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 23 

ABSTRACT 24 

Here, we present GAVIN, a new method that delivers accurate classification of variants for next-25 

generation sequencing molecular diagnostics. It is based on gene-specific calibrations of allele 26 

frequencies (from the ExAC database), effect impact (using SnpEff) and estimated 27 

deleteriousness (CADD scores) for >3,000 genes. In a benchmark on 18 clinical gene sets, we 28 
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achieved a sensitivity of 91.6%, with a specificity of 78.2%. This accuracy was unmatched by 12 29 

other tools we tested. We provide GAVIN as an online MOLGENIS service to annotate VCF files, 30 

and as open source executable for use in bioinformatic pipelines. It can be found at 31 

http://molgenis.org/gavin. 32 

 33 

KEYWORDS 34 

clinical next-generation sequencing, variant classification, automated protocol, gene-specific 35 

calibration, allele frequency, protein impact, pathogenicity prediction 36 

 37 

BACKGROUND 38 

Only a few years ago, the high costs and technological challenges of whole exome and whole 39 

genome sequencing were limiting their application. Today, the practice of human genome 40 

sequencing has become routine even within the healthcare sector. This is leading to new and 41 

daunting challenges for clinical and laboratory geneticists[1]. Interpreting the thousands of 42 

variations observed in DNA and determining which are pathogenic and which are benign is still 43 

difficult and time-consuming, even when variants are prioritized by state-of-the-art in silico 44 

prediction tools and heuristic filters[2]. Using the current, largely manual, variant classification 45 

protocols, it is not feasible to assess the thousands of genomes per year now produced in a 46 

single hospital. It is the challenge of variant assessment which now impedes the effective uptake 47 

of next-generation sequencing into routine medical practice. 48 

The recently introduced CADD[3] scores are a promising alternative[4]. These are 49 

calculated on the output of multiple in silico tools in combination with other genomic features. 50 

They trained a computer model on variants that have either been under long-term selective 51 

evolutionary pressure or none at all. The result was an estimation of deleteriousness for variants 52 

in the human genome, whether already observed or not. It has been shown to be a strong and 53 

versatile predictor for pathogenicity[3]. These scores may be used to define a classifier that labels 54 

a variant with a CADD score of >15 as probably pathogenic and <15 as benign, as suggested by 55 

the CADD authors[5]. Unfortunately, clinicians and laboratories cannot rely on this single 56 
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threshold approach. We have shown that individual genes differ in their cut-off thresholds for what 57 

should be considered the optimal boundary between pathogenic or benign[4]. This issue has 58 

been partly addressed by MSC[6] (Mutation Significance Cutoff), which provides gene-based 59 

CADD cut-off values to remove inconsequential variants safely from sequencing data. While MSC 60 

aims to quickly and reliably reduce the number of benign variants left to interpret, it was not 61 

developed to detect/classify pathogenic variants. 62 

The challenge is thus to find robust algorithms that classify both pathogenic and benign 63 

variants accurately and that fit into existing best practice, diagnostic filtering protocols[7]. 64 

Implementing such tools is not trivial because genes have different levels of tolerance to various 65 

classes of variants that may be considered harmful[8]. In addition, the pathogenicity estimates for 66 

benign variants are intrinsically lower because these are more common and of less severe 67 

consequence on protein transcription. Comparing the prediction score distributions of pathogenic 68 

variants with those of typical benign variants is therefore biased and questionable. Using such an 69 

approach means it will be unclear how well a predictor truly performs if a benign variant shares 70 

many properties with known pathogenic variants. Here, we present GAVIN (Gene-Aware Variant 71 

INterpretation), a new method that addresses these issues by gene-specific calibrations on 72 

closely matched sets of variants. GAVIN delivers accurate and reliable automated classification of 73 

variants for clinical application. 74 

 75 

RESULTS 76 

 77 

Development of GAVIN 78 

GAVIN classifies variants as Benign, Pathogenic or a Variant of Uncertain Significance (VUS). It 79 

considers ExAC[8] minor allele frequency, SnpEff[9] impact and CADD score using gene-specific 80 

thresholds. For each gene, we ascertained ExAC allele frequencies and effect impact 81 

distributions of variants described in ClinVar (November 2015 release) [10] as pathogenic or likely 82 

pathogenic. From the same genes we selected ExAC variants that were not present in ClinVar as 83 

a benign reference set. We stratified this benign set to match the pathogenic set with respect to 84 
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the effect impact distribution and minor allele frequencies (MAF). Using these comparable variant 85 

sets we calculated gene-specific mean values for CADD scores and minor allele frequencies  as 86 

well as 95th percentile sensitivity/specificity thresholds for both benign and pathogenic variants. 87 

We used fixed genome-wide classification thresholds as a fall-back strategy based on CADD 88 

scores < 15 for benign and > 15 for pathogenic[5] and on a MAF threshold of > 0.00474, which 89 

was the mean of all gene-specific pathogenic 95th percentile thresholds. This allowed 90 

classification when insufficient variant training data were available to allow for gene-specific 91 

calibrations, or when the gene-specific rules failed to classify a variant. Based on the gene 92 

calibrations we then implemented GAVIN, which can be used online or via commandline (see 93 

http://molgenis.org/gavin) to perform variant classification. 94 

 95 

Performance benchmark 96 

To test the robustness of GAVIN, we evaluated its performance using six benchmark variant 97 

classification sets from VariBench[11], MutationTaster2[12], ClinVar (only recently added variants 98 

that were not used for calibrating GAVIN), and a high-quality variant classification list from the 99 

University Medical Center Groningen (UMCG) genome diagnostics laboratory. These sets and 100 

the origins of their variants and classifications are described in Table 1. The combined set 101 

comprises 25,765 variants (17,063 benign, 8,702 pathogenic). All variants were annotated by 102 

SnpEff, ExAC and CADD prior to classification by GAVIN. To assess the clinical relevance of our 103 

method, we stratified the combined set into clinically relevant variant subsets based on organ-104 

system specific genes. We formed 19 subset panels such as Cardiovascular, Dermatologic, and 105 

Oncologic based on the gene-associated physical manifestation categories from Clinical 106 

Genomics Database[13]. A total of 11,679 out of 25,765 variants were not linked to clinically 107 

characterized genes and formed a separate panel (see Table 2 for an overview). In addition, we 108 

assessed the performance of GAVIN in compared to 12 common in silico tools for pathogenicity 109 

prediction: MSC (using two different settings), CADD, SIFT[14], PolyPhen2[15], PROVEAN[16], 110 

Condel[17], PON-P2[18], PredictSNP2[19], FATHMM-MKL[20], GWAVA[21], FunSeq[22] and 111 

DANN[23]. 112 
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Across all test sets, GAVIN achieved a median sensitivity of 91.6% and a median 113 

specificity of 78.2%. Other tools with >90% sensitivity were CADD (93.6%, specificity 57.1%) and 114 

MSC (97.1%, specificity 25.7%). The only other tool with >70% specificity was PredictSNP2 115 

(70.6%, sensitivity 66.8%) (see Table 3 for an overview of tool performance). In all the clinical 116 

gene sets GAVIN scored >90% sensitivity, including >93% for Cardiovascular, Biochemical, 117 

Obstetric and Dermatologic genes. The non-clinical genes scored 71.3%. The specificity in 118 

clinical subsets ranged from 71.6% for Endocrine to 83.8% for Dental. Non-clinical gene variants 119 

were predicted at 70.2% specificity. See Supplementary Table 1 for detailed results. 120 

We illustrated the practical implications of classification sensitivity and specificity in Table 121 

4. Here, 90%/80% represents the performance of GAVIN, 90%/60% matches CADD, and 122 

70%/80% or 70%/60% can be considered averages of other methods. In a hypothetical example 123 

where 110 variants are being tested (100 benign and 10 pathogenic), the difference in predictive 124 

value between the performance opposites is over two-fold (31% positive predictive value (PPV) 125 

for 90/80% and 15% PPV for 70/60%). 126 

 127 

Added value of gene-specific calibration 128 

We then investigated the added value of using gene-specific thresholds on classification 129 

performance relative to using genome-wide thresholds. We bootstrapped the performance on 130 

10,000 random samples of 100 benign and 100 pathogenic variants. These variants were drawn 131 

from the three groups of genes  described in Materials & Methods: (1) genes for which CADD 132 

was significantly predictive for pathogenicity (n = 520), (2) genes where CADD was not 133 

significantly predictive (n = 660), and (3) genes with scarce variant data available for calibration 134 

(n = 737). For each of these sets we compared the use of gene-specific CADD and MAF 135 

classification thresholds with that of genome-wide filtering rules (CADD score < 15 and MAF > 136 

0.00474 for benign, otherwise classify as pathogenic). 137 

We observed the highest accuracy on genes for which CADD had significant predictive 138 

value and for the gene-specific classification method (median accuracy = 87.5%); this was 139 

significantly higher than using the genome-wide method for these same genes (median accuracy 140 
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= 85%, Mann-Whitney U test p-value < 2.2e-16). For genes for which CADD had less predictive 141 

value we found a lower overall performance, but still reached a significantly better result using the 142 

gene-specific approach (median accuracy = 84.5% versus genome-wide 82%, p-value < 2.2e-143 

16). Lastly, the worst performance was seen for variants in genes with scarce training data 144 

available. The gene-specific performance, however, was still significantly better than using 145 

genome-wide thresholds (median accuracy = 83.5% and 81% respectively, p-value = 2.2e-16). 146 

See Figure 2. 147 

 148 

DISCUSSION 149 

We have developed GAVIN, a method for automated variant classification using gene-specific 150 

calibration of classification thresholds for benign and pathogenic variants. 151 

 Our results show that GAVIN is a powerful classifier with consistently high performance in 152 

clinically relevant genes. The robustness of our method arises from a calibration strategy that first 153 

corrects for calibration bias between benign and pathogenic variants, in terms of consequence 154 

and rarity, before calculating the classification thresholds. A comprehensive benchmark 155 

demonstrates a unique combination of high sensitivity (>90%) and high specificity (>70%) for 156 

variants in genes related to different organ systems. This is a significant improvement over 157 

existing tools that tend to achieve either a high sensitivity (CADD, MSC) or a high specificity 158 

(PredictSNP2). A high sensitivity is crucial for clinical interpretation because pathogenic variants 159 

should not be falsely discarded. In addition, having a higher specificity means that the results will 160 

be far less ‘polluted’ with false-positives and thus less risk of patients being given a wrong 161 

molecular diagnosis. GAVIN decreases false-positives by about 20% compared to using CADD 162 

for the same purpose, thereby reducing the interpretation time considerably. The difference 163 

between using a high and low performance method can be dramatic in practice. In a hypothetical 164 

example, GAVIN would make downstream variant interpretation twice as effective as a low 165 

performance method, with more sensitive detection of pathogenic variants. 166 

Even though an optimal combination of sensitivity and specificity may be favorable in 167 

general terms, there may still be a need for tools that perform differently. The MSC gene-specific 168 
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thresholds based on HGMD[24] at 99% confidence interval show a very high sensitivity (97.1%), 169 

but at the expense of a very low specificity (25.7%). Such low specificity thresholds will pick up 170 

almost all the pathogenic variants with scores exceeding gene thresholds. This allows safe 171 

removal (<3% error) of benign variants that fall below these thresholds, which was their authors’ 172 

aim. However, this tool cannot detect pathogenic variants due its low specificity. Other tools, such 173 

as PON-P2, may show a relatively low performance, but not necessarily because of true errors. 174 

Such tools may simply be very ‘picky’ and only return a classification when the verdict carries 175 

high confidence. If we ignore the variants that PON-P2 did not classify, and only consider how 176 

many of the variants that it did classify were correct, we find a positive predictive value of 96%, 177 

and a negative predictive value of 94%. Thus, while this tool might not be useful for exome 178 

screening because too many pathogenic variants would be lost, it can still be an excellent choice 179 

for further investigation of interesting variants. We would therefore emphasize that appropriate 180 

tools should be selected depending on the question or analysis protocol used and by taking their 181 

strengths and weaknesses into account. 182 

Not surprisingly, we could confirm that the use of gene-specific thresholds instead of 183 

genome-wide thresholds led to a consistent and significant improvement of classification 184 

performance. This shows the added value of our strategy. Overall performance was slightly lower 185 

in genes for which CADD has limited predictive value, and even lower in genes with few ‘gold 186 

standard’ pathogenicity data available. Evaluating variants in uncharacterized genes is rare in 187 

clinical diagnostics, although it may occur when exome sequencing is aimed at solving complex 188 

phenotypes or undiagnosed cases. Nevertheless, GAVIN is likely to improve continuously in an 189 

increasing number of genes, propelled by the speed at which pathogenic variants are now being 190 

reported. 191 

With GAVIN we were also able to demonstrate the residual power of CADD scores as a 192 

predictor for pathogenicity on a gene-by-gene basis, revealing that the scores are informative for 193 

many genes (these results can be accessed at http://molgenis.org/gavin). There are several 194 

possible explanations for potential non-informativity of CADD scores. It may have bias towards 195 

the in silico tools and sources it was trained on, limiting their predictiveness for certain genomic 196 
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regions or disease mechanisms[25]. Furthermore, calibration of pathogenic variants could be 197 

difficult in genes with high damage tolerance, i.e. having many missense or loss-of-function 198 

mutations[26]. In addition, calibration may be impaired by false input signals, such as an incorrect 199 

pathogenic classification in ClinVar or inclusion of disease cohorts in large databases such as 200 

ExAC could misrepresent allele frequencies[27]. Lastly, pathogenic variants could have a low 201 

penetrance or their effect mitigated by genetic modifiers, causing high deleteriousness to be 202 

tolerated in the general population against expectations[28]. 203 

The field of clinical genomics is now moving towards interpretation of non-coding disease 204 

variants (NCVs) identified by whole-genome sequencing[29]. A number of recently introduced 205 

metrics, including EIGEN[30], FATHMM-MKL, DeepSEA[31], and GWAVA, specialize in 206 

predicting the functional effects of non-coding sequence variation. When a pathogenic NCV 207 

reference set of reasonable quantity becomes available, a calibration strategy as described here 208 

will be essential to be able to use these metrics effectively in whole-genome diagnostics. 209 

 210 

CONCLUSIONS 211 

GAVIN provides an automated decision-support protocol for classifying variants, which will 212 

continue to improve in scope and precision as more data is publicly shared by genome diagnostic 213 

laboratories. Our approach bridges the gap between estimates of genome-wide and population-214 

wide variant pathogenicity and contributes to their practical usefulness for interpreting clinical 215 

variants in specific patient populations. Databases such as ClinVar contain a wealth of implicit 216 

rules now used manually by human experts to classify variants. These rules are deduced and 217 

employed by GAVIN to classify variants that have not been seen before. 218 

We envision GAVIN accelerating NGS diagnostics and becoming particularly beneficial 219 

as a powerful (clinical) exome screening tool. It can be used to quickly and effectively detect over 220 

90% of pathogenic variants in a given data set and to present these results with an 221 

unprecedented small number of false-positives. It may especially serve laboratories that lack the 222 

resources necessary to perform reliable and large-scale manual variant interpretation for their 223 

patients, and spur the development of more advanced gene-specific classification methods. We 224 
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provide GAVIN as an online MOLGENIS[32] web service to browse gene calibration results and 225 

annotate VCF files, and as a commandline executable including open source code for use in 226 

bioinformatic pipelines. GAVIN can be found at http://molgenis.org/gavin. 227 

 228 

METHODS 229 

 230 

Calibration of gene-specific thresholds 231 

We downloaded ClinVar (variant_summary.txt.gz from ClinVar FTP, last modified date: 05/11/15) 232 

and selected GRCh37 variants that contained the word “pathogenic” in their clinical significance. 233 

These variants were matched against the ClinVar VCF release (clinvar.vcf.gz, last modified date: 234 

01/10/15) using RS (Reference SNP) identifiers in order to resolve missing indel notations. On 235 

the resulting VCF, we ran SnpEff version 4.1L with these settings: hg19 -noStats -noLog -lof -236 

canon -ud 0. As a benign reference set, we selected variants from ExAC (release 0.3, all sites) 237 

from the same genic regions with +/- 100 bases of padding on each side to capture more variants 238 

residing on the same exon. 239 

We first determined the thresholds for gene-specific pathogenic allele frequency by taking 240 

the ExAC allele frequency of each pathogenic variant, or assigning zero if the variant was not 241 

present in ExAC, and calculating the 95th percentile value per gene using the R7 method from 242 

Apache Commons Math version 3.5. We filtered the set of benign variants with this threshold to 243 

retain only variants that were rare enough to fall into the pathogenic frequency range. 244 

Following this step, the pathogenic impact distribution was calculated as the relative 245 

proportion of the generalized effect impact categories, as annotated by SnpEff on the pathogenic 246 

variants. The same calculation was performed for the benign variants using the variant Ensembl 247 

VEP[33] consequence types already present in ExAC. To facilitate this, we defined a trivial 248 

mapping of VEP consequences types (being equivalent to SnpEff consequences) to SnpEff 249 

impact categories. The benign variants were subsequently downsized to match the impact 250 

distribution of the pathogenic variants. 251 
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For instance, in the case of 407 pathogenic MYH7 variants, we found a pathogenic allele 252 

frequency threshold of 9.494e-05, and an impact distribution of 5.41% HIGH, 77.4% 253 

MODERATE, 17.2% LOW and 0% MODIFIER. We defined a matching set of benign variants by 254 

retrieving 1,799 MYH7 variants from ExAC (impact distribution: 2.1% HIGH, 23.52% 255 

MODERATE, 32.07% LOW, 42.32% MODIFIER), from which we excluded known ClinVar 256 

pathogenic variants (n = 99), variants above the AF threshold (n = 377), and removed 257 

interspersed variants using a non-random ‘step over’ algorithm until the impact distribution was 258 

equalized (n = 862). We thus reached an equalized set of 461 variants. This process was 259 

repeated for 3,055 genes. 260 

We then obtained the CADD scores for all variants and tested whether there was a 261 

significant difference in scores between the sets of pathogenic and benign variants for each gene, 262 

using a Mann-Whitney U test. Per gene we determined the mean CADD score for each group, 263 

and also the 95th percentile sensitivity threshold (detection of most pathogenic variants while 264 

accepting false-positives) and 95th percentile specificity threshold (detection of most benign 265 

variants while accepting false-negatives), using the Percentile R7 function. All statistics were 266 

done with Apache Commons Math version 3.5. 267 

On average, CADD scores were informative of pathogenicity. The mean benign variant 268 

CADD score across all genes was 23.68, while the mean pathogenic variant CADD score was 269 

28.45, a mean difference of 4.77 (σ = 4.69). Of 3,055 genes that underwent the calibration 270 

process, we found 520 “CADD predictive” genes that had a significantly higher CADD score for 271 

pathogenic variants than for benign variants (Mann-Whitney U test, p-value <0.05). Interestingly, 272 

we also found 660 “CADD less predictive” genes, for which there was no proven difference 273 

between benign and pathogenic variants (p-value >0.05 despite having ≥ 5 pathogenic and ≥5 274 

benign variants in the gene). For 737 genes there was very little calibration data available (<5 275 

pathogenic or <5 benign variants), resulting in no significant difference (p-value >0.05) between 276 

CADD scores of pathogenic and benign variants. We found 309 genes for which effect impact 277 

alone was predictive, meaning that a certain impact category was unique for pathogenic variants 278 

compared to benign variants. For instance, when observing HIGH impact pathogenic variants 279 
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(frame shift, stopgain, etc.) for a given gene, whereas benign variants only reached MODERATE 280 

impact (missense, inframe insertion, etc.). No further CADD calibration was performed on these 281 

genes. See http://www.molgenis.org/gavin for a full table of gene calibration outcomes. 282 

 283 

Variant sets for benchmarking 284 

We obtained six variant sets that had been classified by human experts. These data sets were 285 

used to benchmark the in silico variant pathogenicity prediction tools mentioned in this paper. 286 

Variants from the original sets may sometimes be lost due to conversion of cDNA/HGVS notation 287 

to VCF. 288 

The VariBench protein tolerance data set 7 (http://structure.bmc.lu.se/VariBench/) 289 

contains disease-causing missense variations from the PhenCode[34] database, IDbases[35], 290 

and 18 individual LSDBs[11]. The training set we used contained 17,490 variants, of which 291 

11,347 were benign and 6,143 pathogenic. The test set contained 1,887 variants, of which 1,377 292 

were benign and 510 pathogenic. We used both the training set and test set as benchmarking 293 

sets. 294 

The MutationTaster2[12] test set contains known disease mutations from HGMD[24] 295 

Professional and putatively harmless polymorphisms from 1000 Genomes. It is available at 296 

http://www.mutationtaster.org/info/Comparison_20130328_with_results_ClinVar.html. This set 297 

contains 1,355 variants, of which 1,194 are benign and 161 pathogenic. 298 

We selected 1,688 pathogenic variants from ClinVar that were added between November 299 

2015 and February 2016 as an additional benchmarking set, since our method was based on the 300 

November 2015 release of ClinVar. We supplemented this set with a random selection of 1,668 301 

benign variants from ClinVar, yielding a total of 3,356 variants. 302 

We obtained an in-house list of 2,359 variants that had been classified by molecular and 303 

clinical geneticists at the University Medical Center Groningen. These variants belong to patients 304 

seen in the context of various disorders: cardiomyopathies, epilepsy, dystonia, preconception 305 

carrier screening, and dermatology. Variants were analyzed according to Dutch medical center 306 

guidelines[36] for variant interpretation, using Cartagenia Bench LabTM (Agilent Technologies) 307 
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and Alamut® software (Interactive Biosoftware) by evaluating in-house databases, known 308 

population databases (1000G[37], ExAC, ESP6500 at http://evs.gs.washington.edu/EVS/, 309 

GoNL[38]), functional effect and literature searches. Any ClinVar variants included in the 310 

November 2015 release were removed from this set to prevent circular reasoning, resulting in a 311 

total of 1,512 variants, with 1,176 benign/likely benign (merged as Benign), 162 VUS, and 174 312 

pathogenic/likely pathogenic (merged as Pathogenic). 313 

 From the UMCG diagnostics laboratory we also obtained a list of 607 variants seen in the 314 

context of familial cancers. These were interpreted by a medical doctor according to ACMG 315 

guidelines[7]. We removed any ClinVar variants (November 2015 release), resulting in 395 316 

variants, with 301 benign/likely benign (merged as Benign), 68 VUS and 26 likely 317 

pathogenic/pathogenic (merged as Pathogenic). 318 

 319 

Variant data processing and preparation 320 

We used Ensembl VEP (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP/) to convert 321 

cDNA/HGVS notations to VCF format. Newly introduced N-notated reference bases were 322 

replaced with the appropriate GRCh37 base, and alleles were trimmed where needed (e.g. 323 

“TA/TTA” to “T/TT”). We annotated with SnpEff (version 4.2) using the following settings: hg19 -324 

noStats -noLog -lof -canon -ud 0. CADD scores (version 1.3) were added by running the variants 325 

through the CADD webservice (available at http://cadd.gs.washington.edu/score). ExAC (release 326 

0.3) allele frequencies were added with MOLGENIS annotator (release 1.16.2). We also merged 327 

all benchmarking sets into a combined file with 25,995 variants (of which 25,765 classified as 328 

benign, likely benign, likely pathogenic or pathogenic) for submission to various online in silico 329 

prediction tools. 330 

 331 

Execution of in silico predictors 332 

The combined set of 25,765 variants was classified by the in silico variant pathogenicity 333 

predictors (MSC, CADD, SIFT, PolyPhen2, PROVEAN, Condel, PON-P2, PredictSNP2, 334 

FATHMM, GWAVA, FunSeq, DANN). The output of each tool was loaded into a program that 335 
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compared the observed output to the expected classification and which then calculated 336 

performance metrics such as sensitivity and specificity. The tools that we evaluated and the web 337 

addresses used can be found in Supplementary Table 2. We executed PROVEAN and SIFT, for 338 

which the output was reduced by retaining the following columns: “INPUT”, “PROVEAN 339 

PREDICTION (cut-off = -2.5)” and “SIFT PREDICTION (cut-off = 0.05)”. For PONP-2, the output 340 

was left as-is. The Mutation Significance Cutoff (MSC) thresholds are configurable; we 341 

downloaded the ClinVar-based thresholds for CADD 1.3 at 95% confidence interval, comparable 342 

to our method, as well as HGMD-based thresholds at 99% confidence interval, the default setting. 343 

Variants below the gene-specific thresholds were considered benign, and above the threshold 344 

pathogenic. We obtained CADD scores of version 1.3. Following the suggestion of the CADD 345 

authors, scores of variants below a threshold of 15 were considered benign, above this threshold 346 

pathogenic. The output of Condel was reduced by retaining the following columns: “CHR”, 347 

”START”, ”SYMBOL”, ”REF”, ”ALT”, ”MA”, ”FATHMM”, ”CONDEL”, ”CONDEL_LABEL”. After 348 

running PolyPhen2, its output was reduced by retaining the positional information 349 

(“chr2:220285283|CG”) and the “prediction” column. Finally, we executed PredictSNP2, which 350 

contains the output from multiple tools. From the output VCF, we used the INFO fields “PSNPE”, 351 

“FATE”, “GWAVAE”, “DANNE” and “FUNE” for the pathogenicity estimation outcomes according 352 

to the PredictSNP protocol for PredictSNP2 consensus, FATHMM, GWAVA, DANN and FunSeq, 353 

respectively. 354 

 355 

Stratification of variants using Clinical Genomics Database 356 

We downloaded Clinical Genomics Database (CGD; the .tsv.gz version on 1 June 2016 from 357 

http://research.nhgri.nih.gov/CGD/download/). A Java program evaluated each variant in the full 358 

set of 25,765 variants and retrieved their associate gene symbols as annotated by SnpEff. We 359 

matched the gene symbols to the genes present in CGD and retrieved the corresponding physical 360 

manifestation categories. Variants were then written out to separate files for each manifestation 361 

category (cardiovascular, craniofacial, renal, etc.). This means a variant may be output into 362 

multiple files if its gene was linked to multiple manifestation categories. However, we did prevent 363 
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variants from being written out twice to the same file in the case of overlapping genes in the same 364 

manifestation categories. We output a variant into the “NotInCGD” file only if it was not located in 365 

any gene present in CGD. 366 

 367 

Implementation 368 

GAVIN was implemented using Java 1.8 and MOLGENIS[32] 1.16 (http://molgenis.org). Source 369 

code with tool implementation details can be found at https://github.com/molgenis/gavin. All 370 

benchmarking and bootstrapping tools, as well as all data processing and calibration tools, can 371 

also be found in this source code repository. 372 

 373 

Binary classification metrics 374 

Prediction tools may classify variants as benign or pathogenic, but may also fail to reach a 375 

classification or classify a variant as VUS. Because of these three outcome states, binary 376 

classification metrics must be used with caution. According to standard definitions of ‘sensitivity’, 377 

such as the following example: “Recall or Sensitivity (as it is called in Psychology) is the 378 

proportion of Real Positive cases that are correctly Predicted Positive” (source: 379 

https://csem.flinders.edu.au/research/techreps/SIE07001.pdf), we define sensitivity as the 380 

number of detected pathogenic variants (true-positives) over the total number of pathogenic 381 

variants, which includes true-positives, false-negatives (pathogenic variants misclassified as 382 

benign), and pathogenic variants that were otherwise ‘missed’, i.e. classified as VUS or not 383 

classified at all. Therefore, Sensitivity = TruePositive/(TruePositive + False-Negative + 384 

MissedPositive). We applied the same definition for specificity, and define it as: Specificity = 385 

TrueNegative/(TrueNegative + FalsePositive + MissedNegative). Following this line, accuracy is 386 

then defined as (TP + TN)/(TP + TN + FP + FN + MissedPositive + MissedNegative). 387 

 388 
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 536 

Figure 1. Performance of GAVIN and other tools across different clinical gene sets. Prediction 537 

quality is measured as sensitivity and specificity, i.e. the fraction of pathogenic variants correctly 538 

identified and the fraction of mistakes made while doing so. 539 

 540 

 541 
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Figure 2. Comparison of gene-specific classification thresholds with genome-wide fixed 542 

thresholds in three groups of genes: 520 genes for which CADD is predictive, 660 genes for 543 

which CADD is less predictive, and 737 genes with scarce training data. For each group, 10,000 544 

sets of 100 benign and 100 pathogenic variants were randomly sampled and tested from the full 545 

set of 25,765 variants and accuracy was calculated for gene-specific and genome-wide CADD 546 

and MAF thresholds. 547 

 548 

 549 

Table 1. 550 

Data set 

 Nr. of 
benign 
variants  

Nr. of 
pathogenic 
variants Origin 

VariBench tolerance 
DS7, training set 

11,347 6,143 PhenCode database, IDbases, and 18 
individual LSDBs 

VariBench tolerance 
DS7, test set 1,377 510 

PhenCode database, IDbases, and 18 
individual LSDBs 

MutationTaster2 
benchmark set 1,194 161 

HGMD Professional and 1000 
Genomes 

ClinVar  (additions of 
Nov 2015 to Feb 2016) 1,668 1,688 

Submissions by clinical molecular 
geneticists, expert panels, diagnostic 
laboratories and companies 

UMCG, variants exported 
from clinical diagnostic 
interpretation software 

1,176 174 

Clinical diagnostic classifications of 
variants in cardiology, dermatology, 
epilepsy, dystonia and preconception 
screening 

UMCG, germline variants 
for familial cancer cases 301 26 

Hereditary cancer variant 
classifications by an M.D. following 
ACMG guidelines 

Total 17,063 8,702 25,765 

Variant and classification origins of the benchmark data sets used. 551 
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 552 

Table 2. 553 

CGD manifestation panel 
 
Genes  Variants 

Allergy / Immunology / 
Infectious 253 1,952 

Audiologic / Otolaryngologic 217 1,215 

Biochemical 354 2,538 

Cardiovascular 446 4,360 

Craniofacial 387 1,861 

Dental 80 783 

Dermatologic 345 2,749 

Endocrine 240 1,801 

Gastrointestinal 338 2,351 

Genitourinary 149 1,026 

Hematologic 267 2,571 

Musculoskeletal 676 4,935 

Neurologic 1,012 6,363 

Obstetric 34 223 

Oncologic 203 2,157 

Ophthalmologic 479 3,649 

Pulmonary 90 717 

Renal 302 2,143 

NotInCGD 5,806 11,679 
Stratification of the combined variant data set into manifestation categories. The categories are 554 

defined by Clinical Genomics Database and are associated to clinically relevant genes. Variants 555 

were allocated to the manifestation categories based on their gene, and were placed in multiple 556 

categories if a gene was associated to multiple manifestations. 557 

 558 

Table 3. 559 

Tool 
Median 
Sensitivity 

Median 
Specificity 

CADD 93.6% 57.1% 

Condel 70.3% 39.5% 

DANN 63.8% 66.7% 

FATHMM 69.5% 61.9% 

FunSeq 61.7% 50.2% 

GAVIN 91.6% 78.2% 

GWAVA 47.6% 26.2% 

MSC_ClinVar95CI 84.7% 64.4% 
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MSC_HGMD99CI 97.1% 25.7% 

PolyPhen2 68.0% 46.8% 

PONP2 47.5% 26.9% 

PredictSNP2 66.8% 70.6% 

PROVEAN 65.9% 62.1% 

SIFT 67.9% 57.9% 
Performance overview of all tested tools. 560 

 561 

Table 4. 562 

Hypothetical 
data set: 

90% sensitive 
method 

70% sensitive 
method   

100 benign 
variants 

9 pathogenic 
found 

7 pathogenic 
found 

10 pathogenic 
variants 

1 pathogenic 
missed 

3 pathogenic 
missed   

80% specific 
method 9+20 = 29 7+20 = 27 

Variants to 
interpret 

80 benign 
found 

9/29 = 31% 7/27 = 26% 
Positive 
Predictive 
Value 20 benign 

missed 
60% specific 

method 9+40 = 49 7 + 40 = 47 
Variants to 
interpret 

60 benign 
found 

9/49 = 18% 7/47 = 15% 
Positive 
Predictive 
Value 40 benign 

missed 

The practical impact in clinical diagnostics of using methods of different sensitivity and specificity 563 

on a data set with 100 benign and 10 pathogenic variants. 564 

 565 

Supplementary Table 1.  566 

Detailed overview of all benchmark results. Each combination of tool and data set is listed. We 567 

provide the raw counts of true-positives (TP), true-negatives (TN), false-positives (FP) and false-568 

negatives (FN), as well as of pathogenic and benign variants that were ‘missed’, i.e. not correctly 569 

identified as such. From these numbers we calculated the sensitivity and specificity. 570 

 571 

Supplementary Table 2.  572 

The tools used to evaluate our benchmark variant set, and the web addresses used through 573 

which they were accessed. 574 
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