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ABSTRACT: High-throughput DNA sequencing technologies have revolutionized the 

study of microbial communities (microbiota) and have revealed their importance in both 

human health and disease. However, due to technical limitations, data from microbiota 20 

surveys reflect the relative abundance of bacterial taxa and not their absolute levels. It 

is well known that applying common statistical methods, such as correlation or 

hypothesis testing, to relative abundance data can lead to spurious results. Here, we 

introduce the PhILR transform, a data transform that utilizes microbial phylogenetic 

information. This transform enables off-the-shelf statistical tools to be applied to 25 

microbiota surveys free from artifacts usually associated with analysis of relative 

abundance data. Using environmental and human-associated microbial community 

datasets as benchmarks, we find that the PhILR transform significantly improves the 

performance of distance-based and machine learning-based statistics, boosting the 

accuracy of widely used algorithms on reference benchmarks by 90%. Because the 30 

PhILR transform relies on bacterial phylogenies, statistics applied in the PhILR 

coordinate system are also framed within an evolutionary perspective. Regression on 

PhILR transformed human microbiota data identified evolutionarily neighboring bacterial 

clades that may have differentiated to adapt to distinct body sites. Variance statistics 

showed that the degree of covariation of bacterial clades across human body sites 35 

tended to increase with phylogenetic relatedness between clades. These findings 

support the hypothesis that environmental selection, not competition between bacteria, 

plays a dominant role in structuring human-associated microbial communities.  
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INTRODUCTION 40 
 

Microbiota research today embodies the data-rich nature of modern biology. 

Advances in high-throughput DNA sequencing allow for rapid and affordable surveys of 

thousands of bacterial taxa across hundreds of samples (1). The exploding availability 

of sequencing data has poised microbiota research to advance our understanding of 45 

fields as diverse as ecology, evolution, medicine, and agriculture (2). Considerable 

effort now focuses on interrogating microbiota datasets to identify relationships between 

bacterial taxa, as well as between microbes and their environment.  

Increasingly, it is appreciated that the relative nature of microbial abundance data 

in microbiota studies can lead to spurious statistical analyses (3-9). With next 50 

generation sequencing, the number of reads per sample can vary independently of 

microbial load (6, 9). In order to make measurements comparable across samples, most 

studies therefore analyze the relative abundance of bacterial taxa. Analyses are thus 

not carried out on absolute abundances of community members (Fig. 1A), but rather on 

relative data occupying a constrained, non-orthogonal, geometric space (Fig. 1B). Such 55 

relative abundance datasets are often termed compositional. The use of most standard 

statistical tools (e.g., correlation, regression, or classification) within a compositional 

space leads to spurious results (10). For example, three-quarters of the significant 

bacterial interactions inferred by Pearson correlation on a compositional human 

microbiota dataset were likely false (4), and over two-thirds of differentially abundant 60 

taxa inferred by a t-test on a simulated compositional human microbiota dataset were 

spurious (11). To account for compositional effects in microbial datasets, bioinformatics 
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efforts have re-derived common statistical methods including correlation statistics (4, 

12), hypothesis testing (13),  and variable selection (14, 15). 

An alternative approach is to transform compositional microbiota data to a space 65 

where existing statistical methods may be applied without introducing spurious 

conclusions. This approach is attractive because of its efficiency: the vast toolbox of 

existing statistical models can be applied without re-derivation. Normalization methods, 

for example, have been proposed to modify count data by assuming reads follow certain 

statistical distributions (e.g., negative binomial) (16, 17). Alternatively, the field of 70 

Compositional Data Analysis (CoDA) has focused on formalizing methods for 

transforming compositional data from a constrained non-orthogonal space into a simpler 

geometry without having to assume data adhere to a distribution model (18). Previous 

microbiota analyses have already leveraged CoDA theory and used the centered log-

ratio transform to reconstruct microbial association networks and interactions (19, 20) 75 

and to analyze differential abundances (21, 22).  However, the centered log-ratio 

transform has a crucial limitation: it yields a coordinate system featuring a singular 

covariance matrix and is thus unsuitable for many common statistical models (10). This 

drawback can be sidestepped using another CoDA transform, known as the Isometric 

Log-Ratio (ILR) transformation (23). The ILR transform uses a sequential binary 80 

partition of the original variable space (Fig. 1C) to create a new coordinate system with 

orthonormal bases (Fig. 1D,E) (23). However, a known obstacle to using the ILR 

transform is the choice of partition such that the resulting coordinates are meaningful 
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(10). To date, microbiota studies have chosen ILR coordinates using random sequential 

binary partitions of bacterial groups (24, 25). 85 

Here, we introduce the bacterial phylogenetic tree as a natural and informative 

sequential binary partition when applying the ILR transform to microbiota datasets (Fig. 

1C). Using phylogenies to construct the ILR transform results in an ILR coordinate 

system capturing evolutionary relationships between neighboring bacterial groups 

(clades). Analyses of neighboring clades offer the opportunity for biological insight: 90 

clade analyses have linked genetic adaptation to ecological differentiation (26), and the 

relative levels of sister bacterial genera differentiate human cohorts by diet, geography, 

and culture (27-29). Datasets analyzed by a phylogenetically aware ILR transform could 

therefore reveal ecological and evolutionary factors shaping host-associated microbial 

communities.  95 

We term our approach the Phylogenetic ILR (PhILR) transform. Using 

environmental and human-associated 16S rRNA studies as benchmarks, we show that 

the accuracy of distance-based and machine learning models often increases and never 

decreases after applying the PhILR transform, relative to applying the same models on 

untransformed (raw) or log transformed relative abundance data. Moreover, because 100 

the PhILR transform incorporates phylogenetic information, statistics applied in the 

PhILR coordinate system naturally identify bacterial clades that may have differentiated 

to adapt to distinct body sites. The PhILR coordinate system can also be used to show 

that, in all human body sites studied, the degree to which neighboring bacterial clades 

covary tends to increase with the phylogenetic relatedness between clades. This result 105 
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supports theories that environmental forces, and not competition between bacteria, 

primarily structure the assembly of human microbiota.  

 

RESULTS 

Constructing the PhILR transform 110 

The PhILR transform has two goals. The first goal is to transform input microbiota 

data into an unconstrained orthogonal space while preserving all information contained 

in the original composition. The second goal is to conduct this transform using 

phylogenetic information. To achieve these dual goals on a given set of 𝑁 samples 

consisting of relative measurements of 𝐷 taxa (Fig. 1B), we transform data into a new 115 

space of 𝑁 samples and (𝐷 − 1) coordinates termed ‘balances’ (Fig. 1C-E). Each 

balance 𝑦(∗ is associated with a single internal node 𝑖 of a phylogenetic tree with the 

𝐷	taxa as leaves. The balance represents the log-ratio of the geometric mean relative 

abundance of the two clades of taxa that descend from 𝑖 (see Methods and SI Text). 

Balances are by definition orthogonal, which ensures standard statistical tools may be 120 

applied to the transformed data without compositional artifacts; however, this 

orthogonality does not imply statistical independence (SI Text). Each balance is also 

standardized so that balances across the tree are statistically comparable (10), even 

when balances have differing numbers of descendant tips or exist at different depths in 

the tree. This standardization also ensures that the variance of PhILR balances has a 125 

consistent scale, unlike the variance of standard log-ratios where it is often unclear what 

constitutes a large or small variance (4).   
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Benchmarking statistics in the PhILR coordinate system 

To assess how the PhILR transform affects statistical inference on microbiota 130 

datasets, we first examined measures of community dissimilarity. Microbiota analyses 

commonly compute the dissimilarity or distance between pairs of samples and identify 

groups of samples with differing community structure. We benchmarked how the PhILR 

transform affected the task of grouping samples using three microbiota surveys as 

references: Costello Skin Sites (CSS), a dataset of 357 samples from 12 human skin 135 

sites (30); Human Microbiome Project (HMP), a dataset of 4,743 samples from 18 

human body sites (e.g., skin, vaginal, oral, and stool) (31); and, Global Patterns (GP),  a 

dataset of 26 samples from 9 human or environmental sites (1) (Fig. S1). We computed 

distances between samples in the PhILR coordinate system using Euclidean distances. 

We compared this measure to common measures of microbiota distance or dissimilarity 140 

(Unifrac, Bray-Curtis and Jaccard) as well as a simple measure (Euclidean) applied to 

raw relative abundance data (32).  

The PhILR transform significantly improved distance-based analyses of 

microbiota samples.  Principal coordinate analyses (PCoA) qualitatively demonstrated 

separation of body sites using both Euclidean distances on PhILR transformed data 145 

(Fig. 2A) and with a number of standard distance measures calculated on raw relative 

abundance data (Fig. S2). To quantitatively compare distance measures, we tested 

how well habitat information explained variability among distance matrices using 

PERMANOVA (33). The Euclidean distance in the PhILR coordinate system 
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significantly outperformed the five competing distance metrics across all benchmarks, 150 

except in comparison to Weighted Unifrac when applied to the HMP dataset (Fig. 2B). 

These results indicate that the Euclidean distance, when measured in the PhILR 

coordinate system, generally exhibited superior performance to more sophisticated 

distance measures used on raw relative abundances.    

Next, we tested the performance of predictive statistical models in the PhILR 155 

coordinate system. We examined four standard supervised machine learning 

techniques: logistic regression (LR), support vector machines (SVM), k-nearest 

neighbors (kNN), and random forests (RF) (34). We applied these methods to the same 

three reference datasets used in our comparison of distance metrics. As a baseline, the 

machine learning methods were applied to raw relative abundance datasets and raw 160 

relative abundance data that had been log-transformed.  

The PhILR transform significantly improved supervised classification accuracy in 

7 of the 12 benchmark tasks compared to raw relative abundances (Fig. 2C). Accuracy 

improved by more than 90% in two benchmarks (SVM on HMP and GP), relative to 

results on the raw data. Log transformation of the data also improved classifier 165 

performance significantly on 6 of the 12 benchmarks but also significantly 

underperformed on 1 benchmark compared to raw relative abundances. In addition, the 

PhILR transform significantly improved classification accuracy in 5 of the 12 

benchmarks relative to the log transform. Overall, the PhILR transform often 

outperformed the raw and log transformed relative abundances with respect to 170 

classification accuracy and was never significantly worse. 
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Identifying neighboring clades that differ by body site preference 

We next used a sparse logistic regression model to examine which balances 

distinguished human body site microbiota in the HMP dataset. Such balances could be 175 

used to identify neighboring bacterial clades whose relative abundances capture 

community-level differences between body site microbiota. Microbial genetic 

differentiation may be driven by adaptation to new resources or lifestyle preferences 

(26), meaning that distinguishing balances near the tips of the bacterial tree may 

correspond to clades adapting to human body site environments.   180 

We identified dozens of highly discriminatory balances, which were spread 

across the bacterial phylogeny (Fig. 3A and Fig. S3, S4). Some discriminatory balances 

were found deep in the tree. Abundances of the Firmicutes, Bacteroidetes, and 

Proteobacteria relative to the Actinobacteria, Fusobacteria, and members of other 

phyla, separated skin body sites from oral and stool sites (Fig. 3B). Levels of the genus 185 

Bacteroides relative to the genus Prevotella differentiated stool microbiota from other 

communities on the body (Fig. 3C). Notably, values of select balances below the genus 

level also varied by body site. Relative levels of sister Corynebacterium species 

separated human skin sites from gingival sites (Fig. 3D). Species-level balances even 

differentiated sites in nearby habitats; levels of sister Streptococcus species or sister 190 

Actinomyces species vary depending on specific oral sites (Fig. 3E,F).  These results 

show that the PhILR transform can be used to highlight ancestral balances that 
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distinguish body site microbiota, as well as to identify more recent balances that may 

separate species that have adapted to inhabit different body sites.  

 195 

Balance variance and microbiota assembly 

Observing that discriminatory balances could be found across the phylogenetic 

tree suggested investigating theories of microbial community assembly within the PhILR 

coordinate system. Closely related microbes may directly compete for nutrients and 

thus exclude one another from a given site (35). By contrast, related taxa may also have 200 

similar lifestyle characteristics and thus covary in environments favoring their shared 

traits (36). Patterns of phylogenetic clustering (36) or predicted metabolic interactions 

(37, 38) have previously been used to distinguish the relative importance of competition 

and environmental selection in structuring microbial communities (36). 

The variance of a balance in the PhILR coordinate system provides an 205 

alternative phylogenetic method to measure how bacterial taxa covary across 

environments. In contrast to standard measures of association (e.g., Pearson 

correlation), balance variance is robust to compositional artifacts (10). When the 

variance of a balance between two clades approaches zero, the mean abundance of 

taxa in each of the two clades will be linearly related and thus exhibit shared dynamics 210 

across microbial habitats (39). By contrast, when a balance exhibits high variance, 

related bacterial clades exhibit unlinked or exclusionary dynamics across samples. A 

pattern of lower balance variance near the tips of the phylogenetic tree would suggest 

that closely related taxa tend to covary and support the hypothesis that environmental 
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forces structure sampled microbial communities; by contrast, higher balance variance 215 

near the tips of the phylogeny would suggest related taxa do not covary and support a 

competitive model underlying community structure.  

 For all body sites in the HMP dataset, we observed significantly decreasing 

balance variances near the tips of the phylogenetic tree (p<0.01, permutation test with 

FDR correction; Methods; Fig. 4A-F and Fig. S5, S6). Low variance balances 220 

predominated near the leaves of the tree. Examples of such balances involved B. 

fragilis species in stool (Fig. 4H), Rothia mucilaginosa species in the buccal mucosa 

(Fig. 4J), and Lactobacillus species in the mid-vagina (Fig. 4L). By contrast, higher 

variance balances tended to be more basal on the tree. Two examples of high variance 

balances corresponded with clades at the order (Fig. 4G) and family (Fig. 4I) levels. In 225 

the case of select Lactobacilli in the vagina, neighboring clades appeared to exclude 

one another (Fig. 4K). We performed LOESS regression to investigate how the 

relationship between balance variance and phylogenetic depth varied locally at different 

taxonomic scales. This regression revealed that trends between variance and 

phylogenetic depth were stronger above the species level than below this level 230 

(Methods; Fig. 4D-F and Fig. S6). Overall, the observed pattern of decreasing balance 

variance near the tips of the phylogenetic tree demonstrated that closely related 

bacteria tend to covary in human body sites, supporting the hypothesis that 

environmental forces structure human-associated microbial communities more than 

competitive forces. However, the weaker relationship between balance variance and 235 
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phylogenetic depth below the species level suggests that environmental forces induce 

similar selective pressure on bacterial strains within the same species. 

 

DISCUSSION 

The relative nature of microbiota survey data can result in spurious statistical analyses. 240 

Here, we addressed this problem by developing a technique to transform conventional 

microbiota data into a new space free from compositional effects. The resulting data 

space improves the accuracy of common statistical methods when applied to microbiota 

data. The PhILR transform also embeds phylogenetic information into statistics 

computed in its coordinate system. In doing so, the PhILR transform provides a natural 245 

means for discovering taxonomic and evolutionary factors structuring microbial 

communities.  

 Our benchmarking experiments show that relative to untransformed data, the 

PhILR transform improves the performance of both distance-based and supervised 

machine learning algorithms applied to microbiota data. We note that performance 250 

gains achieved by the PhILR transform on community distance benchmarks are 

surpassed in only one instance by the phylogenetic distance Weighted Unifrac. Unifrac 

down weights the influence of closely related taxa when computing the distance 

between communities, and a similar effect can be achieved when Euclidean distances 

are calculated with PhILR transformed data (Methods). Because related bacteria often 255 

share similar traits (40), this weighting likely biases the grouping of microbiota so that 

communities with similar functional profiles are nearby in the transformed space. Our 
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benchmarking suggests that in practice, leveraging phylogenetic information and 

accounting for compositional constraints can improve statistical analysis of microbiota 

surveys.  260 

The PhILR transform’s use of phylogenetic information also helps formalize the 

practice of distinguishing microbiota using taxonomic ratios. For example, the enteric 

Firmicutes to Bacteroidetes ratio has repeatedly been compared between obese and 

lean individuals (41-44). In part, such ratios are relied on because they simplify 

microbiota with hundreds of component species into single variables. The PhILR 265 

transform provides a statistical framework that guides the process of finding pairs of 

bacterial clades that differentiate groups of samples. Important balances identified 

correspond to ratios already known to distinguish microbiota in practice; e.g. relative 

abundances of Actinobacteria to other bacterial phyla, which we find separate skin 

samples from other human body sites (Fig. 3B), have previously been used to identify 270 

skin microbiota (45). Interestingly, the PhILR transform also identifies new uses for well-

known ratios. The balance between the genera Bacteroides and Prevotella, which has 

been previously linked to inter-individual stool variation (46, 47), emerged as one of the 

best discriminants separating human stool samples from other body sites (Fig. 3C). 

This finding was likely sensitive to the use of a Western subject cohort in the Human 275 

Microbiome Project; a cohort drawn from non-industrialized settings would likely have 

exhibited higher levels of enteric Prevotella (27). Nevertheless, we anticipate the PhILR 

coordinate system to be a useful tool for identifying clades of bacteria that vary by 

habitat.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 Although discriminatory balances between habitats could be constructed 280 

between unrelated clades, the PhILR transform’s reliance on phylogenetically defined 

balances also carries the benefit of linking subsequent statistical analyses to 

evolutionary models. A symbiosis exists between our understanding of bacterial 

evolution and the ecology of host-associated microbial communities (48). Microbiota 

studies have shown that mammals and bacteria cospeciated over millions of years (49, 285 

50), and human gut microbes have revealed the forces driving horizontal gene transfer 

between bacteria (51). Evolutionary tools and theory have been used to explain how 

cooperation benefits members of gut microbial communities (52), and raise  concerns 

that rising rates of chronic disease are linked to microbiota disruption (53). The PhILR 

transform provides a convenient framework for carrying out statistical analyses in a 290 

coordinate system that is evolutionarily informed.    

Regression on PhILR transformed data, for example, highlighted balances near 

the tips of the bacterial phylogeny that distinguished human body sites. These balances 

may reflect functional specialization, as ecological partitioning among recently 

differentiated bacterial clades could be caused by genetic adaptation to new 295 

environments or lifestyles (26). Indeed, among oral body sites, we observed consistent 

site specificity of neighboring bacterial clades within the genera Actinomyces (Fig. 3F) 

and Streptococcus (Fig. 3E). Species within the Actinomyces genera have been 

previously observed to partition separately between the teeth, gingival plaque, buccal 

mucosa and tongue in healthy subjects (54, 55). Even more heterogeneity has been 300 

observed within the Streptococcus genus, where species have been identified that 
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distinguish teeth, plaque, mucosal, tongue, saliva, and other oral sites (54, 55). This 

partitioning likely reflects variation in the anatomy and resource availability across 

regions of the mouth (54), as well as the kinds of surfaces bacterial strains can adhere 

to (55).  305 

We also observed evidence for potential within-genus adaptation to body sites 

that has not been previously reported. In particular, within the genus Corynebacterium, 

we found ratios of taxa varied among oral plaques and select skin sites (Fig. 3D). 

Although the genus is now appreciated as favoring moist skin environments, the roles 

played by individual Corynebacteria within skin microbiota remain incompletely 310 

understood (45). Precisely linking individual Corynebacterium species or strains to body 

sites is beyond the scope of this study due to the limited taxonomic resolution of 16S 

rRNA datasets (56, 57). Nevertheless, we believe the PhILR coordinate system may be 

used in the future to identify groups of related bacterial taxa that have undergone recent 

functional adaptation. 315 

 Another example of how the PhILR transform may be used to provide 

evolutionary insight arises in our analysis of balance variance and phylogenetic depth. 

The relative importance of environmental and competitive forces in shaping human 

microbiota remains an outstanding question for microbial ecology (35). Reports of 

paired strains within the same genus or species that inhibit growth of one another (58-320 

62) have suggested that competitive forces are dominant.  By contrast, we observed 

decreasing balance variance near the tips of the phylogenetic tree (Fig. 4A-F and Fig. 

S6), supporting the hypothesis that microbiota in different body sites are shaped 
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primarily by environmental forces. Such forces could include moisture, oxygen level, or 

resource availability (45, 63, 64). Our findings complement previous studies that used 325 

metabolic interactions to show that in the human gastrointestinal and oral microbiomes, 

species tend to co-occur with other species with which they strongly compete (37, 38). 

In addition, our conclusions are supported by recent fecal transplant experiments in 

humans showing that the presence of conspecific bacteria increases the likelihood that 

a bacterial strain engrafts in the human gut (65).  330 

We also found that the relationship between balance variance and phylogenetic 

depth varies with taxonomic scale, appearing stronger at balances corresponding to 

higher taxonomic scales and weaker at balances near or below the species level. 

Although it is often believed that microbial phenotypes are linked to phylogenetic 

distance (40, 66), the precise taxonomic levels at which this relationship degrades 335 

remains debated (67). Our phylogenetic analysis suggests that lifestyle characteristics 

enabling bacteria to persist in human body sites are conserved among strains roughly 

corresponding to the same species.  

Ultimately, though the methods presented here provide a coherent geometric 

framework for performing microbiota analysis in a compositionally robust manner, future 340 

refinements and modifications are possible. As it is often unclear as to when a zero 

value represents a value below the detection limit (rounded zero) or a truly absent taxa 

(essential zero), the handling of zero values remains an outstanding challenge for 

microbiota analysis and compositional data analysis. Here, we have used two methods 

for handling zeros depending on the biological question of interest (Methods, SI Text); 345 
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however, new mixture models that explicitly allow for both essential and rounded zeros 

(68) appear promising for microbiota data analysis. Additionally, we chose to use 

phylogenies to create the sequential binary partitions needed for the ILR transform. This 

algorithm design choice provided our analyses with evolutionary context, but such 

context may not be needed for every analysis. Alternative balances between non-350 

phylogenetically neighboring groups of taxa can be constructed and used with the ILR 

transform, provided the overall partition of the taxa is binary. Lastly, if analytical insights 

are desired on the level of individual taxa, and not ratios of clades, analysis can be 

performed in the transformed ILR space and the results then converted back into 

compositional space using the inverse of the ILR transform (10, 69). This provides an 355 

alternative approach to adapting statistical methods for use with compositional 

microbiota data.  

 Yet, despite these avenues for improvement or modification, we believe the 

PhILR transform already enables existing statistical methods to be applied to 

metagenomic datasets, free from compositional artifacts and framed according to an 360 

evolutionary perspective. We emphasize that all statistical tools applied to PhILR 

transformed data in this study were used 'off-the-shelf' and without modification. This 

approach contrasts with the more standard practice of adapting current statistical 

techniques to the limitations of microbiota survey data. Such adaptation is often 

challenging because many statistics were derived assuming unconstrained orthogonal 365 

coordinate systems, not constrained and over-determined compositional spaces. 

Therefore, while select techniques have already been adapted (e.g. distance measures 
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that incorporate phylogenetic information (70) and feature selection methods that 

handle compositional input (14, 15)), it is likely that certain statistical goals, such as 

non-linear community forecasting or control system modeling, may prove too complex 370 

for adapting to microbiota datasets. Beyond microbiota surveys, we also recognize that 

compositional metagenomics datasets are generated when studying the ecology of viral 

communities (71) or clonal population structure in cancer (72-74). We expect the PhILR 

transform to aid other arenas of biological research where variables are measured by 

relative abundance and related by an evolutionary tree.    375 
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METHODS 

Overview of the PhILR Transform 380 

The PhILR transform is an Isometric Log-Ratio transform (23) defined by using a 

binary phylogenetic tree as a sequential binary partition. The PhILR transform also 

involves an optional scaling step to integrate phylogenetic distances into the 

transformed space (branch length weighting) and two methods for handling zero values 

(taxa weighting and conditioning on non-zero counts). We describe these methods and 385 

their motivation in more detail below. A more detailed description of their derivation and 

the underlying theory of the transform is provided in the SI Text.  

 

The ILR Transform 

A typical microbiome sample consists of measured counts 𝑐- for taxa 𝑗 ∈390 

1,… , 𝐷 . A standard operation is to take count data and transform it to relative 

abundances. This operation is referred to as closure in compositional data analysis and 

is given by  

𝒙 = 	 𝑥5, … , 𝑥6 =
𝑐5
𝑐--
, … ,

𝑐6
𝑐--

 

where 𝑥- represents the relative abundance of taxa 𝑗 in the sample. We can represent a 395 

binary phylogenetic tree of the 𝐷 taxa using a sign matrix Θ. Each row of the sign matrix 

indexes an internal node 𝑖 of the tree and each column indexes a tip of the tree. A given 

element in the sign matrix is ±1 depending on whether that tip is in the left or right 

subtree descending from 𝑖 and 0 if that tip is not a descendent of 𝑖 (Fig. S7). Following 

Egozcue and Pawlowsky-Glahn (69), we represent the ILR coordinate (balance) 400 
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associated with node 𝑖 in terms of the shifted composition 𝒚 = 𝒙 𝒑 = 𝑥5 𝑝5 , … , 𝑥6 𝑝6  

as   

𝑦(∗ =
𝑛(>𝑛(?

𝑛(> + 𝑛(?
log

𝑔E 𝒚(>

𝑔E 𝒚(?
	,					𝑛(

± = 𝑝-
FGHI±5

,					𝑔E 𝒚(
± = exp

𝑝- log 𝑦-(FGHI±5)

𝑝-(FGHI±5)
 

where 𝑔E 𝒚(
±  represents the weighted geometric mean of the components of 𝒚 that are 

descendants of the left or right subtree of node 𝑖 respectively and 𝑝- is given by the 405 

weights assigned to taxa 𝑗. When 𝒑 = 1,… ,1 , 𝒚 = 𝒙 and the above equation 

represents the ILR transform as originally published (75). However, when 𝒑 ≠ 1,… ,1 , 

the above equation represents a more generalized form of the ILR transform (69) that 

allows the effects of very low abundance taxa to be down weighted. (See the SI Text for 

more background on the form of this transformation)  410 

 

Addressing sparsity through weighting taxa 

 We make use of this generalized ILR transform and weights 𝒑 to address the 

challenge of zero and near-zero counts. In most analyses involving count data the 

challenge of modeling zero or near-zero counts must be addressed. After replacing 415 

zeros with small non-zero counts, a standard procedure to address this challenge is 

variance stabilization, down-weighting the influence of small counts since these are less 

reliable and therefore more variable (76). Microbiota datasets are often sparse, with 

more than than 90% zero counts. Through the use of the generalized ILR we may down 

weight the less reliable rare and very low abundance taxa by adjusting the weights 𝒑. 420 

This reduces the sensitivity of statistics in the PhILR coordinate system to very low 
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abundance taxa. As total read counts contain variance information (77), we utilize total 

read counts to choose these weights. We refer to this method as ‘taxa weighting’.   

Our choice of taxa weights combines two terms multiplicatively, a mean or 

median of the raw counts for a taxon across the 𝑁 samples in a dataset and the norm of 425 

the vector of relative abundances of a taxon across the 𝑁 samples in a dataset. This 

second term ensures that highly site-specific taxa are not unduly down weighted (SI 

Text). Preliminary studies showed that the geometric mean of the counts (with a 

pseudocount added to avoid skew from zero values) outperformed both the arithmetic 

mean and median as a measure of central tendency for the counts (data not shown). 430 

Both the Euclidean norm and the Aitchison norm improved performance (as measured 

by classification accuracy or PERMANOVA R2, see below) in our benchmark tasks as 

compared to using the geometric mean alone (Fig. S8). However in one case 

(classification using support vector machine on the global patterns dataset) the 

Euclidean norm greatly outperformed the Aitchison norm and was therefore chosen for 435 

our analysis here. Thus, the taxa weights we used are given by  

𝑝- = 𝒙- 𝑐-5 + 1 ∙ … ∙ 𝑐-O + 1
P . 

Note that we add the subscript 𝑗 to the right hand side of the above equation to 

emphasize that this is calculated with respect to a single taxon across the 𝑁 samples in 

a dataset.  These taxa weights supplement the use of pseudo-counts with variance 440 

information from total count data and, with the exception of our analysis of balance 

variance as a function of phylogenetic depth (see below), are used throughout the 

analyses presented here.  
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Incorporating branch lengths 445 

Beyond utilizing the connectivity of the phylogenetic tree to dictate the partitioning 

scheme for ILR balances, branch length information can be embedded into the 

transformed space by linearly scaling ILR balances (𝑦(∗) by the distance between 

neighboring clades. We call this scaling by phylogenetic distance ‘branch length 

weighting’. This has the effect of scaling distances in the PhILR coordinate system by 450 

the relatedness of bacteria present in a community, which is a feature shared by other 

phylogenetic methods that utilize phylogenetically informed distances (70, 78, 79). 

However, importantly, whereas those methods are based on reducing the data to a set 

of distances, the PhILR transform provides an explicit coordinate system of balances 

where each balance identifies a distinct location on the phylogenetic tree and has 455 

evolutionary meaning. Specifically for each coordinate 𝑦(∗, corresponding to node 𝑖 we 

use the transform  

𝑦(
∗,QRS = 𝑦(∗ ∙ 𝑓 𝑑(>, 𝑑(?  

where 𝑑(± represent the branch lengths of the two direct children of node 𝑖. When 

𝑓 𝑑(>, 𝑑(? = 1, the coordinates are not weighted by branch lengths. With the exception 460 

of our analysis of balance variance as a function of phylogenetic depth (see below), 

here we have used 𝑓 𝑑(>, 𝑑(? = 𝑑(> + 𝑑(?  for our branch length weights. When coupled 

with the taxa weights specified above, the square root of the summed distances had the 

highest rank in 9 of the 12 supervised classification tasks and 2 of the 3 distance based 

tasks (compared to either 𝑓 𝑑(>, 𝑑(? = 𝑑(> + 𝑑(? or 𝑓 𝑑(>, 𝑑(? = 1; Fig. S8). This choice of 465 
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branch length weights most similarly resembles the generalized UniFrac distance with 

𝑑 = 0.5 (33).  

 

Implementation  

 The PhILR transform, as well as the incorporation of branch length and taxa 470 

weightings has been implemented in the R programing language as the package philr 

available at https://github.com/jsilve24/philr. The implementation is limited in time and 

space complexity by a single matrix multiplication step involving a 𝐷×(𝐷 − 1) contrast 

matrix (see SI Text) and the 𝑁×𝐷 sample dataset and the runtime is therefore expected 

to be 𝒪 𝑁𝐷Z . 475 

 

Datasets and Preprocessing 

All data preprocessing was done in the R programming language using the phyloseq 

package for analysis of microbiome census data (80) as well as the the ape (81) and 

phangorn (82) packages for analysis of phylogenetic trees. For each of the three 16s 480 

rRNA datasets (consisting of an Operational Taxonomic Unit (OTU) table, taxonomic 

classifications, and phylogenetic tree) the preprocessing pipeline was as follows: 1) If 

unrooted, manually root the phylogenetic tree by specifying an outgroup, 2) resolve 

multichotomies, if present, with the function multi2di from the ape package which 

replaces multichotomies with a series of dichotomies with one (or several) branch(es) of 485 

length zero, 3) filter low abundance taxa and prune the tree accordingly, 4) filter low 

abundance samples, 5) add a pseudocount of 1 prior to PhILR transformation to avoid 
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taking log-ratios with zero counts. The PhILR transform is robust to changing the value 

of this pseudocount (Fig. S9).  

Human Microbiome Project (HMP) 490 

This dataset was obtained from the QIIME Community Profiling Pipeline applied 

to high-quality reads from the v3-5 region, available at http://hmpdacc.org/HMQCP/. The 

phylogenetic tree was rooted with the phylum Euryarchaeota as an outgroup and 

multichotomies were resolved. Samples with fewer than 1000 counts were removed so 

that our analysis included the same samples as prior analyses (31). Taxa that were not 495 

seen with more than 3 counts in at least 1% of samples were removed. Samples from 

the left and right retroauricular crease and samples from the left and right antecubital 

fossa were grouped together, respectively, as preliminary PERMANOVA analysis 

suggested that these sites were indistinguishable (data not shown).   

Global Patterns 500 

The Global Patterns dataset was originally published in Caporaso, et al. (1). This 

dataset is provided with the phyloseq package and our preprocessing followed the 

methods outlined in McMurdie and Holmes (80). Specifically, taxa that were not seen 

with more than 3 counts in at least 20% of samples were removed, the sequencing 

depth of each sample was standardized to the abundance of the median sampling 505 

depth, and finally taxa with a coefficient of variation ≤ 3.0 were removed (80). The tree 

was rooted with Archaea as the outgroup and no multichotomies were present.  

Costello Skin Sites (CSS) 
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The original dataset was collected by Costello et al. (30). A subset of the dataset 

containing only the skin samples was introduced as a benchmark for supervised 510 

machine learning by Knights et al. (34). This dataset was obtained from 

http://knightslab.org/data. The CSS dataset consists of counts from the v2 region of 

bacterial 16s rRNA genes. The tree was rooted at OTU 12871 (from phylum 

Plantomycetes) and multichotomies were resolved. This dataset had lower sequencing 

depth than the other two benchmarks. To retain a reasonable number of taxa while still 515 

removing potential spurious reads, we chose to filter taxa that were not seen with 

greater than 10 counts across the skin samples. 

 

Benchmarking 

Distance/Dissimilarity Based Analysis 520 

Distance between samples in PhILR transformed space was calculated using 

Euclidean distance. All other distance measures were calculated using phyloseq on the 

preprocessed data without adding a pseudocount. Principle coordinate analysis was 

performed for visualization using phyloseq. PERMANOVA was performed using the 

function adonis from the R package vegan (v2.3.4). Standard errors were calculated 525 

using bootstrap resampling with 100 samples each. Differences between the 

performance of Euclidean distance in PhILR transformed space and that of each other 

measure on a given task was tested using two-sided t-tests and multiple hypothesis 

testing was accounted for using FDR correction. 

Supervised Classification 530 
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The performance of PhILR transformed data was compared against data preprocessed 

using one of two standard strategies for normalizing sequencing depth: the 

preprocessed data was transformed to relative abundances (e.g., each sample was 

normalized to a constant sum of 1; raw); or, a pseudocount of 1 was added, the data 

was transformed to relative abundances, and finally the relative abundances were log-535 

transformed (log).  

All supervised learning was implemented in Python using the following libraries: 

Scikit-learn (v0.17.1), numpy (v1.11.0) and pandas (v0.17.1). Four classifiers were 

used: penalized logistic regression, support vector classification with RBF kernel, 

random forest classification, and k-nearest-neighbors classification. Each classification 540 

task was evaluated using the mean and variance of the test accuracy over 10 

randomized test/train (30/70) splits which preserved the percentage of samples from 

each class at each split. For each classifier, for each split, the following parameters 

were set using cross-validation on the training set. Logistic regression and Support 

Vector Classification:  the ‘C’ parameter was allowed to vary between 10?[ to 10[ and 545 

multi-class classification was handled with a one-vs-all loss. In addition, for logistic 

regression the penalty was allowed to be either 𝑙5 or 𝑙Z.  K-nearest-neighbors 

classification: the ‘weights’ argument was set to ‘distance’. Random forest classification: 

each forest contained 30 trees and the ‘max_features’ argument was allowed to vary 

between 0.1 and 1. All other parameters were set to default values. Due to the small 550 

size of the Global Patterns dataset, the supervised classification task was simplified to 

distinguishing human vs. non-human samples.  Differences between each methods’ 
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accuracy in a given task was tested using two-sided t-tests and multiple hypothesis 

testing was accounted for using FDR correction.   

 555 

Identifying balances that distinguish sites 

To identify a sparse set of balances that distinguish sampling sites, we fit a multinomial 

regression model with a grouped l1 penalty using the R package glmnet (v2.0.5). The 

penalization term lambda was set by visually inspecting model outputs for clear bodysite 

separation (lambda=0.1198). This resulted in 35 balances with non-zero regression 560 

coefficients. Phylogenetic tree visualization was done using the R package ggtree (83). 

 

Variance and Depth 

The orthonormality of PhILR balances and their association with internal nodes of 

the phylogenetic tree enabled us to investigate how the association between 565 

neighboring clades varied with phylogenetic depth. The original variance of log-ratios 

proposed by Aitchison as a measure of association (5) are not comparable on the same 

scale (it is unclear what constitutes a large or small variance) (4). However, the variance 

of ILR coordinates can be compared on the same scale because of the unit length of 

ILR basis elements (10).  570 

 We computed the variance of balances that did not include taxa weights (i.e., 𝒑 =

(1,… ,1)). We also omitted branch length weights (i.e., 𝑓 𝑑(>, 𝑑(? = 1) when computing 

balance variances to avoid directly weighting variances by phylogenetic distances. We 

omitted taxa weights because of concern that zero values would vary as a function of 
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phylogenetic depth and could therefore systematically bias our analysis of balance 575 

variance as a function of phylogenetic depth. That is, balances closer to the root of the 

tree have more descendant tips that could be non-zero compared to balances closer to 

the tips of the tree. We therefore calculated balance values (𝑦(∗) on non-zero counts. In 

practice, we retained balances that met the following criteria: the term 𝑔E 𝒚(> 𝑔E 𝒚(?   

had non-zero counts from some part(s) within the subcomposition 𝒚(> and some other 580 

part(s) within the subcomposition 𝒚(? in at least 40 samples from that body site. To 

further focus our analysis of each HMP body site on non-zero counts, prior to 

calculation of balance values, taxa present in less than 20% of samples from that site 

were excluded and subsequently samples that had less than 50 total counts were 

excluded.  585 

In order to investigate the overall relationship between balance variance and 

phylogenetic depth we used linear regression. A balance’s depth in the tree was 

calculated as its mean distance to its descendant tips (𝑑). For a given body site the 

following model was fit: 

log 𝑣𝑎𝑟(𝑦∗)	 = 𝛽 log 𝑑 +	 𝛼 590 

where 𝑑 represents mean distance from a balance to its descendant tips. We then set 

out to test the null hypothesis that 𝛽 = 0, or that the variance of the log-ratio between 

two clades was invariant to the distance of the two clades from their most recent 

common ancestor. For each site, a null distribution for 𝛽 was constructed by 

permutations of the tip labels of phylogenetic tree. We chose this permutation scheme 595 

to ensure that the increasing variance we saw with increasing proximity of a balance to 
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the root was not because deeper balances had more descendant tips, an artifact of 

variance scaling with mean abundance, or due to bias introduced due to our handling of 

zeros. Furthermore, the null distribution for 𝛽 is symmetric about 𝛽 = 0 which further 

supports that balance variance depends on phylogenetic depth through an ecological 600 

mechanism and not through a statistical artifact (Fig. S10). Two tailed p-values were 

calculated for 𝛽 based on 20000 samples from each site’s respective null distribution. 

FDR correction was applied to account for multiple hypothesis testing between body 

sites. 

 To visualize local trends in the relationship between balance variance and 605 

phylogenetic depth, a LOESS regression was fit independently for each body site. This 

was done using the function geom_smooth from the R package ggplot2 (v2.1.0) with 

default parameters.  

 

Integrating Taxonomic Information 610 

Taxonomy was assigned to OTUs in the HMP dataset using the 

assign_taxonomy.py script from Qiime (v1.9.1) to call uclust (v1.2.22) with default 

parameters using the representative OTU sequences obtained as described above. 

Taxonomic identifiers were assigned to the two descendant clades of a given balance 

separately using a simple voting scheme and combined into a single name for that 615 

balance. The voting scheme occurs as follows: (1) for a given clade, the entire 

taxonomy table was subset to only contain the OTUs that were present in that clade (2) 

starting at the finest taxonomic rank the subset taxonomy table was checked to see if 
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any species identifier represented ≥95% of the table entries at that taxonomic rank, if so 

that identifier was taken as the taxonomic label for the clade (3) if no consensus 620 

identifier was found, the table was checked at the next most-specific taxonomic rank.   

 Median phylogenetic depths for each taxonomic rank was estimated by first 

decorating a phylogenetic tree with taxonomy information using tax2tree (v1.0) (84). For 

a given taxonomic rank the mean distance to tips was calculated for each internal node 

possessing a label that ended in that rank. The median of these distances was used to 625 

display an estimate of the phylogenetic depth of that given rank. This calculation of 

median phylogenetic depth of different taxonomic ranks was done separately for each 

body site.  

 

 630 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Acknowledgements: 

We thank Jesse Shapiro, Aspen Reese, Firas Midani, Heather Durand, Jonathan 

Friedman, Susan Holmes, and Simon Levin for their helpful comments, Dan Knights for 

providing us with the CSS dataset, and Klaus Schliep and Liam Revell for their insight 635 

into manipulation of phylogenetic trees in the R programming language. JS was 

supported in part by the Duke University Medical Scientist Training Program 

(GM007171). LAD was supported by the Global Probiotics Council, a Searle Scholars 

Award, and an Alfred P. Sloan Research Fellowship.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

REFERENCES 640 
1. Caporaso JG, et al. (2011) Global patterns of 16S rRNA diversity at a depth of 

millions of sequences per sample. P Natl Acad Sci USA 108 Suppl 1:4516-4522. 
2. Waldor MK, et al. (2015) Where next for microbiome research? PLoS Biol 

13(1):e1002050. 
3. Jackson DA (1997) Compositional data in community ecology: The paradigm or 645 

peril of proportions? Ecology 78(3):929-940. 
4. Friedman J & Alm EJ (2012) Inferring correlation networks from genomic survey 

data. PLoS Comput Biol 8(9):e1002687. 
5. Aitchison J (1986) The statistical analysis of compositional data (Chapman and 

Hall, London ; New York). 650 
6. Lovell D, et al. (2011) Proportions, percentages, ppm: do the molecular 

biosciences treat compositional data right. Compositional Data Analysis: Theory 
and Applications,  (John Wiley & Sons, Ltd.), pp 193-207. 

7. Gloor GB, Macklaim JM, Vu M, & Fernandes AD (2016) Compositional 
uncertainty should not be ignored in high-throughput sequencing data analysis. 655 
Austrian Journal of Statistics 45(4):73. 

8. Li HZ (2015) Microbiome, Metagenomics, and High-Dimensional Compositional 
Data Analysis. Annual Review of Statistics and Its Application, Vol 2 2(1):73-94. 

9. Tsilimigras MC & Fodor AA (2016) Compositional data analysis of the 
microbiome: fundamentals, tools, and challenges. Ann Epidemiol 26(5):330-335. 660 

10. Pawlowsky-Glahn V, Egozcue JJ, & Tolosana-Delgado R (2015) Modeling and 
analysis of compositional data (John Wiley & Sons, Ltd). 

11. Mandal S, et al. (2015) Analysis of composition of microbiomes: a novel method 
for studying microbial composition. Microb Ecol Health Dis 26:27663. 

12. Fang H, Huang C, Zhao H, & Deng M (2015) CCLasso: correlation inference for 665 
compositional data through Lasso. Bioinformatics 31(19):3172-3180. 

13. La Rosa PS, et al. (2012) Hypothesis testing and power calculations for 
taxonomic-based human microbiome data. PloS one 7(12):e52078-e52078. 

14. Chen J & Li H (2013) Variable Selection for Sparse Dirichlet-Multinomial 
Regression with an Application to Microbiome Data Analysis. Ann Appl Stat 670 
7(1):418-442. 

15. Lin W, Shi PX, Feng R, & Li H (2014) Variable selection in regression with 
compositional covariates. Biometrika 101(4):785-797. 

16. Paulson JN, Stine OC, Bravo HC, & Pop M (2013) Differential abundance 
analysis for microbial marker-gene surveys. Nat Methods 10(12):1200-1202. 675 

17. Anders S & Huber W (2010) Differential expression analysis for sequence count 
data. Genome Biol 11(10):R106. 

18. Bacon-Shone J (2011) A Short History of Compositional Data Analysis. 
Compositional Data Analysis, eds Pawlowsky-Glahn V & Buccianti A (John Wiley 
& Sons, Ltd), pp 1-11. 680 

19. Kurtz ZD, et al. (2015) Sparse and compositionally robust inference of microbial 
ecological networks. PLoS Comput Biol 11(5):e1004226. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

20. Lee SC, et al. (2014) Helminth colonization is associated with increased diversity 
of the gut microbiota. PLoS Negl Trop Dis 8(5):e2880. 

21. Fernandes AD, et al. (2014) Unifying the analysis of high-throughput sequencing 685 
datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective 
growth experiments by compositional data analysis. Microbiome 2:15. 

22. Gloor GB, Wu JR, Pawlowsky-Glahn V, & Egozcue JJ (2016) It's all relative: 
analyzing microbiome data as compositions. Ann Epidemiol 26(5):322-329. 

23. Egozcue JJ & Pawlowsky-Glahn V (2005) Groups of parts and their balances in 690 
compositional data analysis. Mathematical Geology 37(7):795-828. 

24. Finucane MM, Sharpton TJ, Laurent TJ, & Pollard KS (2014) A taxonomic 
signature of obesity in the microbiome? Getting to the guts of the matter. PLoS 
One 9(1):e84689. 

25. Le Cao KA, et al. (2016) MixMC: A Multivariate Statistical Framework to Gain 695 
Insight into Microbial Communities. PLoS One 11(8):e0160169. 

26. Hunt DE, et al. (2008) Resource partitioning and sympatric differentiation among 
closely related bacterioplankton. Science 320(5879):1081-1085. 

27. De Filippo C, et al. (2010) Impact of diet in shaping gut microbiota revealed by a 
comparative study in children from Europe and rural Africa. P Natl Acad Sci USA 700 
107(33):14691-14696. 

28. Wu GD, et al. (2011) Linking long-term dietary patterns with gut microbial 
enterotypes. Science 334(6052):105-108. 

29. Yatsunenko T, et al. (2012) Human gut microbiome viewed across age and 
geography. Nature 486(7402):222-227. 705 

30. Costello EK, et al. (2009) Bacterial community variation in human body habitats 
across space and time. Science 326(5960):1694-1697. 

31. Consortium HMP (2012) Structure, function and diversity of the healthy human 
microbiome. Nature 486(7402):207-214. 

32. Kuczynski J, et al. (2010) Microbial community resemblance methods differ in 710 
their ability to detect biologically relevant patterns. Nat Methods 7(10):813-819. 

33. Chen J, et al. (2012) Associating microbiome composition with environmental 
covariates using generalized UniFrac distances. Bioinformatics 28(16):2106-
2113. 

34. Knights D, Costello EK, & Knight R (2011) Supervised classification of human 715 
microbiota. FEMS Microbiol Rev 35(2):343-359. 

35. Cavender-Bares J, Kozak KH, Fine PV, & Kembel SW (2009) The merging of 
community ecology and phylogenetic biology. Ecol Lett 12(7):693-715. 

36. Horner-Devine MC & Bohannan BJ (2006) Phylogenetic clustering and 
overdispersion in bacterial communities. Ecology 87(7 Suppl):S100-108. 720 

37. Levy R & Borenstein E (2013) Metabolic modeling of species interaction in the 
human microbiome elucidates community-level assembly rules. P Natl Acad Sci 
USA 110(31):12804-12809. 

38. Levy R & Borenstein E (2014) Metagenomic systems biology and metabolic 
modeling of the human microbiome: from species composition to community 725 
assembly rules. Gut Microbes 5(2):265-270. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

39. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, & Bahler J (2015) 
Proportionality: a valid alternative to correlation for relative data. PLoS Comput 
Biol 11(3):e1004075. 

40. Martiny JB, Jones SE, Lennon JT, & Martiny AC (2015) Microbiomes in light of 730 
traits: A phylogenetic perspective. Science 350(6261):aac9323. 

41. Ley RE, et al. (2005) Obesity alters gut microbial ecology. P Natl Acad Sci USA 
102(31):11070-11075. 

42. Mariat D, et al. (2009) The Firmicutes/Bacteroidetes ratio of the human 
microbiota changes with age. BMC Microbiol 9:123. 735 

43. Ley RE, Turnbaugh PJ, Klein S, & Gordon JI (2006) Microbial ecology: human 
gut microbes associated with obesity. Nature 444(7122):1022-1023. 

44. Sze MA & Schloss PD (2016) Looking for a Signal in the Noise: Revisiting 
Obesity and the Microbiome. MBio 7(4). 

45. Grice EA & Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244-740 
253. 

46. Arumugam M, et al. (2011) Enterotypes of the human gut microbiome. Nature 
473(7346):174-180. 

47. Koren O, et al. (2013) A guide to enterotypes across the human body: meta-
analysis of microbial community structures in human microbiome datasets. PLoS 745 
Comput Biol 9(1):e1002863. 

48. Matsen FAt (2015) Phylogenetics and the human microbiome. Syst Biol 
64(1):e26-41. 

49. Moeller AH, et al. (2016) Cospeciation of gut microbiota with hominids. Science 
353(6297):380-382. 750 

50. Ley RE, et al. (2008) Evolution of mammals and their gut microbes. Science 
320(5883):1647-1651. 

51. Smillie CS, et al. (2011) Ecology drives a global network of gene exchange 
connecting the human microbiome. Nature 480(7376):241-244. 

52. Rakoff-Nahoum S, Foster KR, & Comstock LE (2016) The evolution of 755 
cooperation within the gut microbiota. Nature 533(7602):255-259. 

53. Blaser MJ & Falkow S (2009) What are the consequences of the disappearing 
human microbiota? Nat Rev Microbiol 7(12):887-894. 

54. Aas JA, Paster BJ, Stokes LN, Olsen I, & Dewhirst FE (2005) Defining the 
normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721-5732. 760 

55. Mager DL, Ximenez-Fyvie LA, Haffajee AD, & Socransky SS (2003) Distribution 
of selected bacterial species on intraoral surfaces. J Clin Periodontol 30(7):644-
654. 

56. Janda JM & Abbott SL (2007) 16S rRNA gene sequencing for bacterial 
identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin 765 
Microbiol 45(9):2761-2764. 

57. Vetrovsky T & Baldrian P (2013) The variability of the 16S rRNA gene in bacterial 
genomes and its consequences for bacterial community analyses. PLoS One 
8(2):e57923. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

58. Iwase T, et al. (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus 770 
aureus biofilm formation and nasal colonization. Nature 465(7296):346-349. 

59. Gilmore MS, et al. (2015) Pheromone killing of multidrug-resistant Enterococcus 
faecalis V583 by native commensal strains. P Natl Acad Sci USA 112(23):7273-
7278. 

60. Gebhart D, et al. (2012) Novel high-molecular-weight, R-type bacteriocins of 775 
Clostridium difficile. J Bacteriol 194(22):6240-6247. 

61. Buffie CG, et al. (2015) Precision microbiome reconstitution restores bile acid 
mediated resistance to Clostridium difficile. Nature 517(7533):205-208. 

62. Kommineni S, et al. (2015) Bacteriocin production augments niche competition 
by enterococci in the mammalian gastrointestinal tract. Nature 526(7575):719-780 
722. 

63. David LA, et al. (2014) Diet rapidly and reproducibly alters the human gut 
microbiome. Nature 505(7484):559-563. 

64. Morris RL & Schmidt TM (2013) Shallow breathing: bacterial life at low O(2). Nat 
Rev Microbiol 11(3):205-212. 785 

65. Li SS, et al. (2016) Durable coexistence of donor and recipient strains after fecal 
microbiota transplantation. Science 352(6285):586-589. 

66. Morrissey EM, et al. (2016) Phylogenetic organization of bacterial activity. ISME 
J 10(9):2336-2340. 

67. Philippot L, et al. (2010) The ecological coherence of high bacterial taxonomic 790 
ranks. Nat Rev Microbiol 8(7):523-529. 

68. Bear J & Billheimer D (2016) A Logistic Normal Mixture Model for Compositional 
Data Allowing Essential Zeros. Austrian Journal of Statistics 45(4):3-23. 

69. Egozcue JJ & Pawlowsky-Glahn V (2016) Changing the Reference Measure in 
the Simlex and its Weightings Effects. Austrian Journal of Statistics 45(4):25-44. 795 

70. Lozupone C & Knight R (2005) UniFrac: a new phylogenetic method for 
comparing microbial communities. Appl Environ Microbiol 71(12):8228-8235. 

71. Culley AI, Lang AS, & Suttle CA (2006) Metagenomic analysis of coastal RNA 
virus communities. Science 312(5781):1795-1798. 

72. Britanova OV, et al. (2014) Age-related decrease in TCR repertoire diversity 800 
measured with deep and normalized sequence profiling. J Immunol 192(6):2689-
2698. 

73. Yuan K, Sakoparnig T, Markowetz F, & Beerenwinkel N (2015) BitPhylogeny: a 
probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol 
16:36. 805 

74. Roth A, et al. (2014) PyClone: statistical inference of clonal population structure 
in cancer. Nat Methods 11(4):396-398. 

75. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, & Barcelo-Vidal C (2003) 
Isometric logratio transformations for compositional data analysis. Mathematical 
Geology 35(3):279-300. 810 

76. Good IJ (1956) On the Estimation of Small Frequencies in Contingency-Tables. 
Journal of the Royal Statistical Society Series B-Statistical Methodology 
18(1):113-124. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

77. McMurdie PJ & Holmes S (2014) Waste not, want not: why rarefying microbiome 
data is inadmissible. PLoS Comput Biol 10(4):e1003531. 815 

78. Fukuyama J, McMurdie PJ, Dethlefsen L, Relman DA, & Holmes S (2012) 
Comparisons of distance methods for combining covariates and abundances in 
microbiome studies. Pacific Symposium on Biocomputing., (NIH Public Access), 
p 213. 

79. Purdom E (2011) Analysis of a Data Matrix and a Graph: Metagenomic Data and 820 
the Phylogenetic Tree. Annals of Applied Statistics 5(4):2326-2358. 

80. McMurdie PJ & Holmes S (2013) phyloseq: an R package for reproducible 
interactive analysis and graphics of microbiome census data. PLoS One 
8(4):e61217. 

81. Paradis E, Claude J, & Strimmer K (2004) APE: Analyses of Phylogenetics and 825 
Evolution in R language. Bioinformatics 20(2):289-290. 

82. Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 
27(4):592-593. 

83. Yu G, Smith DK, Zhu H, Guan Y, & Lam TTY (2016) ggtree: an R package for 
visualization and annotation of phylogenetic trees with their covariates and other 830 
associated data. Methods in Ecology and Evolution. 

84. McDonald D, et al. (2012) An improved Greengenes taxonomy with explicit ranks 
for ecological and evolutionary analyses of bacteria and archaea. ISME J 
6(3):610-618. 

 835 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072413doi: bioRxiv preprint 

https://doi.org/10.1101/072413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 

 

Fig. 1 PhILR uses an evolutionary tree to embed microbiota data into an orthogonal, 

phylogenetically informed space. (A) Two hypothetical bacterial communities share identical absolute 840 

numbers of Lactobacillus, and Ruminococcus bacteria; they differ only in the absolute abundance of 

Bacteroides which is higher in community A (red circle) compared to community B (blue diamond). (B) A 

ternary plot depicts proportional data typically analyzed in a sequencing-based microbiota survey. Note 

that viewed in terms of proportions the space is constrained and the axes are not orthogonal. As a result, 

all three genera have changed in relative abundance between the two communities. (C) Schematic of the 845 

PhILR transform based on a phylogenetic sequential binary partition. The PhILR coordinates can be 

viewed as ‘balances’ between the weights (relative abundances) of the two subclades of a given internal 

node. In community B, the greater abundance of Bacteroides tips the balance 𝑦5∗ to the right.  (D) The 

PhILR transform can be viewed as a new coordinate system (grey dashed lines) in the proportional data 

space. (E) The data transformed to the orthogonal PhILR space. Note that in contrast to the raw 850 

proportional data (B), the PhILR space only shows a change in the variable associated with Bacteroides.  
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Fig. 2  PhILR transform improves performance of standard statistical models on microbiota data. 

Benchmarks were performed using three datasets: Costello Skin Sites(CSS), Global Patterns (GP), 

Human Microbiome Project (HMP). (A) Sample distance visualized using principal coordinate analysis 855 

(PCoA) of Euclidean distances computed in PhILR coordinate system. A comparison to PCoAs calculated 

with other distance measures is shown in Fig. S2. (B) Sample distance (or dissimilarity) was computed by 

a range of statistics. R2 values from PERMANOVA were used to measure how well sample location 

explained the variability in distances between samples. Distances in the PhILR transformed space were 

calculated using Euclidean distance. Distances between samples on raw relative abundance data were 860 

computed using Weighted and Unweighted UniFrac (WUnifrac and Unifrac, respectively), Bray-Curtis, 

Binary Jaccard, and Euclidean distance. Error bars represent standard error measurements from 100 

bootstrap replicates and (*) denotes a p-value of ≤0.01 after FDR correction of pairwise tests against 

PhILR. (C) Accuracy of supervised classification methods tested on benchmark datasets. The PhILR 

transform significantly improved supervised learning algorithm accuracy in 7 out of 12 supervised 865 

classification benchmarks compared to raw or log-transformed raw data. Error bars represent standard 

error measurements from 10 test/train splits and (*) denotes a p-value of ≤0.01 after FDR correction of all 

pairwise tests.  
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Fig. 3 Balances distinguishing human microbiota by body site. Sparse logistic regression was used 

to identify balances that best separated the different sampling sites (full list of balances provided in Fig. 

S3-4). (A) Each balance is represented on the tree as a broken grey bar. The left portion of the bar 

identifies the clade in the denominator of the log-ratio, and the right portion identifies the clade in the 875 

numerator of the log-ratio. The branch leading from the Firmicutes to the Bacteroidetes has been 

rescaled to facilitate visualization. (B-F) The distribution of balance values across body sites. Vertical 

lines indicate median values, boxes represent interquartile ranges (IQR) and whiskers extend to 1.5 IQR 

on either side of the median. Balances between: (B) the phyla Actinobacteria and Fusobacteria versus 

the phyla Bacteroidetes, Firmicutes, and Proteobacteria distinguish stool and oral sites from skin sites; 880 

(C) Prevotella spp. and Bacteroides spp. distinguish stool from oral sites; (D) Corynebacterium spp. 

distinguish skin and oral sites; (E) Streptococcus spp. distinguish oral sites; and, (F) Actinomyces spp. 

distinguish oral plaques from other oral sites. (†) Includes Bacteroidetes, Firmicutes, Alpha-, Beta-, and 

Gamma-proteobacteria. (‡) Includes Actinobacteria, Fusobacteria, Epsilon-proteobacteria, Spirochaetes, 

and Verrucomicrobia.  885 
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Fig. 4 Neighboring clades covary less with increasing phylogenetic depth. The variance of balance 

values captures the degree to which neighboring clades covary, with smaller balance variances 

representing sister clades that covary more strongly.  (A-C) Balance variances were computed among 

samples from stool (A), buccal mucosa (B), and the mid-vagina (C). Red branches indicate small balance 890 

variance and blue branches indicate high balance variance. Balances 1-6 are individually tracked in 

panels (D-L). (D-F) Balance variances within each body site increased linearly with increasing 

phylogenetic depth on a log-scale (blue line; p<0.01, permutation test with FDR correction). Significant 

trends are seen across all other body sites (Fig. S6). Non-parametric LOESS regression (green line and 

corresponding 95% confidence interval) reveals an inflection point in the relation between phylogenetic 895 

depth and balance variance. This inflection point appears below the estimated species level (‘s’ dotted 

line; the median depth beyond which balances no longer involve leaves sharing the same species 

assignment; Methods). (G-L) Examples of balances with high and low variance from panels (A-F). Low 

balance variances (H, J, L) reflect a linear relationship between the geometric means of sister clades 

abundances. High balance variances reflect either unlinked (G, I) or exclusionary (K) dynamics between 900 

the geometric means of sister clades abundances.  
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