data published by Tang et al. using state-of-the-art tools for transcriptome 34 

analysis. By accounting for the experimental design and estimation of technical and inferential 35 

variance we were able to pinpoint Zika infection affected pathways that highlight Zika’s neural 36 

tropism. The examination of differential genes reveals cases of isoform divergence. 37 

 38 

Conclusions/Significance 39 

Transcriptome analysis of Zika infected hNPCs has the potential to identify the molecular 40 

signatures of Zika infected neural cells. These signatures may be useful for diagnostics and for 41 

the resolution of infection pathways that can be used to harvest specific targets for further study. 42 
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  48 

Introduction 49 

As infection with Zika virus (ZIKV) is associated with increasing cases of congenital 50 

microcephaly and adult Guillain-Barre Syndrome, a characterization of its pathophysiology 51 

becomes crucial. A molecular characterization of the effects of infection may help in the 52 

development of fetal diagnostics and can accelerate the identification of crucial genes and 53 

pathways critical in disease progression. RNA-Sequencing (RNA-Seq) is an effective 54 

technology for probing the transcriptome and has been applied to study the effects of ZIKV 55 

infection of human neuroprogenitor cells (hNPCs) [1]. 56 

While initial analyses of the data have been used to conduct a general survey of 57 

transcriptome changes upon infection [1-3], they [1,2] used a method, Cufflinks/Cuffdiff [4], that 58 

fail to take advantage of the experimental design used in Tang et. al [1]. They [1,2,3] also do not 59 

examine transcriptome dynamics at the isoform level.  60 

We apply the recently developed kallisto [5] and sleuth [6] programs to improve the 61 

accuracy of quantification and to extract information from the data that was previously 62 

inaccessible. We find that sleuth’s improved control of false discovery rate results in differential 63 

transcript and gene lists that are much more specific and that are significantly enriched in 64 

neurodevelopmental pathways. They reveal ZIKV’s neural tropism and the host’s response to 65 

viral infection. Furthermore, we demonstrate that the combination of accurate kallisto 66 

quantification, assessment of inferential variance and the sleuth response error model allows for 67 

the detection of post infection isoform-specific changes that were missed in previous analyses.   68 

The sleuth Shiny app drives a freely available website that allows for reproducibility of 69 

our analyses, and provides tools for interacting with the data. This makes the dataset useful for 70 

analysis by infectious disease experts who may not have bioinformatics expertise. 71 
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 73 

Methods 74 

 We ran kallisto and sleuth on a total of eight samples of ZIKV infected and mock infected 75 

hNPCs (GEO: Series GSE78711). The runs were performed on a laptop and can be repeated 76 

using the provided scripts at http://www.github.com/pachterlab/zika/. We used kallisto to 77 

pseudo-align the RNA-seq reads, building an index using the ENSEMBL GRC38 release 85 78 

Homo sapiens transcriptome and using default parameters (kmer size = 31, fragment length = 79 

187 and sd = 70 for the single end reads), quantifying transcript abundances, and performing 80 

100 bootstraps per sample. To identify differentially transcripts and genes we first modified 81 

sleuth to be able to take advantage of the technical replicates performed by Tang et. al [1]. This 82 

was done by replacing an estimate of inferential variance from an average of bootstrap 83 

estimated variances to a weighting based on the number of fragments in each replicate. The 84 

response error model of sleuth was then used to identify statistically significant differential 85 

genes and transcripts. 86 

Table 1a: Experimental design and inferential variance estimation weights 87 

Sample Accession Number Condition Seq method Seq machine Reads Fragments / weights 

Mock1-1 SRR3191542 mock paired-end MiSeq 15855554 7927777 

Mock2-1 SRR3191543 mock paired-end MiSeq 14782152 7391076 

ZIKV1-1 SRR3191544 zika paired-end MiSeq 14723054 7361527 

ZIKV2-1 SRR3191545 zika paired-end MiSeq 15242694 7621347 

Mock1-2 SRR3194428 mock single-end NextSeq 72983243 72983243 

Mock2-2 SRR3194429 mock single-end NextSeq 94729809 94729809 

ZIKV1-2 SRR3194430 zika single-end NextSeq 71055823 71055823 

ZIKV-2-2 SRR3194431 zika single-end NextSeq 66528035 66528035 
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 89 

Results 90 

We detected 4610 transcripts across 3646 genes that are differentially expressed 91 

between ZIKV and mock infected samples (false discovery rate of 0.05) (Fig 1: principle 92 

component analysis. S1 Table: differentially expressed transcripts, sorted by significance level). 93 

2895 of the 3646 differentially expressed genes were also reported in Tang et. al [1], but they 94 

report an additional 3969 genes that we failed to find containing a significant transcript (they 95 

found a total of 6864 significant genes), whose 18423 transcripts have an average qval = 0.55. 96 

Furthermore, we found 751 differentially expressed genes corresponding to 5426 transcripts not 97 

detected by Cufflinks. 98 

 99 

 100 

Figure 1: Principle component analysis shows that the primary contributor to variance is whether 101 

the sample is ZIKV-infected or mock-infected. The secondary component is method of 102 

sequencing, i.e. paired-ends or single-end. 103 

 104 

The statistics and figure above, along with interactive data visualization tools, can be 105 

found via Sleuth’s Shiny app: http://lair.berkeley.edu/tang16/. 106 

 107 
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Zika induced isoform divergence. 109 

Differentially regulated genes may be missed in gene-level differential analysis for 110 

several reasons.  Noise in the measurement of a highly expressed transcript can mask 111 

expression changes in lowly expressed transcripts.  In the case of isoform switching, the 112 

upregulation in one isoform can “cancel out” the effects of downregulation in another. We 113 

identified 108 genes that undergo isoform divergence as a result of infection, where isoform 114 

divergence is defined as a gene containing one or more transcripts that are are significantly 115 

upregulated and at least one other transcript that is significantly downregulated (see S2 Table of 116 

isoform diverging transcripts with statistics). Of these 108, 57 genes were not considered 117 

differentially expressed genes by Cuffdiff analysis, corresponding to 150 transcripts. 118 

An analysis on these 108 isoform diverging genes using Reactome pathway analysis [7] 119 

show pathway enrichment in neuronal system (specifically transmission across chemical 120 

synapses and protein-protein interactions at the synapses), developmental biology (specifically 121 

axon guidance), immune system, DNA repair, chromatin modifying enzymes, gene expression 122 

(rRNA and transcriptional regulation), metabolism, signal transduction, transmembrane 123 

transport and vesicle-mediated transport.  124 

One of these 57 isoform diverging genes not picked up by Cufflink is NRCAM, neuronal 125 

cell adhesion molecule, which according to Gene Cards is putatively involved in neuron-neuron 126 

adhesion and axonal cone growth. Another is CHRNA7, cholinergic receptor nicotinic alpha 7 127 

subunit. [8] See Fig 2a and 2b for plots of the changes in their transcripts levels. 128 

 129 
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 131 

 132 

Figure 2a and b: Examples of genes with divergent isoforms, NRCAM and CHRNA7, viewed 133 

with our Shiny app. For a specific gene, it displays each transcript and the abundances 134 

corresponding to each sample. 135 

 136 
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A gene ontology (GO) analysis of sleuth-discovered genes showcase neural and head 140 

development networks. 141 

 We analyzed the set of 3656 genes with differentially regulated transcripts with a gene 142 

ontology tool, ClueGO a plugin for Cytoscape [9, 10], over the Biological Processes ontology 143 

network, using GO Term Fusion. We set the network specificity to global (GO tree interval: 1-4), 144 

using pathways with a minimum of 50 genes and kappa score of 0.5.  The enriched nodes of 145 

particular interest include neuron projection guidance (pval = 2.7E-3 vs >0.05 with Cuffdiff), 146 

cerebral cortex development (1.6E-7 vs >0.05), neuron development (9.9E-6 vs 3.9E-4), neuron 147 

projection development (1.8E-6 vs 5.0E-5), nervous system development (3.0E-10 vs 1.0E-9), 148 

central nervous system development (6.9E-9 vs 1.0E-4), brain development (2.8E-9 vs 8.0E-4), 149 

forebrain development (1.9E-7 vs 4.1E-2), telecephalon development (2.7E-5 vs 5.2E-3), head 150 

development (pval = 1.3E-6 vs 3.2E-4), and cellular response to stress (9.4E-26 vs 7.3E-22). 151 

 152 

 153 

 Figure 3: A subgraph of the network resulting from ClueGO analysis of the differentially 154 

regulated genes discovered by kallisto and sleuth.  155 

 156 
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A GO analysis results tables and ctyoscape JSON file (see Supplementary materials) that can 158 

be used to render the network in cytoscape. 159 

 160 

Discussion 161 

 RNA-Seq can provide rapid and highly resolved probing of infection response, and initial 162 

studies of Zika infection dynamics highlight neurally active isoforms, genes and pathways that 163 

may play an important role in disease etiology. However the simplicity of RNA-Seq library prep 164 

and cDNA sequencing belies the complexity of analysis. We have shown that a careful analysis 165 

of previously published data can reveal novel targets with higher confidence, and in the process 166 

rendering a valuable dataset usable by the community of Zika researchers.  167 

 168 

 The kallisto and sleuth tools we have used in our analysis are particularly powerful when 169 

coupled with the interactive sleuth Shiny application, and our publicly available server providing 170 

access to our analysis contains numerous interactive plots and analyses that cannot be 171 

reproduced in a static publication. This highlights the utility and importance of data sharing [11], 172 

and we hope that our analysis, aside from its usefulness for the Zika scientific community, can 173 

also serve as a blueprint for future data sharing efforts.  174 

 175 

 sleuth is a fast and accurate pipeline for analyzing RNA-Seq data that allows for testing 176 

at the isoform level. The alignment and quantification pipeline is feasible and compatible with a 177 

standard desktop computer. The interactive Sleuth application, made publically available, allows 178 

for informative data visualization, including those of library prep fragment size distributions, 179 

principle component analysis, and gene and transcript expression changes. We invite the 180 

scientific community studying Zika to utilize this toolkit. 181 
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