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Abstract   

Background: Phylogenetic codon models are often used to characterize the 

selective regimes acting on protein coding sequences. Recent methodological 

developments have led to models explicitly accounting for the interplay between 

mutation and selection, by explicitly modelling the amino acid fitness landscape along 

the sequence. However, thus far, most of these models have assumed that the fitness 

landscape is constant over time. Fluctuations of the fitness landscape may often be 

random or depend on complex and unknown factors. However, some organisms may 

be subject to systematic changes in selective pressure, resulting in reproducible 

molecular adaptations across independent lineages subject to similar conditions.  
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Results: Here, we developed a codon-based differential selection model, which aims 

to detect and quantify the fine-grained consistent patterns of adaptation at the protein-

coding level, as a function of external conditions experienced by the organism under 

investigation. The model parameterizes the global mutational pressure, as well as the 

site- and condition-specific amino acid selective preferences. This phylogenetic model is 

implemented in a Bayesian MCMC framework. After validation with simulations, we 

applied our method to a dataset of HIV sequences from patients with known HLA 

genetic background. Our differential selection model detects and characterizes 

differentially selected coding positions specifically associated with two different HLA 

alleles. 

Conclusion: our differential selection model is able to identify consistent molecular 

adaptations as a function of repeated changes in the environment of the organism. 

These models can be applied to many other problems, ranging from viral adaptation to 

evolution of life-history strategies in plants or animals. 
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Background 

Statistical models of molecular evolutionary processes are now widely used to analyze 

the interplay between mutation and selection. Often, these models are formulated at the 

codon level, thus relying on the contrast between synonymous and non-synonymous 
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substitutions to leverage out an estimation of the strength of selection acting at various 

levels (nucleotide, amino acids, codon usage) of protein coding sequences. 

The first codon models, proposed independently by Goldman and Yang [1] and Muse 

and Gaut [2], relied on a simple aggregate parameter, ω=dN/dS, to capture the overall 

strength of selection, globally over the protein coding sequence and over the 

phylogenetic trees. Subsequent elaborations on these original models allowed for 

variation in dN/dS among sites [3, 4] or among lineages [5], thus increasing the 

sensitivity and the resolution of the detection of selective regimes. However, all of these 

models still do not discriminate between alternative amino acids. Instead, they 

essentially put all non-synonymous substitutions on the same level [6]. 

In this direction, Halpern and Bruno [7] and also Thorne et al [8] have proposed an 

alternative codon modelling strategy, allowing for site- and amino acid-specific selective 

effects. Their model also has a clear mechanistic interpretation, being derived from first 

principles of population genetics. Specifically, in their model, the rate of substitution 

between codons is seen as the product of the mutation rate and the fixation probability. 

In turn, the fixation probability is made explicitly dependent on the selection coefficient 

of the mutation under consideration. Selection coefficients are obtained from an explicit 

fitness landscape, in which the fitness of each amino acid is allowed to be different at 

each coding site. Technically, the model therefore invokes, at each coding site, a 

normalized vector of 20 amino acid fitness coefficients, collectively referred to as the 

site-specific fitness profile. In the original version of Halpern and Bruno, site-specific 

amino acid fitness profiles were empirically estimated based on observed amino acid 

frequencies. Since then, a statistically more sophisticated version of this model was 
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developed in a Bayesian framework by Rodrigue et al [6], using a non-parametric 

approach to integrate over the uncertainty about site-specific selective features (now 

seen as random-effects across sites), and to capture the unknown law of amino acid 

fitness profiles across sites. The importance of accounting for modulation of selection 

across sites by introducing site-specific amino acid fitness profiles was demonstrated by 

Bayes factor computation and posterior-predictive tests [6]. Of note, more 

phenomenological variants of this modeling approach, also with site-specific amino acid 

fitness contributions but without the population-genetic justification of Halpern and 

Bruno’s paradigm, have been explored [6-9]. 

This modeling approach, although fairly complex, still leaves an important aspect of 

protein evolution aside, by assuming that the fitness landscape is constant through time. 

Yet, many ecological situations clearly suggest that fitness landscapes undergo 

important fluctuations through time [10]. Two alternative approaches are possible, to 

relax this specific assumption. First, fluctuations of the fitness landscape could be 

modelled as a purely latent effect (e.g. Markov-modulated models) [11], thus without 

relying on any extra information about the environmental or ecological drivers of the 

fluctuations. Secondly, in some situations, empirical knowledge is available, in terms of 

varying conditions across sampled genetic sequences. In this context, it is, in principle, 

possible to explicitly model condition-specific amino acid fitness modulations. The 

present work is an attempt at modeling such effects. 

A clear-cut example where robust empirical knowledge about varying selective 

environments is available is the evolution of viral sequences as a function of the genetic 

background represented by the hosts. For example, the analysis of patterns of 
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selection, using dN/dS codon models in a phylogenetic maximum likelihood framework, 

has shown the substantial role of fluctuating selection in the emergence of new 

mutations and the ability of HIV-1 to escape from immune system [12-14]. HIV-1 is 

capable of evading the CTL (Cytotoxic T-Lymphocyte) response because of its rapid 

rate of mutation in HLA-restricted epitopes, called escape mutation. Escape mutation 

gives the virus the ability to adapt under different selective forces in different individuals 

and in response to drugs, which makes the design of a vaccine very difficult. 

Therefore, understanding the evolution of HIV-1 within the human body, which is both 

rapid and under strong selection, helps designing more effective vaccines against HIV-1 

and control its evolution. On the other hand, the high rate of mutation of HIV-1 enables 

the virus to produce genetically distinguished population in each host, called 

quasispecies [15], which let the evolutionary studies possible within the HIV-1 

population. The correlation between HLA alleles and HIV polymorphisms has been paid 

a lot of attention in recent years, from population-based studies [16-18] to studies taking 

phylogeny into account [19, 20]. The Phylogeny Dependency Network study accounts 

for phylogeny, codon correlation and HLA linkage disequilibrium to analyze HLA-

mediated escape in HIV-1 [21]. However, this method only takes the information of the 

tips of the phylogenetic tree into account. More fundamentally, it does not rely on an 

explicit model of the underlying molecular evolutionary processes. Another phylogenetic 

model has been used by Tamuri et al [22] to identify host dependent selective 

constraints for flu viruses. These authors specified different host-dependent substitution 

rates along the phylogenetic tree, and used a maximum likelihood approach, combined 

with a likelihood-ratio test, to identify positions under differential selection between 
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hosts. One potential short-coming of the modeling approach used in [22] ] is that it is 

formulated directly at the amino acid level. Therefore, a more explicit codon modeling 

approach could be used as an alternative, to tease out in a more principled manner, the 

respective contributions of mutation and selection processes in the observed patterns of 

sequence evolution. 

In this direction, we now introduce a codon model able to capture site- and condition-

specific amino acid fitness effects. In this Bayesian model, which we call differential 

selection (DS) model, a site and branch heterogeneous selection factor is invoked to 

estimate the substitution rate at the codon level of aligned HIV-1 sequence. As the 

population-genetics of viral populations is complex and difficult to model quantitatively, 

we explored two alternative strategies for deriving the codon substitution process, either 

using a phenomenological approach, or using a mechanistic derivation as in Halpern 

and Bruno. Our differential selection model was then used to investigate how the 

fluctuating environment provided by the diversity of human HLA background affects 

HIV-1 sequence evolution. We illustrate how our approach finds consistent patterns of 

viral adaptation, in terms of how selection acts at specific positions, modulating amino 

acid preference as a function of the HLA background. 

 

Materials and Methods 

HIV-1 data: 333 HIV-1 DNA sequences of subtype B from Gag region of HIV-1 from 

41 patients with known HLA types were obtained from Los Alamos National Laboratory 

(LANL) HIV-1 sequence database [23]. Each patient has on average 8 sequences.  
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Information about the HLA types of the patients was also downloaded. About 35% of the 

sequences are from HLA B57+ patients. Recombinant sequences were excluded from 

the study (they were removed by the software in the download process). The amino 

acid alignment of the sequences provided by the source was downloaded, manually 

corrected (misplaced amino acids were relocated and misaligned regions were deleted) 

and used for back aligning the DNA sequences at the codon level.  

 

Phylogenetic tree estimation: Primarily for computational reasons, the method 

introduced here assumes a fixed tree topology. However, owing to the relatively short 

length of the coding sequences that were used, this topology may not be known with 

high confidence. In addition, there is the question of whether the sequences 

corresponding to a given patient should form a monophyletic group. This may not be the 

case because of tree reconstruction errors, a problem which can be alleviated simply by 

constraining the monophyly of each patient during the tree reconstruction. However, 

non-monophyly could be real, being caused by complicated infection patterns between 

individuals. In this case, constraining the monophyly might introduce mis-specifications 

in the reconstructed tree topology. 

To check the robustness of our method to these potential sources of error, we tested 

alternative methods for reconstructing the phylogenetic tree and conducted independent 

analyses under these alternative tree topologies. Specifically, a first tree topology (T1) 

was obtained directly from the LANL website. This tree was estimated using the 

neighbor joining algorithm [24]. A second tree (T2) was reconstructed using MrBayes 

[25, 26], under the GTR+Gamma substitution model and constraining the monophyly of 
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the groups corresponding to sequences belonging to a given patient. A third tree (T3) 

was estimated, still using MrBayes, under the same substitution model, but without 

imposing any constraint on the tree topology. In MrBayes, we ran MCMC chain for 

1500000 cycles (the average standard deviation of split frequencies reaches the value 

less than 0.05, and the Potential Scale Reduction Factor (PSRF) [27], which should 

approach 1.0 as the two runs converge, was equal to 1.001 and 1.000 for the two 

analyses). 

In the case of tree T1 and T3, we observed 20 and 23 cases of non-monophyletic 

patients, respectively. In both cases, we applied a greedy algorithm for excluding the 

smallest possible set of sequences such that each patient is then represented by a 

monophyletic group of sequences. This was done using the following recursive 

procedure: first, the number of sequences from each host pending from (downstream 

to) each node was determined recursively at each node, from the tips toward the root. 

During this recursive scan, wherever a group pending from a given node was not 

monophyletic, the sequences belonging to the host with the smallest number of 

sequences pending from that node were flagged. Finally, in a backward recursive scan 

of the tree, from root to tips, the flagged sequences were removed from the dataset. 

Application of this method leads to the elimination of 20 and 23 out of 333 sequences in 

the cases of tree T1 and T3. Lastly, for the three topologies, the branches of the 

phylogenetic tree were divided into 4 conditions according to the host HLA types (see 

below).  
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Model 

Notations – We consider a coding sequence of length N (N being the number of coding 

positions, or equivalently 3N is number of nucleotide sites). The number of conditions 

(e.g. HLA types) is defined by K. All the indices used in this paper conform to the 

following conventions: 

 Codon positions(sites)                   i = 1,....,N 

 Conditions                                      k = 1,....,K 

 Codon states                                  c = 1,....,61 

 Nucleotide states                            n = 1,....,4 

 Amino acid states                           a = 1,....,20  

Model of codon substitution – The rate of evolution by point substitution is the result 

of a complex interplay between mutation, selection and random drift. Drawing 

inspiration from previous developments in statistical molecular evolution [1, 2, 6, 7, 9], 

we modelled this complicated process at the codon level, as a multiplicative 

combination of mutation rates and selective effects (the latter implicitly including the 

contribution from random drift). 

The mutation process is assumed to be homogenous over time and along the 

sequence. It is modelled as a Markovian general time-reversible process, 

parameterized in terms of the relative exchange rates between nucleotides (⍴) and the 

stationary probability (equilibrium frequency) of the target nucleotide (π). Thus, the rate 

of substitution from nucleotide n1 to nucleotide n2 is equal to: 
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The set of relative exchangeabilities between nucleotides is constrained to be 

symmetric: 

                    

 

In addition, it is normalized: 

 

 

The vector π of equilibrium frequencies is also normalized: 

 

 

The selective forces, on the other hand, are both condition- and position-specific. The 

modulations across conditions and positions are mediated exclusively by the encoded 

amino acid sequence. Accordingly, for each position i and each condition k, we 

introduce an array of 20 non-negative fitness factors 20..1)(  a

ik

a

ik FF , one for each amino 

acid. In the following, these 20-dimensional vectors will be referred to as amino acid 

fitness profiles. Thus, we have distinct fitness profiles across positions, and for a given 

position, the fitness profile over the 20 amino acids is further modulated across 

conditions. How these fitness profiles are defined in practice is explained in more detail 

below (section; Definition of the amino acid selective effects). 

for all n1,n2 = 1…4                
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Given a mutation matrix and a set of amino acid fitness profiles, we considered two 

alternative approaches for expressing substitution rates between codons as a function 

of the fitness of the amino acids. The first is a phenomenological approach, while the 

second is more mechanistic in its inspiration. 

 

Phenomenological model (M1) — the phenomenological model is similar, in its 

general form, to the models explored by Rodrigue et al [6], or, in a slightly different 

parameterization, to the models considered in Robinson et al [9].  Specifically, consider 

a given position i along the sequence, and a given condition k along the tree. Consider 

also two codons, c1 and c2, differing only at one position and with nucleotides n1 and n2 

at that position. These two codons encode for amino acids a1 to a2, respectively. Then, 

the rate of substitution between these two codons is given by: 

 

 

Thus, according to this model, the rate of substitution is proportional to mutation rate, 

while being influenced by the selection operating at the amino acid level, through the 

fitness factors ik

aF : the substitution rate is higher (resp. lower) than the neutral 

substitution rate if the fitness of the final amino acid is greater (resp. smaller) than the 

fitness of the initial amino acid. Note that, if the two codons are synonymous, i.e. if 

a1=a2, then the substitution rate is simply equal to the mutation rate defined by the 

nucleotide transition matrix Q. Finally, the model considers only point substitutions, and 
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therefore, the substitution rate is assumed to be equal to zero between codons differing 

at more than one nucleotide position. Thus, altogether: 

 

  

 

 

Mechanistic model (M2) — The second approach is inspired by a mechanistic 

argument based on first principles of population genetics, as initially suggested by 

Halpern and Bruno [7]. Suppose again the substitution rate between codon c1 to c2 at 

site i and condition k. First, we define a scaled selection coefficient, associated with 

codon c2, seen as a mutant in the context of a population in which the wild-type allele is 

c1. This scaled selection coefficient is given by: 

 

 

Then, the rate of substitution between codon c1 and c2 is given by the product of the 

mutation rate and the relative fixation probability P (i.e. relative to neutral). This fixation 

probability is itself dependent on the scaled selection coefficient. Using the classical 

diffusion approximation, this relative fixation probability can be expressed as: 

Synonymous                                                                                                                   

Non-synonymous                                                

c1 and c2 differ at more than one site 
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So that the rate of substitution between codons is given by  
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Again, we see that the rate of substitution is higher (resp. lower) than the neutral 

substitution rate if the non-synonymous mutation leads to an increase (resp. a 

decrease) in the fitness of the sequence. 

 

Definition of the amino acid selective effects —  In principle, the amino acid fitness 

profiles associated to each site and each condition, ik

aF , could be considered as 

independent arrays, both across sites and across conditions. However, most of the 

amino acid conservations (due to purifying selection) observed along the sequence is in 

fact condition-independent. Against this globally invariable fitness background, the 

modulations of the fitness landscape induced by condition-dependent effects (such as 

the HLA type of the host) are likely to be comparatively small. In this context, 

considering amino acid selective effects as totally independent parameters across 

conditions would imply that the invariable background would be re-estimated 

independently for each condition, potentially resulting in a loss of statistical power. 

Synonymous                                                                                                                   

Non-synonymous                                     

c1 and c2 differ at more than one site 
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Therefore, as a more powerful alternative, we explicitly defined amino acid selection in 

terms of a log-additive superposition of a global background and condition-dependent 

differential selective effects, as follows. First, a baseline or global fitness profile is 

defined for each position. That is, for position i, we define a 20-dimensional vector )( i

aG , 

for a=1...20. This vector is drawn from a uniform Dirichlet distribution independently at 

each site. This baseline defines the fitness landscape under condition 0, which is 

therefore taken as our reference condition (black branches in Figure 1). 

Next, selection is modulated across conditions through the use of condition-specific 

differential selection profiles. Thus, for position i in condition k, we define a 20-

dimensional vector )( ik

aD , for a=1...20. Unlike the baseline profiles, which are positive 

(and sum to 1), those differential selection effects can be positive or negative. A positive 

(resp. negative) coefficient means that the fitness of the corresponding amino acid is 

increased (resp. decreased) in the target condition, compared to the reference 

condition. The differential selection profiles are drawn iid from a Normal distribution of 

mean 0 and condition-specific variance σk
2. 

Altogether, the condition-specific fitness profiles are constructed as follows: 

Kk

eGF

eGF

GF

ik
a

i
a

i
a

DDi

a

ik

a

Di

a

i

a

i

a

i

a

...2

)(

1

0

1

1











 

 

Note that we have used a two-level system for introducing the differential effects (i.e. a 

different equation for k=0 and k>0). This is motivated by the fact that we need to 
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discriminate both among branches that are between hosts and within the same host, 

and among hosts with differing HLA backgrounds. Thus, it reflects the differential 

between within-host )( 1iD  and between-host )( iG  selection regions, while representing 

specific selective features more specifically associated to differing HLA backgrounds   

Kk

ikD ...2)(  . In the case of HIV-1, we consider 2 focal HLA backgrounds (B57+ and 

B35+), against a default B57-/B35- background. Thus, we define a total of 4 different 

conditions (K=4), and the branches of the tree are partitioned according to 4 different 

selection regimes: between hosts (k=0), within B57-/B35- hosts (k=1), within B57+ (k=2) 

and B35+ (k=3) patients (Figure 1).    

An important point should be emphasized concerning the statistical formalization of the 

fitness landscape and of its modulations across sites and across conditions. 

Conceptually, the arrays of global and condition-specific fitness effects should be 

considered, not as parameters, but as random-effects across sites, which are integrated 

over a distribution (respectively, a Dirichlet and a normal distribution for the global and 

differential effects). This integration is done implicitly, through the MCMC sampling (see 

below). As a result, the aim of the model introduced here is not to achieve accurate and 

asymptotically consistent point estimation of site- and condition-specific fitness effects: 

in most cases, the information for inferring such fitness effects will be limited. Instead, it 

is to draw inference based on the complete posterior distribution. A more specific 

objective is to single out those relatively few cases for which there are sufficient 

information to infer, with high posterior probability, the presence of a differential 

selective effect between two conditions. One important desirable property of this type of 

inference is to allow for a reasonably good control of the fraction of false discoveries 
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among those cases that are selected based on a high posterior probability of a 

differential effect. This is something which is investigated through posterior predictive 

simulations. 

 

 

 

 

 

 

 

 

 

Figure 1. Illustrative phylogenetic tree of 313 HIV-1 Gag sequences. Different colors along the tree show different 

selection regimes for the corresponding sequences. Black for between-patient, green for within-patient, red and blue 
for HLA  B57 and HLA B35 dependent categories, respectively. 

 

 

Priors- The topology (τ) of the tree is fixed. The parameters of the model consist of 

branch lengths, lj (1<j<2N-3 where N is the number of sequences), nucleotide 

exchangeabilities, ρ and nucleotide equilibrium frequencies, π. The priors that we used 

are as follows: on branch lengths: a product of independent Exponentials of mean λ; the 

hyperparameter λ is from Exponential distribution of mean 0.1; on relative 

exchangeability rate: a product of Exponentials of mean 1; on mutational equilibrium 

frequency: a uniform Dirichlet distribution. As mentioned above, the site-specific fitness 
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profiles (G) and differential fitness effects (D) are random-effects, integrated over 

Dirichlet and normal distributions, respectively. 

 

MCMC- We used Markov Chain Mont Carlo (MCMC) to sample the parameters of the 

model from their joint posterior distribution. We used a graphical model environment 

previously introduced in [28], heavily relying on data augmentation and parameter 

expansions methods, such as described in particular in [29]. Briefly, a MCMC cycle 

consists of an alternation between two steps: first, a detailed substitution history at each 

coding site is Gibbs-sampled, from the posterior distribution conditional on the current 

parameter configuration. Second, conditional on these augmented data, the parameters 

and the random-effects across sites are updated through a large series of Metropolis-

Hastings moves, cycling over all parameters or random variables of the model.    

For nucleotide equilibrium frequencies π and global fitness profiles G, which are under 

the constraint that they should sum to 1, we used constrained move as explained in 

[28]. For the branch lengths l and the exchangeabilities ρ, which are positive real 

numbers, the multiplicative moves were used for their updates [28]. After 500 points of 

burn-in are removed, posterior estimates are estimated by averaging over the remaining 

of the MCMC chain (approximately 1500 points). 

 

Simulation analyses 

Simulations were conducted using the posterior predictive formalism, as described in 

[30, 31], using the HIV dataset as a template, and under two versions of the model: (1) 

with only one condition across the whole tree (thus representing the null hypothesis of 
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no differential effect across conditions); and (2) with the 4 conditions described above 

(between and within patients, with differing HLA backgrounds). In both cases, the 

phenomenological (M1) and the mechanistic (M2) models were investigated. In each of 

these four cases, two independent runs of the MCMC were conducted on the empirical 

HIV dataset. Then posterior predictive simulations were conducted on 5 parameter 

configurations sampled from the posterior distribution (5 points regularly spaced from 

the MCMC run) for each of the two independent runs, yielding a total of 10 replicates. 

For all simulations, the full model (with K=4 conditions) was then applied to these 

simulated data. For a given pair of condition (e.g. HLAB57+ versus HLAB57-), and for 

several levels α, the number of positions inferred to be under differential selection with 

posterior probability greater than 1-α was determined. In the context of the first series of 

simulations (no differential selection simulated), dividing this number by the total 

number of positions times the number of amino acids gives the rate of false positives, 

which was tabulated for several values of α. For the second series of simulations (with 

differential selection simulated), the discoveries made at a given threshold were 

compared with the true differential selection values, and the rate of false discovery was 

thus determined and plotted as a function of the significance threshold.  

 

Results 

Simulation analyses 

The properties of the model were first investigated through simulations. Since the main 

application of the model introduced here is to identify positions for which specific amino 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


19 

acids are under condition-dependent selection pressure, the simulation analyses were 

more specifically designed to evaluate the power of this selection method, as well as its 

rates of false positives and of false discoveries. In order to ensure that the conclusions 

of the simulations are relevant for the empirical situations considered here, simulations 

were calibrated against parameter estimates obtained from the empirical analyses on 

the HIV dataset. This was done using the posterior predictive formalism (see methods). 

A first series of 10 simulations were conducted under the null model assuming no 

differential selection effect across conditions — thus, assuming a constant fitness 

landscape over the whole phylogenetic tree. The model with K=4 conditions (see 

methods) was then applied to these simulated data. For a given pair of condition (e.g. 

HLAB57+ versus HLAB57-), and for different levels α, the number of positions inferred 

to be under differential selection with posterior probability greater than 1-α was 

determined, giving us an estimate of the rate of false positives as a function of the 

stringency of the selection. As can be seen from table 1, for reasonable posterior 

probability thresholds, the rate of false positive is low, reaching 5% for 1-α = 0.7, and 

virtually equal to 0 for 1-α > 0.8.  

This simulation experiment illustrates an important point about the Bayesian approach 

used here: the use of a normal distribution centered on 0 enforces shrinkage of the 

differential fitness effects across positions towards 0 (i.e. the model is centered on the 

null hypothesis representing an absence of selective difference between conditions). 

One important consequence of this choice is that, in the absence of a sufficiently strong 

empirical signal able to counteract this prior, the method will typically not infer high 

posterior probability support for differential selective effects. 
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A second series of simulations was conducted, under the full model, i.e. assuming the 

presence of modulations of the fitness landscape across conditions. The true values of 

the differential selection effects defined by these simulations were set aside and the 4- 

condition model was then applied to each of the 10 simulation replicates. For a given 

pair of condition (e.g. HLAB57+ versus HLAB57-), and for a given level α, the set of 

discoveries at level α (i.e. the set of all positions/amino acid pairs such that the posterior 

probability of a differential selection effect between the two conditions is greater than 1-

α) was determined.  A discovery was then deemed to be false if the true selective effect 

for that amino acid at that position is of the opposite sign as the one inferred by the 

model. The rate of false discovery (FDR) was plotted as a function of 1-α in figure 2. 

As expected, the FDR decreases with the stringency of the test. For model M1 at 

threshold around 0.80, the FDR lies around 15%. For a threshold of 0.90, the FDR is 

around 10% and reaches about 5% for the B57+/B57- comparison. For model M2, the 

FDR value is higher for the B57+/B57- and B35+/B35-, compared to M1. In within-

patient condition, the two models produce very similar FDR values. Based on these 

simulations, in the following, we use a two-level selection procedure, with two 

thresholds at 0.80 and 0.90. We will refer to the corresponding discoveries as 

moderately and strongly supported findings, respectively. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


21 

 

Figure 2. FDR according to posterior probability threshold for 3 categories for model M1 (line) and M2 (dash 

line).  category 1 (blue), 2 (red) and 3 (green) represent within,  B57+ and B35+ patients. 

 

 

Analyses of HIV empirical data 

Our DS model was applied to a dataset of HIV coding sequences (encoding the Gag 

protein) obtained from 41 patients (see Methods). This dataset is interesting for two 

reasons. First, it contains multiple sequences (8 on average) for each patient, thus 

providing empirical information about within-host evolution of viral genetic sequences. 

Second, the HLA types of the patients is known, and therefore, it is possible to correlate 

the amino acid patterns observed in viral sequences with the HLA type of the host. 

The evolution of HIV-1 is characterized by a complex interplay between short-term and 

long-term molecular evolutionary processes. Short-term evolution takes place mostly 

within hosts. It involves a selection pressure for fast replication and for efficient escape  
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Table 1. Rate of False Positive for different conditions and different thresholds. 

threshold interval Within-patient B57
+
 patients B35

+
 patients 

0.5 - 0.55 186.94 194.37 192.82 

0.55 - 0.6 22.28 10.14 12.76 

0.6 - 0.65 6.62 2.05 2.88 

0.65 - 07 2.01 0.36 0.60 

0.7 - 0.75 0.26 0.05 0.06 

0.75 - 0.8 0 0 0 

0.8 - 0.85 0 0 0 

0.85 - 0.9 0 0 0 

0.9 - 0.95 0 0 0 

0.95 - 1 0 0 0 

 

 

from the immune system. Long-term evolution, on the other hand, involves repeated 

switches between hosts. As a result, the selective forces involved in long-term evolution  

depend not only on replication but also on the infectivity of the virus and on its ability to 

adapt to a constantly changing immunological environment. Short- and long-term 

evolution are also characterized by different population-genetic regimes: within-host 

populations contain a substantial fraction of segregating polymorphism, some of which 

are potentially deleterious and therefore ultimately eliminated by purifying selection, 

whereas most differences having occurred along the branches connecting host-specific 

groups of sequences have essentially reached fixation and are therefore probably either 

nearly-neutral or adaptive. Of note, there is a bottleneck occurring as the disease 

transmits from one individual to another (between-patient). This bottleneck at 

transmission, which has been shown by the homogeneity of HIV-1 in very early infection 
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[32-34], probably contributes to the reduction of segregating polymorphisms between-

hosts molecular evolution. Altogether, the interplay between these two evolutionary 

timescales results in a complex process, potentially involving selective conflicts between 

short-term within-host competition and long-term survival in an immunologically highly 

polymorphic human population. 

Accordingly, in this study, we partitioned the phylogenetic tree relating the viral 

sequences into different categories: first, we distinguished between the branches 

connecting the host-specific groups of sequences (between-patient condition) and the 

branches within each host-specific group of sequences (within-patient condition). 

Among the latter set of branches, we further distinguished among patients according to 

their HLA-type: either between HLA-B57+ and HLA-B57- patients, or between HLA-

B35+ and HLA-B35- patients. The HLA-B57 type is known to be associated with the 

control of viremia [35, 36] whereas HLA-B35 is known as the HLA related to the fast 

progression of the disease [37, 38]. 

A global reference selection profile is estimated by our method. This reference fitness 

landscapes, which captures the baseline site-specific amino acid preferences in the 

form of site-specific vectors of 20 fitness factors (one for each amino acid), can be 

visualized using a graphical logo representation [39] and compared with the reference  

HIV-1 sequence (HXB2, the first 60 coding positions are shown in Figure 3). The 

selection profile inferred with our method is highly similar to the reference sequence (the 

fittest amino acid corresponds to the amino acid of the reference sequence at 86% of 

the coding positions). In some cases, compared to the reference sequence, the fitness 

profile suggests a distinct but biochemically similar dominant amino acid (e.g. position 
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15, K instead of R), or several equally fit amino acids (e.g. position 30). This 

corresponds to the actual sequence variation observed in our empirical alignment. 

Altogether, this global reference selection profile illustrates that HIV evolution occurs on 

a background characterized by strong purifying selection, allowing for a very limited set 

of amino acid sequences for the viral protein. 

 

 

 

 

 
Figure 3. Comparison of HIV-1 global selection profile estimated by DS model  with the reference sequence 

HXB2. The first 60 amino acids are shown. HXB2 sequence is at the top and global selection profile is at the bottom. 

The reference logo was made using Weblogo [40]. 

 

Against this background fitness landscape, our model then estimates differential 

selection profiles between each pair of conditions: first, between within-host and 

between-host (Figure 4-b and 5-b), and second, among within-host sequences, 

between HLA-B57- and HLA-B57+ sequences (Figure 4-c), or between HLA-B35- and 

HLA-B35+ sequences (Figure 5-c). The logos represented on Figure 4 and 5 indicate 

whether the fitness of any particular amino acid is inferred to be increased (above the 

line) or decreased (below the line), at a given position, between the two conditions 
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being compared. These figures only give point estimates for the differential effects. In 

practice, the posterior probability support associated to these estimates is most often 

relatively low (figure 6), except for a small subset of positions for which stronger 

evidence (p.p. > 0.8) for a differential selection effect is inferred by the model. These 

more clear-cut cases represent our findings, which are given in Table 4 for the two 

model settings. 

From Table 4, we see that, by far, the largest number of differentially selected amino 

acid variants is found when comparing the within- and between-patient conditions, with 

more than 280 findings under both models. On the other hand, a quick look at the 

corresponding profiles suggests that this is mostly due to a global difference in the 

intensity of selection (or a global difference in statistical power), rather than to specific 

selective differences between the two conditions (see discussion).  

The differences between alternative HLA backgrounds, on the contrary, seem to be 

more specific. These findings are listed with more details (position, amino acid, credible 

interval and posterior probability support) in Table 2 and Table 3 for B57+ and B35+ 

conditions, respectively. Among them, there are some known mutations identified in 

association with specific HLAs. Two important HIV-1 escape mutations defined in B57+ 

patients are T242N and A163X in epitopes TW10 [41, 42] and KF11 [43, 44], 

respectively. X at position 163 is mostly P and N. The logos of the corresponding 

regions are shown in Figure 4. The selection factors estimated at these positions are in 

agreement with these previously known escape mutations.  
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Figure 4. Global and differential selection profiles (differential for HLA-B57). a. Global selection profile (G). b 

and c. Differential selection profile for within-patient and HLA-B57+ group, respectively. The posterior probability of 

positive selection for N and negative selection for T at position 242 (TW10 epitope) is 0.94 and 0.88 in HLA-B57+ 

hosts. At position 163 (KF11 epitope), N is selected positively with the posterior probability of 0.77. The logos are 

filtered for p.p. below 0.05. Heights are proportional to posterior mean differential selective effects. 

a 

b 

c 
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Table 2. List of differentially selected amino acids for B57+ hosts with p.p.> 0.80. 

position amino acid p.p. median lower upper fitness 

242 N 0.93 
1.36 -0.37 3.07 

increased 

248 G 0.91 
-1.20 -2.82 0.45 

decreased 

30 Q 0.89 
1.09 -0.69 2.92 

increased 

242 T 0.87 
-0.95 -2.55 0.78 

decreased 

30 K 0.87 
-0.96 -2.49 0.69 

decreased 

357 A 0.86 
0.94 -0.73 2.86 

increased 

15 R 0.86 
0.72 -1.01 2.41 

increased 

118 A 0.85 
-0.93 -2.69 0.79 

decreased 

239 S 0.85 
1.02 -0.95 2.64 

increased 

137 L 0.82 
-0.86 -2.55 0.93 

decreased 

326 S 0.81 
0.79 -1.28 2.46 

increased 

357 G 0.81 
-0.78 -2.55 0.97 

decreased 

280 T 0.80 
0.83 -0.79 2.43 

increased 

12 E 0.80 
0.71 -0.96 2.43 

increased 

248 E 0.80 
0.66 -0.97 2.42 

increased 

223 I 0.80 
-0.70 -2.28 1.02 

decreased 

 

 
 
Intriguingly, the T/N escape variant at position 242 (TW10 epitope) is not recovered by 

the mechanistic model (M2), suggesting that the phenomenological model is more 

adequate to predict differential selection patterns. This confirms our simulation studies, 
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suggesting that the phenomenological model has a greater detection power. Also of 

interest, our method does not infer that T is preferred in a B57- environment, whereas N 

is favored in a B57+ background. Instead, it suggests that both amino acids are 

acceptable in a B57- environment, but that N becomes the only one favored in B57+ 

patients. A similar pattern is observed for the A163X escape mutation, with p.p. = 0.7. 

One known mutation for B35+ individuals is E260D in NY10 epitope [45]. Our method 

detects this mutation to be under condition-specific selection with posterior probability of 

0.81 (Figure 5). 
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Figure 5. Global and differential selection profiles (differential for HLA-B35). a. Global selection profile of NY10 

epitope (251-260). The epitope’s global selection is 100% matching the HXB2 sequence. b and c. Differential 

selection for within-patient HLA-B35- and HLA-B35+, respectively. The posterior probability of E to D substitution at 

position 260 is 0.81. The logos are filtered for p.p. less than 0.05. Heights are proportional to posterior mean 

differential selective effects.  

c 

b 

a 
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 Table 3. List of differentially selected amino acids for B35+ individual with p.p.> 0.80. 

position amino acid p.p. median lower upper fitness 

46 L 0.97 1.69 -0.05 3.44 increased 

34 L 0.96 1.52 -0.31 3.19 increased 

 252 H 0.96 1.59 -0.18 3.28 increased 

111 S 0.93 -1.15 -2.72 0.49 decreased 

127 Q 0.93 -1.11 -2.74 0.48 decreased 

376 V 0.93 1.16 -0.49 2.68 increased 

312 D 0.92 1.23 -0.55 3.06 increased 

137 M 0.92 1.26 -0.47 3.22 increased 

252 N 0.92 -1.05 -2.60 0.48 decreased 

30 K 0.92 -1.05 -2.44 0.52 decreased 

248 A 0.91 1.25 -0.41 3.07 increased 

310 T 0.91 1.25 -0.54 2.97 increased 

441 H 0.89 0.95 -0.43 2.46 increased 

46 V 0.89 -1.06 -2.74 0.52 decreased 

67 A 0.89 1.09 -0.66 2.82 increased 

111 C 0.88 1.08 -0.75 2.76 increased 

375 V 0.88 -0.85 -2.48 0.72 decreased 

255 V 0.88 1.08 -0.79 2.61 increased 

441 Y 0.87 -0.92 -2.37 0.53 decreased 

405 I 0.86 0.94 -0.72 2.51 increased 

15 Q 0.86 0.94 -0.77 2.84 increased 

138 L 0.86 -0.90 -2.41 0.76 decreased 

376 I 0.85 -0.81 -2.26 0.67 decreased 

127 T 0.85 1.01 -0.86 2.83 increased 
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69 Q 0.84 -0.79 -2.37 0.78 decreased 

81 A 0.84 0.94 -0.74 2.65 increased 

176 A 0.84 0.86 -0.88 2.86 increased 

280 T 0.83 0.96 -0.86 2.40 increased 

348 S 0.83 0.97 -0.90 2.87 increased 

61 I 0.83 0.77 -1.14 2.61 increased 

81 T 0.83 -0.82 -2.41 0.85 decreased 

268 M 0.82 0.81 -0.81 2.45 increased 

280 A 0.82 -0.82 -2.41 0.85 decreased 

388 K 0.82 0.74 -0.90 2.37 increased 

389 P 0.82 0.81 -0.81 2.45 increased 

397 R 0.82 0.72 -1.00 2.53 increased 

95 R 0.82 0.77 -0.83 2.39 increased 

68 I 0.81 0.87 -1.14 2.67 increased 

215 L 0.81 -0.73 -2.19 0.70 decreased 

118 T 0.81 0.70 -0.95 2.33 increased 

260 D 0.81 0.75 -1.00 2.48 increased 

54 A 0.81 0.75 -0.96 2.52 increased 

93 A 0.80 0.73 -1.04 2.44 increased 

28 K 0.80 -0.66 -2.46 1.06 decreased 

58 K 0.80 0.69 -1.31 2.34 increased 
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Figure 6. Frequency plot for posterior probabilities of differential selection effects across all amino acids at 

all positions; phenomenological (M1) versus mechanistic (M2) approach. 

 

Sensitivity to tree topology 

As mentioned in the phylogenetic tree estimation section, we used three monophyletic 

topologies of the tree in the analysis. We refer to these trees as tree T1, T2 and T3. 

Having used them in M1-DS model, we found that the number and the key differentially 

selected positions are very similar for all trees. The number of these differentially 

positions is summarized for B57+ and B35+ patients and at each significance threshold 

in Table 5. 
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Table 4.  Numbers of differentially selected amino acid-positions with posterior probability >0.70 and >0.90  in 

different conditions estimated by models M1 and M2. 

Threshold Model Within-patient B57
+
 patients B35

+
 patients 

>0.80 M1 281 15 48 

>0.80 M2 286 5 30 

>0.90 M1 54 2 13 

>0.90 M2 56 0 1 

 

 

By comparing the positions declared significant for each threshold, we see that in B57+ 

condition, all findings under tree T1 (nj topology) were recovered under tree T2 

(MrBayes topology with constraint) and tree T3 (MrBayes topology without constraint) 

for threshold greater than 0.85. Only 3 and 5 positions were not found at the threshold 

of 0.80 for trees T2 and T3, respectively. None of the positions found different between 

two topologies belong to the positions previously known to correspond to viral escape 

mutants. 

Altogether, the relatively small number of sequences that had to be removed, combined 

with the relative robustness of our result to the exact choice of the tree topology, 

suggests that the problems of multiple infection patterns, or tree reconstruction errors, 

have a globally marginal impact on our analysis. 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


34 

Table 5.  Number of differentially selected positions with posterior probability >0.80 and >0.90 obtained by 

M1-DS model using tree T2 and tree T3. 

threshold Tree topology B57+ patients B35+ patients 

>0.80 1 15 48 

>0.80 2 12 51 

>0.80 3 15 48 

>0.90 1 2 13 

>0.90 2 2 10 

>0.90 3 3 12 

 

 

Discussion 

Here, we have introduced a hierarchical Bayes method for detecting adaptive patterns 

in protein coding sequences as a function of known selective backgrounds. Compared 

with previously introduced methods [21, 22], our approach has several additional 

features. The approach of Carlson et al [21], relying on a Bayesian network 

representation, is formulated at the codon level. In addition, it can accommodate 

epistatic effects (see below). Besides, it is focused on the terminal branches of the 

phylogeny and therefore ignores potentially relevant empirical information from the 

deeper parts of the phylogenetic tree. The approach of Tamuri et al [22], in contrast, 

fully integrates the empirical signal over the entire tree. However, it is formulated directly 

at the amino acid level and does not explicitly account for the coding structure. Our 

method has the strengths from these two approaches: like Carlson et al [21], it is 
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formulated at the codon level; as in [22], it relies on an explicit evolutionary model with 

site- and condition-specific selective effects. 

The fact that our method integrates the empirical signal about more ancient codon 

substitutions opens new possibilities, in particular, for comparing short-term (within-

host) and long-term (between-host) adaptive patterns. As it stands, however, the results 

obtained in this direction are not yet so convincing: the within-host differential selection 

profiles obtained through our method (figures 4-b and 5-b) seem to partially reproduce 

the condition-independent amino acid fitness profiles (figures 4-a and 5-a). The reasons 

for such a redundant output are not totally clear. Deleterious mutations segregating 

within-host, but purified away in the long-term (and therefore absent from the deeper 

branches of the phylogeny connecting host-specific clusters) are an important difference 

between within- and between-host conditions. However, such segregating 

polymorphisms would be expected to result in an opposite pattern, leading to artefactual 

high selection coefficients in the within-host condition for unfit amino acids that are not 

observed in the between-host selection profiles. One alternative explanation for the 

observed redundancy would be that the law of condition-independent selection profiles 

across sites is not correctly captured by a Dirichlet distribution. Possibly for that reason, 

the remaining part of the condition-independent selective effects may be captured by 

the differential selection profile of the within-host condition. Ultimately, more 

sophisticated hierarchical Bayesian settings could be used, such as non-parametric 

priors [6]. The combination of condition- and site-specific effects is computationally 

challenging, and further algorithmic work is therefore needed in this direction to fully 

accommodate arbitrary distributions of random-effects across positions and conditions. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


36 

The distribution of differential selective effects across sites and conditions may also 

need additional statistical and computational developments in the long term. Here, we 

have used Normal distributions centered on 0 to model differential selective effects. 

Doing this leads to efficient soft shrinkage toward 0. However, this approach does not 

implement sparsity: All amino acids, at all positions and under all conditions, have non-

zero differential selective effects with a posterior probability of one. Ultimately, sparse 

differential selection profiles (with only a small number of positions and amino acids 

displaying significant non-null differential selective effects with high posterior probability) 

could be obtained through the use a spike-and-slab mixture model [46].  

Two alternative models of the rate of change between codons were considered in this 

study: one purely phenomenological [6, 9], and another one that has a better 

mechanistic justification, based on first principles of population genetics. When applied 

to HIV sequences, however, the mechanistic model does not seem to lead to better 

results, compared to the phenomenological approach. In particular, it fails at detecting 

known HLA-restricted escape mutations. The mechanistic model, however, makes 

several assumptions that are clearly not warranted in the present context: low-mutation 

approximation, and more fundamentally, a mutation-fixation paradigm [7, 47], which 

amounts to ignore clonal interference. In sharp contrast, viral sequences evolve under a 

very high mutation rate, leading to strong clonal interference. Another consequence of 

the very high mutation rate is that segregating deleterious polymorphisms are expected 

to be present at a substantial frequency, something which is not correctly captured by 

the mutation-selection model: fundamentally, this model is meant to be applied to inter-

specific data. Here in contrast, a meta-population model would be more adequate. The 
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theoretical and computational developments in this direction still appear to be 

challenging. 

Our method does not take into account epistatic interactions between positions. Yet, 

those interactions seem to play an important role in HIV evolution, in particular 

concerning escape mutations. Most escape mutations cause a viral fitness cost which 

leads to decreased replication of the virus [41]. Position 242 is under the strongest 

selection pressure from the immune system which corresponds to the ability of B57+ 

hosts to control the disease. T242N mutation in B57+ individuals reverts in viruses 

transmitted to a HLA-mismatched host [42], which supports the fact that the mutation 

has a strong fitness cost for the virus in terms of replication capacity [48]. This fitness 

cost might be compensated for, to some extent, by mutations at other positions, mostly 

around the escape mutation. In sequences with T242N mutation, the compensatory 

mutations H219Q, I223V, M228I/V, G248A and N252H were identified [41, 42]. It has 

been reported that these mutations are significantly more frequent in HLA-B57+ patients 

with a progressing disease compare to HLA-B57+ non-progressors [41]. In this study, 

we did not see significant differences for final amino acids (Q, V, I/V, A and H) between 

B57+ and B57- patients at those suppressing positions, although initial amino acids are 

significantly unfavored (p.p.=0.80, 0.91, 0.77 for I, G and N at positions 223, 248 and 

252, respectively). There may be two reasons for that; first, our model takes each site 

into account independently and codon co-variation is not considered. Secondly, contrary 

to escape mutations which revert in the HLA mismatch host, compensatory mutations 

do not tend to revert after transmission to HLA mismatch individuals [42]. For example, 

H219Q, the associated mutation to T242N, is reported to be maintained after 
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transmission from B57+ to B57- hosts. So, this mutation might be stable and spread in 

the population. As it stands, explicitly implementing epistatic effects in the context of the 

present modeling framework appears to be challenging, although not impossible [49]. 

 

Conclusion 

We proposed a phylogenetic differential selection model, which is able to find adaptive 

patterns in coding sequences influenced by selective environments. Applying the model 

on HIV-1 Gag sequences, leads to the detection of a few amino acid-positions that are 

differentially selected under different host HLA types, as HIV tries to escape from 

immune system through its fast evolution. The model is thus able to find known HLA-

restricted mutations, as well as some new mutations, to be under differential selection. 

The power of our model is that it is capable of detecting both positive and negative 

selection pressure on each amino acid at each position under each environmental 

condition.  

This differential selection model can be used in other situations in which differential 

selective effects are suspected, as a function of known predictors, for viruses (e.g. 

finding adaptive patterns of HIV sequences under the selection pressure of immune 

system or antiviral therapy provides an insight of the direction of HIV-1 evolution in 

different hosts with different genetic characteristics), or in other species (e.g. convergent 

adaptations of multiple lineages of plants, or animals, to specific environmental 

conditions [50]. 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


39 

Abbreviations 

DS: Differential selection; HLA: Human leukocyte antigen; CTL: Cytotoxic T lymphocyte; 

MCMC: Markov Chain Monte Carlo; LANL: Los Alamos National Laboratory. 

 

Competing interests 

The authors declare that they have no competing interests. 

 

 Authors' Contributions 

SP and NL conceived the project and participated in its design. SP performed the 

experiments. SP and NL analyzed the results. SP drafted and NL edited the manuscript. 

Both authors read and approved the final manuscript. 

 

Acknowledgement 

We are thankful to the Natural Sciences and Engineering Research Council of Canada 

(NSERC) for financially supporting this research. We also thank the anonymous 

reviewers for their comments on the manuscript.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


40 

References 

1. Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-

coding DNA sequences. Mol Biol Evol 1994, 11(5):725-736. 

2. Muse SV, Gaut BS: A likelihood approach for comparing synonymous and 

nonsynonymous nucleotide substitution rates, with application to the chloroplast 

genome. Mol Biol Evol 1994, 11(5):715-724. 

3. Anisimova M, Bielawski JP, Yang Z: Accuracy and Power of the Likelihood Ratio 

Test in Detecting Adaptive Molecular Evolution. Mol Biol Evol 2001, 18(8):1585-

1592. 

4. Nielsen R, Yang Z: Likelihood Models for Detecting Positively Selected Amino Acid 

Sites and Applications to the HIV-1 Envelope Gene. Genetics 1998, 148(3):929-936. 

5. Yang Z: Likelihood ratio tests for detecting positive selection and application to 

primate lysozyme evolution. Mol Biol Evol 1998, 15(5):568-573. 

6. Rodrigue N, Philippe H, Lartillot N: Mutation-selection models of coding sequence 

evolution with site-heterogeneous amino acid fitness profiles. Proc Natl Acad Sci U S 

A 2010, 107(10):4629-4634. 

7. Halpern AL, Bruno WJ: Evolutionary distances for protein-coding sequences: 

modeling site-specific residue frequencies. Mol Biol Evol 1998, 15(7):910-917. 

8. Thorne JL, Choi SC, Yu J, Higgs PG, Kishino H: Population Genetics Without 

Intraspecific Data. Mol Biol Evol 2007, 24(8):1667-1677. 

9. Robinson DM, Jones DT, Kishino H, Goldman N, Thorne JL: Protein evolution 

with dependence among codons due to tertiary structure. Mol Biol Evol 2003, 

20(10):1692-1704. 

10. Mustonen V, Lässig M: Molecular Evolution under Fitness Fluctuations. Phys Rev 

Lett 2008, 100(10):108101. 

11. Gascuel O, Guindon S: Modelling the Variability of Evolutionary Processes. In: 

Reconstructing Evolution: New Mathematical and Computational Advances. Edited 

by Olivier G, Steel M, vol. II Models of sequence evolution; 2007: 65-99. 

12. Edwards CTT, Holmes EC, Pybus OG, Wilson DJ, Viscidi RP, Abrams EJ, Phillips 

RE, Drummond AJ: Evolution of the Human Immunodeficiency Virus Envelope 

Gene Is Dominated by Purifying Selection. Genetics 2006, 174(3):1441-1453. 

13. Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid 

sites and applications to the HIV-1 envelope gene. Genetics 1998, 148(3):929-936. 

14. Salemi M, Burkhardt BR, Gray RR, Ghaffari G, Sleasman JW, Goodenow MM: 

Phylodynamics of HIV-1 in Lymphoid and Non-Lymphoid Tissues Reveals a 

Central Role for the Thymus in Emergence of CXCR4-Using Quasispecies. PLoS 

One 2007, 2(9):e950. 

15. Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, Novitsky V, Haynes B, 

Hahn BH, Bhattacharya T et al: Diversity Considerations in HIV-1 Vaccine 

Selection. Science 2002, 296(5577):2354-2360. 

16. Altfeld M, Allen TM: Hitting HIV where it hurts: an alternative approach to HIV 

vaccine design. Trends in Immunology 2006, 27(11):504-510. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


41 

17. Carlson JM, Brumme ZL: HIV evolution in response to HLA-restricted CTL 

selection pressures: a population-based perspective. Microbes and Infection 2008, 

10(5):455-461. 

18. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA: Evidence of 

HIV-1 Adaptation to HLA-Restricted Immune Responses at a Population Level. 

Science 2002, 296(5572):1439-1443. 

19. Brumme ZL, Tao I, Szeto S, Brumme CJ, Carlson JM, Chan D, Kadie C, Frahm N, 

Brander C, Walker B et al: Human leukocyte antigen-specific polymorphisms in 

HIV-1 Gag and their association with viral load in chronic untreated infection. Aids 

2008, 22(11):1277-1286. 

20. Rousseau CM, Daniels MG, Carlson JM, Kadie C, Crawford H, Prendergast A, 

Matthews P, Payne R, Rolland M, Raugi DN et al: HLA Class I-Driven Evolution of 

Human Immunodeficiency Virus Type 1 Subtype C Proteome: Immune Escape and 

Viral Load. J Virol 2008, 82(13):6434-6446. 

21. Carlson JM, Brumme ZL, Rousseau CM, Brumme CJ, Matthews P, Kadie C, 

Mullins JI, Walker BD, Harrigan PR, Goulder PJ et al: Phylogenetic dependency 

networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. 

PLoS Comput Biol 2008, 4(11):e1000225. 

22. Tamuri AU, dos Reis M, Hay AJ, Goldstein RA: Identifying Changes in Selective 

Constraints: Host Shifts in Influenza. PLoS Comput Biol 2009, 5(11):e1000564. 

23. www.hiv.lanl.gov. In. 

24. Saitou N, Nei M: The Neighbor-Joining Method - a New Method for Reconstructing 

Phylogenetic Trees. Mol Biol Evol 1987, 4(4):406-425. 

25. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. 

Bioinformatics 2001, 17(8):754-755. 

26. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics 2003, 19(12):1572-1574. 

27. Gelman A, Rubin DB: Inference from Iterative Simulation Using Multiple 

Sequences. Statistical Science 1992, 7(4):457-472. 

28. Lartillot N: Conjugate Gibbs Sampling for Bayesian Phylogenetic Models. Journal 

of Computational Biology 2006, 13(10):1701-1722. 

29. Lartillot N, Poujol R: A phylogenetic model for investigating correlated evolution of 

substitution rates and continuous phenotypic characters. Mol Biol Evol 2011, 

28(1):729-744. 

30. Gelman A, Meng X-L, Stern H: Posterior Predictive Assessment of Model Fitness 

via Realized Discrepancies. Statistica Sinica 1996, 6(4):733-760. 

31. Rubin DB: Bayesianly Justifiable and Relevant Frequency Calculations for the 

Applied Statistician. 1984(4):1151-1172. 

32. Delwart E, Magierowska M, Royz M, Foley B, Peddada L, Smith R, Heldebrant C, 

Conrad A, Busch M: Homogeneous quasispecies in 16 out of 17 individuals during 

very early HIV-1 primary infection. Aids 2002, 16(2):189-195. 

33. Edwards CT, Holmes EC, Wilson DJ, Viscidi RP, Abrams EJ, Phillips RE, 

Drummond AJ: Population genetic estimation of the loss of genetic diversity during 

horizontal transmission of HIV-1. BMC Evol Biol 2006, 6:28. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

http://www.hiv.lanl.gov/
https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


42 

34. Zhu T, Mo H, Wang N, Nam D, Cao Y, Koup R, Ho D: Genotypic and phenotypic 

characterization of HIV-1 patients with primary infection. Science 1993, 

261(5125):1179-1181. 

35. Altfeld M, Addo MM, Rosenberg ES, Hecht FM, Lee PK, Vogel M, Yu XG, 

Draenert R, Johnston MN, Strick D et al: Influence of HLA-B57 on clinical 

presentation and viral control during acute HIV-1 infection. Aids 2003, 17(18):2581-

2591. 

36. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino 

L, Hallahan CW, Selig SM, Schwartz D, Sullivan J et al: HLA B*5701 is highly 

associated with restriction of virus replication in a subgroup of HIV-infected long 

term nonprogressors. Proceedings of the National Academy of Sciences 2000, 

97(6):2709-2714. 

37. Flores-Villanueva PO, Hendel H, Caillat-Zucman S, Rappaport J, Burgos-Tiburcio 

A, Bertin-Maghit S, Ruiz-Morales JA, Teran ME, Rodriguez-Tafur J, Zagury J-F: 

Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AIDS 

Disease Development. The Journal of Immunology 2003, 170(4):1925-1929. 

38. Itescu S, Mathur-Wagh U, Skovron ML, Brancato LJ, Marmor M, Zeleniuch-

Jacquotte A, Winchester R: HLA-B35 is associated with accelerated progression to 

AIDS. J Acquir Immune Defic Syndr 1992, 5(1):37-45. 

39. Schneider TD, Stephens RM: Sequence logos: a new way to display consensus 

sequences. Nucleic Acids Res 1990, 18(20):6097-6100. 

40. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo 

generator. Genome Res 2004, 14(6):1188-1190. 

41. Brockman MA, Schneidewind A, Lahaie M, Schmidt A, Miura T, Desouza I, Ryvkin 

F, Derdeyn CA, Allen S, Hunter E et al: Escape and compensation from early HLA-

B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus 

type 1 Gag alter capsid interactions with cyclophilin A. J Virol 2007, 81(22):12608-

12618. 

42. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, Tang Y, 

Holmes EC, Allen T, Prado JG et al: HIV evolution: CTL escape mutation and 

reversion after transmission. Nat Med 2004, 10(3):282-289. 

43. Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, Pillay T, Hilton L, 

Thobakgale C, Ramduth D, Draenert R et al: Transmission and accumulation of 

CTL escape variants drive negative associations between HIV polymorphisms and 

HLA. J Exp Med 2005, 201(6):891-902. 

44. Weber J, Weberova J, Carobene M, Mirza M, Martinez-Picado J, Kazanjian P, 

Quinones-Mateu ME: Use of a novel assay based on intact recombinant viruses 

expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the 

contribution of pol and env genes to overall HIV-1 replicative fitness. J Virol 

Methods 2006, 136(1-2):102-117. 

45. Matthews PC, Koyanagi M, Kloverpris HN, Harndahl M, Stryhn A, Akahoshi T, 

Gatanaga H, Oka S, Juarez Molina C, Valenzuela Ponce H et al: Differential clade-

specific HLA-B*3501 association with HIV-1 disease outcome is linked to 

immunogenicity of a single Gag epitope. J Virol 2012, 86(23):12643-12654. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/


43 

46. Lewin A, Bochkina N, Richardson S: Fully Bayesian mixture model for differential 

gene expression: simulations and model checks. Stat Appl Genet Mol Biol 2007, 

6:Article36. 

47. Yang Z, Nielsen R: Mutation-Selection Models of Codon Substitution and Their Use 

to Estimate Selective Strengths on Codon Usage. Mol Biol Evol 2008, 25(3):568-579. 

48. Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale 

C, Honeyborne I, Crawford H, Matthews P et al: Fitness cost of escape mutations in 

p24 Gag in association with control of human immunodeficiency virus type 1. J 

Virol 2006, 80(7):3617-3623. 

49. Kleinman CL, Rodrigue N, Lartillot N, Philippe H: Statistical Potentials for 

Improved Structurally Constrained Evolutionary Models. Mol Biol Evol 2010, 

27(7):1546-1560. 

50. Parto S, Lartillot N: Differential selection on Rubisco in C4 plants. PLoS One 2016, 

in preperation. 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072405doi: bioRxiv preprint 

https://doi.org/10.1101/072405
http://creativecommons.org/licenses/by-nd/4.0/

