
QCAT: testing causality of variants using only summary 

association statistics 

Donghyung Lee1,2, T. Bernard Bigdeli2, Vladimir I. Vladimirov2,3,4, Ayman H. Fanous2 and Silviu-Alin 

Bacanu2* 

1The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA, 2Department 

of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth 

University, Richmond, Virginia 23298, USA, 3Center for Biomarker Research & Personalized Medicine; 

Virginia Commonwealth University, Richmond, Virginia 23298, USA and 4Lieber Institute for Brain 

Development, Johns Hopkins University, Baltimore, Maryland 21205 

* To whom correspondence should be addressed. Tel: 1-804-828-7553; Fax: 1-804-828-1471; Email: silviu-

alin.bacanu@vcuhealth.org.  

Present Address:  Silviu-Alin Bacanu, Psychiatry Department, Virginia Commonwealth University, 

Richmond, VA 232119 

 

ABSTRACT  

Genome-wide and, very soon, sequencing association studies, might yield multiple regions 

harbouring interesting association signals. Given that each region encompasses numerous variants in 

high linkage disequilibrium, it is not clear which are i) truly causal or ii) just reasonably close to the 

causal ones. Researchers proposed many methods to predict, albeit not test, the causal SNPs in a 

region, a process commonly denoted as fine-mapping. Unfortunately, all existing fine-mapping 

methods output posterior causality probabilities assuming that causal SNPs are among those already 

measured in the study, or have been catalogued elsewhere. However, due to technological and 

computational obstacles in calling many types of genetic variants, such assumption is not realistic. 

We propose a novel method/software, denoted as Quasi-CAausality Test (QCAT), for testing (not just 

predicting) the causality of any catalogued genetic variant.  QCAT i) makes no assumption that causal 

variants are among catalogued variants, and ii) makes use of easily available summary statistics from 

genetic studies, e.g. variant association Z-scores, to make statistical inferences. The proposed 

statistical test controls the type I error at or below the desired level. Its practical application to well-

known smoking association signals provide some insightful results. The QCAT software is publically 

available at: http://dleelab.github.io/qcat/ 
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INTRODUCTION 

Genome-wide association studies (GWAS) and meta-analyses of GWAS have been quite 

successful in identifying and replicating genomic regions associated with a diverse set of human 

traits/diseases (1). Until recently, the National Human Genome Research Institute GWAS catalog of 

published GWAS has collected over 2,000 reproducibly identified association loci across hundreds of 

human traits/diseases (2). However, these reported GWAS loci typically harbor dozens or hundreds of 

statistically significant single nucleotide polymorphisms (SNPs) in high linkage disequilibrium (LD), 

making it fairly difficult to fine-map true causal variants out of peer non-causal ones. Consequently, 

among the tens of thousands reported GWAS SNPs, only very few are empirically identified as causal 

variants altering disease risk (3-5) and, despite considerable GWAS results, this limitation hinders the 

progress towards understanding biological mechanisms or pathways underlying human 

traits/diseases. 

The first steps in the long road toward finding causal variants is the identification of larger 

regions of interest. Generally such a regions lie around variants harboring significant signals. 

However, very often signals at neighboring SNPs are correlated and, thus, they might tag a common 

underlying signal, i.e. they are not “independent”. To find the independent signals in a region, 

researchers resort to a conditional analysis in which they assess the significance of variants after 

conditioning on the most significant signal in the region. When genetic data is available, this 

conditioning can be attained by simply using the genotype at the most significant marker as a 

covariate and/or clumping (clustering the signals by LD) the signals (6-8). If only summary statistics 

are available (e.g. Z-scores), the conditioning can be achieved using only these statistics, e.g. GCTA-

COJO (9). However, these are solely association based methods and, when used as fine-mapping 

tools, have two major disadvantages. First, they do not model at all the causality of SNPs. Due to this, 

if an uncatalogued causal variant with a reasonably strong signal and two of GWAS SNPs are only 

moderately correlated, conditional analysis might be likely to pick both GWAS SNPs as independent 

signals, which is obviously untrue. Second, even when the causal SNP is measured in the GWAS, it 

might not always be the most statistically significant.  

To overcome the limitation in identifying true causal variants at GWAS-detected loci, several 

statistical fine-mapping methods have been proposed. For instance, a Bayesian statistical approach 

was used to extract "credible sets of SNPs" from GWAS association signals for 14 loci in 3 common 

diseases (10). The Bayesian method refines the signals by calculating the posterior probability of a 

SNP being causal by assuming that all causal variants are measured. While the approach is 

informative in prioritizing potential causal variants, it has the limitations of i) assuming only one causal 

variant at each loci, ii) high computational burden and ii) requiring individual-level genotype-

phenotype information, which are often publicly unavailable.  

To address these limitations, recently, three novel Bayesian fine-mapping methods were 

recently proposed: PAINTOR (11) CAVIAR (12) and CAVIARBF (13). These three methods are a big 

step ahead in the important conquest to fine-map association signals because they i) directly model 

causality in the computation of likelihood, ii) base their statistical inference only on (publicly available) 

marginal association statistics (e.g. two-sided Z-scores) and LD patterns (SNP genotype correlation 
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matrices) estimated from a public reference panel, such as the 1000 Genomes data (1KG) (14). 

When compared to previous method, they have the advantages of: i) allowing multiple causal variants 

at loci, ii) faster computation time by using summary data (as opposed to subject level genetic data). 

CAVIAR and CAVIARBF determine credible sets of SNPs by calculating posterior probabilities of all 

possible subset of SNPs being casual under the assumption that all causal variants are at least 

known (if not already measured). Due to their greedy SNP selection procedure, their computational 

burden is quite demanding, rapidly increasing as the assumed number of causal SNPs at loci 

increases. For this reason, CAVIAR software sets the number of causal variants at most 6. PAINTOR 

detects potential causal variants using similar strategy used in CAVIAR and CAVIARBF, except that it 

provides an additional useful option to utilize functional SNP annotation information in prioritizing 

candidate causal SNPs. While these tools are all very useful, they all output the relative posterior 

probability of causality, i.e. under the strong simplifying assumption that all possible causal variants 

are measured. However, this simplifying assumption is unlikely to be met in practice (15) due to many 

types of genetic variation being overlooked/hard to assess even in the most favorable scenario of high 

coverage sequence studies (e.g. highly repetitive, hypervariable, paralogous and chromosomal 

duplication regions along, de novo alignment being not commonly employed etc). If an uncatalogued 

causal variant with a reasonably strong signal is moderately correlated with multiple GWAS SNPs, 

intuitively all these fine-mapping methods are likely to pick at least one of these SNPs as causal. 

Consequently, there is a need for methods which might output an absolute p-value for testing 

causality, which does not assume that putative causal variants are already known or catalogued. 

In their present versions, all three above mentioned methods implicitly assume that the LD 

structures of the study cohort and the (often homogenous) reference population is identical. However, 

to increase sample size, and thus, the detection power, many large-scale consortia collect samples 

from diverse ethnic background, even including samples from different continents (16;17). Thus, for 

the cosmopolitan (mixed-ethnicity) cohorts, a less than careful matching of the cohort with the 

reference panel can results in false positive causality signals for the above three methods. Thus, the 

development of a method which automatically computes the LD structures for mixed ethnicity cohorts, 

would be welcome. Our group already developed such capability, which is already implemented in 

DISTMIX and JEPEGMIX software (18;19). 

In this work, we propose a novel fine-mapping method. It retains all key advantages of 

summary statistic based fine-mapping methods by: i) allowing multiple causal variants, ii) providing 

high computational efficiency and iii) not requiring individual-level genotypes, while being readily 

applicable to mixed ethnicity cohort. We refer to our proposed method for ethnically homogeneous 

cohorts as Quasi-causality Test (QCAT). (For cosmopolitan cohorts, we denote it as QCAT for MIXed 

ethnicity cohort (QCATMIX).) Unlike competing methods, it outputs a p-value for causality testing, 

which, does not assume that all possible causal variants are known or measured. We use extensive 

simulation studies to compare the Type I error rates and power of QCAT/QCATMIX to the fine-

mapping methods, such as CAVIARBF. By applying QCAT to summary data from a large-scale meta-

analysis such as the Tobacco and Genetics Consortium (TAG) (20), we obtain some interesting 

results. 
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MATERIAL AND METHODS 

 

QCAT assuming single causal variant 

The proposed approach uses a fast regression procedure to assess the likelihood of any 

cataloged (regardless whether GWAS measured or unmeasured) SNP being causal. It relies solely on 

the association statistic at the SNP, the statistics for the adjacent SNPs at/near the loci and the 

genotype correlation matrix between all these SNPs, e.g. as estimated from a reference panel such 

as the 1KG data.   

 Let  and  be the genotype vector and the association Z-score for measured/unmeasured 

putatively causal SNP  under investigation, , where  is the number of SNPs in a region of 

interest. Let  and  , be the genotype vectors and association Z-scores for all measured 

SNPs in an extended window around SNP . Let , , be the correlation between  and  

estimated from the reference population. Under/near the null hypothesis (H0) of no association 

between SNPs and disease and, when testing an additive mode of inheritance (MOI),  is also 

the correlation between  and . If the SNP  is causal, then for every measured non-causal SNPs in 

the extended window, we can write  or, in regression notation,  (1), 

where ,  are the non-independent (and non-identically distributed) errors due to  being 

locally correlated. Relationship (1) implies that, if  is causal with the assumed MOI, then the 

correlation (regression) between vectors  and , , should be non-zero, i.e. 

. This test can be viewed as a test for an additive MOI association under the 

assumption of causality. Thus, in practice we can test for (univariate) causality all SNPs in large 

reference panels (e.g. 1KG) by testing , henceforth denoted as QCAT.  

 Under H0 (no significant association under the assumption of causality): , the 

empirical distribution of the sample correlation between the dependent variable, , and LD 

parameters, , is known only when entries of  vector are independent, which is not the case when 

the SNPs are in LD. However, given that the correlation matrix (LD) between SNP genotypes/Z-

scores ( ) can be estimated from the reference population, the observations can be transformed to 

independence by left multiplying  and  with  -1/2 (i.e. Cholesky transformation. Under a full rank 

transformation, Invariance Principle of MLE (21) surmises that testing  is equivalent to 

testing , . To assess its significance, we can use the correlation (regression) 

test of transformed data based on  (the sample estimate of ): 

  or,  ( . 

The rest of the paper deals chiefly with the above described single causal variant QCAT. In 

this form, QCAT should cover a large number of practical scenarios. However, its extension to 

multiple causal SNP scenario is straightforward, as described in the first section of the Supplementary 

Material (SM). 
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Applying QCAT to whole genome 

In addition to testing for causality SNPs in a particular genomic region, QCAT software also 

offers sequential QCAT procedure automatically testing variants through the whole human genome by 

using a sliding window strategy, as adopted in our other summary statistic based tools (22;23). For 

each iteration, QCAT determines non-overlapping test window with a fixed size (1 Kb by default) and 

extended window including the test window along with fixed-size (150 Kb by default) upstream and 

downstream regions. Then, QCAT tests for causality SNPs within the test window using Z-scores of 

SNPs in the extended window and LD matrix estimated from homologous reference SNP genotypes.           

 

Extension to cosmopolitan cohorts 

 QCAT performs best when the LD structures of both study cohort and external reference 

population are identical. To make it applicable to summary data from mixed ethnicity cohorts, similar 

to our DISTMIX and JEPEGMIX tools (18;19), we estimate the cohort LD ( ) as the mixture of the LDs 

of the reference panel ethnicities using user-provided/estimated ethnicity proportions. In this paper we 

will refer to such version as QCAT for MIXed ethnicity cohorts (QCATMIX).         

 

Type I error rates 

We assessed the Type I error rates of the proposed method for both homogeneous and 

mixed ethnicity cohorts under H0 of no association between phenotype and SNP genotypes. For each 

scenario we performed 100 simulations of 10,000 individuals which were sampled with replacement 

from 1KG panel (24)  i) European cohort for the homogeneous scenario and ii) all subjects for the 

mixed ethnicity scenario. Genotype data for each such cohort was analyzed only for SNPs with minor 

allele frequency >1% in a randomly selected autosomal region with a length of 50 Kb. We simulated 

the phenotype data using a random standard normal distribution. Summary statistics (two-sided Z-

scores) were obtained by simply regressing the simulated SNP genotypes on the phenotypes. 

Simulated data sets were analyzed using both QCATMIX and the commonly used regression 

association method. Since CAVIAR, CAVIARBF and PAINTOR are designed for posterior probability 

prediction and not statistical testing, we are not able to assess their size of the test via such 

simulations. 

 

Comparison with other fine-mapping methods 

 For various patterns and strength of LD, we performed 1,000 simulations to compare the 

performance in fine mapping of QCAT(MIX), CAVIARBF (C-BF), as a representative of posterior 

probabilities methods, and GCTA-COJO (denoted simply as COJO). While COJO does not really infer 

causality, it is used as an illustration of the conditional approach. For each simulation, we simulate Z-

scores for 100 SNPs assuming that one of the two in the middle, denoted as k, is the causal marker, 

which has a Z-score of . Given that this SNP was assumed causal, the Z-
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score for the -th SNP is obtained simply as , where  is the nuisance correlation between 

the genotypes for the two SNPs. We simulated four patterns of LD between the 100 Z-scores: i) 

autoregressive (AR), , ii) exchangeable (EX) , iii) half-AR, , and iv) block 

AR, i.e. SNPs form 10 block of 10 SNPs and their correlations are EX within block and AR between 

blocks. As strength of the LD in the above LD patterns we investigated . Besides 

analyzing all simulated SNP set, to simulate the uncatalogued causal variants, we also analyzed just 

non-causal SNPs. Under the alternative hypothesis experiment, we also compute the LD between 

QCAT Z-scores and contrast them to association.    

 

Practical application 

For a more empirical performance assessment, we used summary data sets for smoking 

quantity (number of cigarettes smoked per day) from TAG study (TAG CPD) (20). This study yielded 

the well known, large signal in nicotinic receptor gene cluster (15q25.1). For QCAT we thus used 

summary statistics for SNPs from this region with a window size of 250Kbp. 

 

RESULTS 

 As C-BF and related methods are all just tools for predicting the posterior probabilities of 

causality (under simplifying assumptions), type I error rates are applicable only to QCAT and 

association methods. Similar to our previous methods, e.g. DIST/DISTMIX and JEPEG/JEPEGMIX, 

QCAT is somewhat conservative (Fig. 1). However, we expect its conservativeness to diminish with 

an increase in reference population panel size.  

 The alternative hypothesis simulations estimated the probability of detecting any signal at 

“genome-wide” significant levels, i.e. for QCAT and COJO at a genome-wide type I error of  and, 

for C-BF, at a probability of a causal variant (in the set of 100 SNPs) >1- 100x5 10-8. The only 

exception to the above rule is for the scenario when the causal SNP is measured, in which QCAT 

conservatively tests only the causal marker. Simulations show (Fig. 2) that when the causal SNP is 

not measured (Causal=OUT), the probability of detecting at least one causal SNP is rather high for 

both CAVIARBF and COJO (Fig. 2 dashed lines), often even for a genome-wide nonsignificant signal 

at the causal SNP ( ). The probability of detection for C-BF and COJO is little changed between 

the scenarios of the causal SNP being in (Fig 2 solid lines) or out. However, for QCAT, the probability 

of detecting the exact causal SNP increases when it is measured (solid lines) as opposed to detecting 

at least one causal marker in the region when the causal SNP is not measured (dashed lines). The 

increase is substantial for LD structures other than AR.   

The LD of QCAT statistics and neighboring SNPs is very different from the LD of association 

statistics (Fig. 3). The LD of QCAT statistics decays much faster. The decay rate contrast is especially 

notable for EX models and/or larger levels of LD between neighboring markers ( ). 

The practical application to SNPs presented in the TAG study (Fig. 3) shows that while the 

best association signal in this GWAS is strong, and tools like CAVIARBF predicting it as being almost 

surely causal, the QCAT signal is not significant (albeit reasonably close). While further investigations 
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are necessary and underway, this leads to a very nuanced initial suggestion that either i) the causal 

variant is not measured in the study, i.e. researchers need to look among non-GWAS/non-imputed 

variants, or ii) the MOI of the causal variant is not additive. 

 

DISCUSSION 

We propose a novel tool for fine-mapping which, unlike to existing methods, i) statistically 

tests variants (as opposed to just predicting the posterior probability) for causality and ii) does not 

need to assume that the causal variants are measured/catalogued. The test is based on the 

observation that a causal variant with a significant signal induces a correlation between Z-scores of 

measured SNPs and their correlation to the causal variant. The method maintains type I error at or 

below nominal levels.  

To avoid spurious results, similar to our other software, DISTMIX and JEPEGMIX, the 

correlation matrix is computed from the reference panel using a ridge estimate.  This results in QCAT 

being rather conservative. However, the ridge penalty is sample size dependent and, with an 

expected substantial increase in sample size for future reference panels, it will become much smaller. 

Thus, with such reference panels, QCAT is likely to be only slightly conservative.       

While QCAT, due to its testing approach, shows better performance than other competitors, 

simulations under alternative underscore the many possible pitfalls of statistical fine-mapping 

procedures. At large LD levels between SNPs, even QCAT cannot detect the difference between 

causal and non-causal SNPs. Thus, fine-mapping methods seem to be most useful only when applied 

to SNPs/components in moderate LD. To achieve this in practical applications of dense SNP data 

might be achieved by a four step process. First, cluster SNP at a moderate level (e.g. ). 

Second, take as representative for the cluster the first principal component of SNPs in the cluster, 

possibly using weights dependent on functional information. Third, to find clusters harboring causal 

mutations, apply fine-mapping methods like QCAT to cluster representatives. Fourth, in-vivo 

validation means, e.g. apply CRISP(R) mutations in cell cultures, to determine which variant in the 

cluster is causal.              

In its present form, QCAT performs only the univariate test for causality and does not use 

SNP functional information. Conceptually, its extension to multiple variants should be simple (see SM). 

Similarly, it should reasonably straightforward to extend the method to use pleiotropy to enhance the 

test, e.g. along the lines of Pickrell et al (25). However, a through inclusion of functional information 

might be substantially more involved. Until such approach is available, researchers might compute 

variant weights based on functional information and use them, along with QCAT p-values, in a 

weighted FDR procedure. 

Similar to competing tools, the current QCAT version has the main limitation of assuming an 

additive MOI. Thus, a non-significant test of causality can be, as seen from the practical application, 

due to the variant not being causal or the MOI being far from additive. Therefore, great care should be 

taken in interpreting QCAT results. However, in future versions of QCAT we plan to test more general 
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MOIs. This might be achieved by a data dependent estimation of where the best fitting model sits in 

the continuum between the dominant and recessive (even over-dominant) MOIs.   

Due to the LD of QCAT tests decaying much faster than their association counterpart, QCAT 

statistics are prime candidates for constructing multi-variant statistics. Interesting instances of such 

statistics might be enrichment type tests such as gene-, pathway-, tissue mark-level etc. However, 

given that the LD pattern of QCAT statistics is rather complex, constructing multivariate statistics 

could be rather laborious.  
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SOFTWARE 

The QCAT software is publically available at: http://dleelab.github.io/qcat/.  

 

TABLE AND FIGURES LEGENDS 

 

Figure 1. Type I error rate for association (circle) and QCAT (triangle). 
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Figure 2. Probability of detecting a causal signal for various methods when the true causal SNP is 

measured (solid line) and unmeasured (dashed line). 

 

Figure 3. LD for association and QCAT statistics (from 100 SNP window) for neighboring SNPs. 
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Figure 4. TAG association (red) and QCAT (green) pvalues by position (bp) for the nicotinic receptor 

gene cluster (15q25.1). 
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Supplementary Material 

 
1 Extension to multiple causal variants  
 
While the paper deals with single causal SNPs (which should covers a large number of practical 
scenarios), QCAT can be easily extended to multiple, reasonably close causal variants. (In 
practice these causal SNPs might be detected heuristically, for instance, one-at-a-time by 
applying the single SNP QCAT.) Thus, when there are interesting signals for SNPs that are 
relatively close, testing all these SNPs simultaneously might be useful. To derive a multi SNP 

QCAT, with the notation from the previous section, let the 𝑘 SNPs, 𝑐1, ..., 𝑐𝑘, be the indices for 

causal SNPs. Then we can write 𝐸(𝑍i| 𝑍𝑐1
, … 𝑍𝑐𝑘

) = ∑ 𝜌c,i 𝑍c
𝑐𝑘
c=𝑐1

 (2). I.e., we can test whether 

𝛴−1/2𝒁  is independent from any linear combination of 𝜮−
𝟏

𝟐{ 𝝆𝟏, … , 𝝆𝒌 }. This is the ubiquitous test 

of all slopes being zero in the simple multiple regression of  𝛴−1/2𝒁  on 𝜮−
𝟏

𝟐{𝝆𝟏, … , 𝝆𝒌 } 
(Anderson, 2003). The test for zero slopes is asymptotically distributed as a χ2 with 𝑘 df 

(𝑖. 𝑒.  𝜒2
𝑘).  

 The regression approach for multiple variant QCAT test also opens the possibility of 
treating the prediction of causal variants as a simple model selection for classical linear models. 
For instance, a forward model selection, similar to step.lm from R, within a sliding window can 
be employed for predicting the likely causal SNPs. Given that the number of causal SNPs in a 
window is likely to be small, such an approach will be very computationally efficient by not 
testing sets with a large number of SNPs. 
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