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Abstract 
Studies utilizing large data sets that characterize reproductive isolation (the ability to cross and 

produce hybrids) across species with varying degrees of relatedness have been extremely 

influential in the study of speciation. However several limitations have made it difficult to test 

specific hypothesis about factors that predict the evolution of reproductive isolation. In 

particular, the statistical methods typically used are limited in their ability to test complex 

hypotheses involving more than one predictor variable; at least one method, the Mantel Test, has 

also been found to be unreliable. In this paper I describe a framework to determine which factors 

contribute to the evolution of reproductive isolation using phylogenetic linear mixed models. 

Phylogenetic linear mixed models do not suffer from the same statistical limitations as other 

methods and I demonstrate the flexibility of this framework to analyze data collected at different 

evolutionary scales, to test both categorical and continuous predictor variables, and to test the 

effect of multiple predictors simultaneously, all of which cannot be achieved using any other 

single statistical method. I do so by re-analyzing several classic data sets and explicitly testing 

hypotheses that had previously been untested directly, including differences in accumulation of 

reproductive isolation between sympatric and allopatric species pairs. 
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Introduction 
The divergence of lineages (speciation) is only complete after gene flow is highly 

reduced due to the evolution of reproductive isolation. Two general modes of reproductive 

isolation are prezygotic and postzygotic barriers to reproduction. Patterns of reproductive 

isolation inferred from comparative analyses of crossability (species willingness/ability to mate 

and produce viable and fertile offspring) have generated important and influential observations 

about the rate of evolution of reproductive isolation, especially comparing allopatric and 

sympatric species pairs, or prezygotic and postzygotic barriers to reproduction (Coyne and Orr 

1989, Presgraves 2002, Mendelson 2003, Moyle et al. 2004, Funk et al. 2006, Malone and 

Fontenot 2008, Meiners and Winkelmann 2012). These analyses have produced iconic 

patterns/rules of speciation including that reproductive isolation accumulates more quickly 

between sympatric species pairs compared to allopatric species pairs and, specifically, that in 

sympatry prezygotic reproductive isolation appears more quickly than postzygotic reproductive 

isolation. Nonetheless, the contemporary methods used to analyze these data are known to suffer 

from both statistical errors and analytical limitations that prevent a more robust simultaneous 

assessment of the factors that most strongly influence the accumulation of reproductive isolation. 

The two methods most typically relied upon to analyze crossability data are Mantel tests, 

including partial mantel tests (Mantel 1967, Smouse et al. 1986), and phylogenetic regression 

based on generalized least squares or independent contrasts (Felsenstein 1985, Grafen 1989).  

These two methods (Mantel/matrix regression vs. PICs) also typically reflect differences in the 

scale of relationships between lineages that are being tested. Studies that use PICs, or node based 

averages (Fitzpatrick and Turelli 2006), generally have some information about phylogenetic or 

exact sister species relationships such that they can accurately calculate contrasts. The use of 

PICs or methods that assume independence of lineages are not appropriate for intraspecies data 
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(Slatkin et al. 2002, Stone et al. 2011). Thus, Mantel tests are often applied when specific 

phylogenetic relationships are unknown (if few molecular markers are used) and/or lineages 

being tested include extensive sampling from only a few species. The main limitations of these 

approaches are threefold: lack of statistical power, failure to deal adequately with non-

independence, and the inability to test categorical variables and/or multiple variables 

simultaneously. The first two limitations have been discussed in detail for the Mantel test 

(Legendre 2000, Harmon and Glor 2010) and it has been determined that Mantel tests can have 

unacceptably high type-I error rates (Legendre 2000, Harmon and Glor 2010). The last limitation 

results in the inability to test biologically interesting hypotheses, and applies equally to both 

Mantel test and PIC type tests. For example, in many of the classic studies the comparisons 

between sympatric vs. allopatric rates of evolution were never formally tested with a statistical 

model. Recent attempts to refine the patterns of the accumulation of reproductive isolation have 

also included other explanatory variables, including ecological differences, range size overlap, 

and other traits (Yukilevich 2012, Turelli et al. 2014), but have not tested multiple variables 

simultaneously or the interaction between these variables.  

Categorical variables are of particular interest to most researchers as they can describe 

geographic relationships (allopatry vs. sympatry), mating systems (animals: monogamy vs. 

polygamy, plants: outcrossing vs. selfing), or phenotypic traits (e.g., pigmentation/patterning) 

that could have very strong influence on the rate and strength of isolation accumulation. 

Categorical variables can be difficult to implement in Mantel tests because they rely on pairwise 

distance matrices that require no missing data (Mantel 1967). When these variables can be 

represented as distances, multiple matrix regression can be used, but most typically are only used 

on binary categorical variables (Legendre and Fortin 2010, Wang 2013) because the extension 
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becomes more difficult when comparing categorical variables with multiple levels. Mantel tests 

based on pairwise distance cannot accommodate these hypotheses. Regression models are the 

most promising for incorporating categorical variables, but the analysis is not simple when the 

regression is carried out using PICs. Continuous variables can be accommodated because they 

are assumed to evolve under Brownian motion; this is what enables node values to be estimated 

and contrasts to be evaluated. However an analogous model does not exist for categorical 

variables, unless all daughter taxa (taxa derived from a common ancestor) share the same 

categorical value (Burt 1989). Even with this conservative approach the number of contrasts 

would be reduced tremendously in studies of crossability, and may not be applicable to most 

systems. One way of circumventing this issue would be to analyze the cross product of a 

categorical and continuous variable (Garland et al. 1992); however, although it takes these 

models a step further by analyzing differences in slope (assuming genetic distance is a 

covariate), it cannot be used to estimate mean crossability because regression in PICS is 

constrained to pass through the origin. 

To accommodate more complex hypotheses, a more appropriate and powerful analytical 

framework should be: 1) flexible to test explicit hypothesis with multiple variables (both 

continuous and categorical) and 2) able to handle different data types to cover differences in 

taxonomic scale. Here I describe a framework that overcomes several limitations of current 

approaches to analyzing these data. Specifically this framework can be used to test whether 

geographical context, and/or any other trait hypothesized to be important to speciation, 

contribute to patterns of crossability using comparative crossing data and phylogenetic linear 

mixed effect models (similar to phylogenetic least squares, PGLS). Using linear models allows 

flexibility in the hypothesis being tested and can include categorical predictors and multiple 
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predictors simultaneously. The advantage over PICs is that the phylogenetic structure is modeled 

as a covariance matrix, and thus contrasts for categorical predictors do not have to be calculated. 

The use of this covariance matrix allows/ accounts for phylogeny by either using a pairwise 

distance matrix or a phylogeny. I use this framework to reanalyze classic data sets (Drosophila, 

Bufonidae, Silene) making explicit statistical comparisons between allopatric and sympatric 

conditions as an example of how categorical variables can be included in these types of analyses. 

In addition I test two new hypotheses about the relationship between floral differences and 

crossability in each of the plant genera Silene and Nolana. 

 

Methods 

Description of Linear Mixed Model Approach 

In their most basic form, linear mixed models include a response variable (y), fixed 

effects (XB), random effects (Zu), and residuals (e), where X is the fixed effect design matrix, B 

is the vector of estimated coefficients, Z is the random effect design matrix, and u is a vector of 

random effect estimators. 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜀                                                           (1) 

 

Relatedness either via pedigree or phylogeny is incorporated into a structured matrix (typically 

A, the additive genetic relatedness matrix, see (Hadfield 2010, Hadfield and Nakagawa 2010)) 

that is considered known and contributes to defining the variance structure of random effects in 

the model. In equation (2) the random effect estimators are distributed normally with mean=0 

and variance matrix G. This matrix can be decomposed into a standard variance/covariance 

matrix V, and the structured matrix A (Equation 3) 
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𝑢~𝑁 0,𝐺                                                                 (2) 

𝐺 = 𝑉 × 𝐴                                                                (3) 

 

In this modeling framework I also include a pair-wise genetic distance matrix (D) because of its 

similarities to the additive genetic relatedness matrix.  Each element of A, in the absence of 

inbreeding, represents the expected proportion of genes shared by two individuals. Values range 

from 0 (completely unrelated individuals) to 1 (completely identical individuals). Whereas some 

measures of genetic distance are not bound by 0 and 1, (Euclidean distances, Nei’s standard 

genetic distance (Nei 1972)), others formally meet this requirement (Nei’s DA distance (Nei et al. 

1983), Wier and Cockerhamθ (Weir and Cockerham 1984)), and in most actual studies values 

are rarely seen above 1. In these distance measures values of 0 represent more closely related 

populations, so for my analysis that uses the D matrix, I use 1-D to be analogous to the structured 

A matrix. 

 The datasets I analyze include Drosophila (Coyne and Orr 1989, Yukilevich 2012, Nosil 

2013, Turelli et al. 2014), Bufonidae (Malone and Fontenot 2008), Silene (Moyle et al. 2004), 

and Nolana (Jewell et al. 2012). All of these datasets have been analyzed previously for patterns 

of crossability and are explained in detail below. 

 

Model Descriptions 

The method used can be applied to any case where the goal is to analyze the effect of a 

categorical variable and/or multiple variables on reproductive isolation between different taxa. I 

illustrate this with several examples. In one set of analyses I estimate the effects of a continuous 

trait (genetic distance) and categorical trait (allopatry vs. sympatry; or trait presence vs. absence) 
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and their interaction. In another analysis I analyze three continuous variables simultaneously 

(genetic distance, geographic distance, and a phenotypic/morphological distance).  

Model incorporating relatedness and categorical biogeography:  

A specific model that can be analyzed to determine if reproductive isolation accumulates more 

quickly in crosses between sympatric species compared to allopatric species will incorporate the 

ability of two species to cross with one another (Reproductive isolation (reproductive isolation): 

pre-zygotic isolation, post-zygotic isolation, or total isolation) as a function of genetic distance 

and geographic context (sympatry vs. allopatry) while controlling for phylogenetic relatedness 

(Eq. 4). 

𝑦!" = 𝜇 + 𝑥!𝛽!"#.!"#$. + 𝑥!𝛾!"# + 𝑥! ∗ 𝑥! 𝛽!"# + 𝑍!𝑓 + 𝑍!𝑚 + 𝑒             (4) 

The first term (𝜇) is the intercept of the linear model, and can be thought of as the baseline level 

of reproductive isolation if there is no significant relationship between reproductive isolation and 

genetic distance. The intercept also represents the reproductive isolation between closely related 

species pairs when genetic distance is significant. The variable x1 is a vector of genetic distance 

between species that are crossed and 𝛽!"#.!"#$.is the slope of the relationship between 

reproductive isolation and genetic distance. The variable x2 is a dummy variable (0 when the pair 

is allopatric and 1 when the pair is sympatric) and 𝛾!"# is the additional reproductive isolation 

that is attributable to the species occurring in sympatry. 𝛽!"# is the increase in the slope of 

describing the relationship between reproductive isolation and genetic distance for sympatric 

species crosses. Lastly there are two Z matrices; they represent the identity of the female parent 

species and male parent species used in the cross (or can be designated species 1 and species 2). I 

use a separate effect for each parent in the cross, because not all species are used as both a male 

parent and female parent, depending on the data set. Recent studies use interactions between 
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phylogenetic effects for species interactions (Hadfield et al. 2014), but I have not used this 

approach because in most datasets there are very few interactions outside of very closely related 

species so the interactions would be very sparse. Using this model I was able to test for 

differences in the rate of reproductive isolation for three data sets: Drosophila, Bufonidae, and 

Silene (described below). The Drosophila data set has previously been shown to have increased 

levels of prezygotic reproductive isolation between sympatric pairs compared to allopatric pairs 

(Coyne and Orr 1989), but these rates were never directly compared in a single model.  

Model incorporating relatedness and categorical trait differences:  

As a second example of examining the contributions of a categorical variable, but in this case 

focusing on categorical trait variation, the basic model above can be used but with flower color 

substituted for geographic context (allopatry vs. sympatry). 

 

𝑦!" = 𝜇 + 𝑥!𝛽!"#.!"#$. + 𝑥!𝛾!"#"$ + 𝑥! ∗ 𝑥! 𝛽!"# + 𝑍!𝑓 + 𝑍!𝑚 + 𝑒             (5) 

Here the x2 variable can have two levels, similar to the model above, or multiple levels. For 

example, x2 will have two levels if one level represents crosses between species that share the 

same state for floral color (red x red and white x white) and the other represents crosses between 

species with different floral colors (red x white and the reciprocal). Alternatively the x2 variable 

could have multiple levels: crosses between species with red flowers, crosses between species 

with white flowers, and crosses between red and white flowered species. This model would 

allow one to test if specific floral colors/morphologies have increased speciation rates compared 

to other floral morphologies.  

Using the Silene dataset I set out to test the hypothesis that floral differences may 

contribute to post-mating and postzygotic isolation. Flower color and shape (together making up 
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a pollination syndrome) are often thought to contribute to premating reproductive isolation 

through pollinator preference (Schemske and Bradshaw 1999, Kay and Sargent 2009) and 

mechanical isolation, including pollen placement (Grant 1992, Hodges and Arnold 1994, Smith 

and Rausher 2007). Additionally pollination syndromes can contribute to post-mating isolation if 

there are differences in the ability of pollen to reach the ovary depending on differences in style 

length (Lee et al. 2008). Moreover, genes that control floral development are active throughout 

several developmental processes including gametogenesis and embryonic development 

(Smaczniak et al. 2012), so that post-zygotic isolation may evolve as a byproduct of floral 

divergence (Haak et al. 2014). 

Model incorporating multiple continuous variables with potential correlations:  

Often geographical context may not be captured by a categorical variable (allopatry vs. 

sympatry) but instead by a continuous variable such as geographic distance. When spatial 

variation is included in analyses we expect correlations between geographic/spatial variables and 

other variables of interest including genetic distance (lineages that are more geographically 

isolated are also more genetically differentiated). Further correlations may exist in aspects of 

morphology that can contribute to reproductive isolation, such as quantitative floral traits, and 

this model allows multiple continuous variables to be analyzed simultaneously (Equation 5). In 

the example illustrated below, I include genetic distance, geographic distance, and the difference 

in corolla tube length, which is one measure that captures the difference in floral size between 

species. 

𝑦!" = 𝜇 + 𝑥!𝛽!"#.!"#$. + 𝑥!𝛽!"#.!"#$ + 𝑥!𝛽!"#"$$% + 𝑍!𝑓 + 𝑍!𝑚 + 𝑒              (6) 

If these variables are correlated with one another it will be difficult to make inferences on any 

given parameter estimate since mulitcollinearty can cause variance inflation (increased estimates 
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of variance parameters compared to model where variables are not correlated). To address this 

issue I explicitly allow for covariance between these variables in the model by changing the 

variance structure from being independent (Equation 6), to being correlated (Equation 7). 

𝑋~𝑁 𝛽,𝑉    𝑉 = 𝐼𝜎! =
𝜎!! 0 0
0 𝜎!! 0
0 0 𝜎!!

                                         (7) 

𝑋~𝑁 𝛽,𝑉    𝑉 =
𝜎!! 𝜎!!,! 𝜎!!,!
𝜎!!,! 𝜎!! 𝜎!!,!
𝜎!!,! 𝜎!!,! 𝜎!!

                                       (8) 

This model can be applied to the Nolana dataset, for example, to disentangle the effects of 

multiple correlated variables. In the original analysis of the Nolana dataset (Jewell et al. 2012) 

there was evidence that genetic distance and/or geographic distance predicted reproductive 

isolation. However, since these two variables were highly correlated that analysis lacked power 

to disentangle this pattern using partial mantel tests. Using the approach here, I directly modeled 

the correlation between the continuous variables by including a covariance/correlation matrix 

between the three continuous variables (described above). 

Model incorporating genetic distance matrix:  

Another way to correct for relatedness in this framework is to use a pairwise genetic distance 

matrix. This method would be most suitable for closely related species for which constructing a 

phylogenetic tree is inappropriate. As an example, I analyzed the Nolana data using information 

from a pairwise genetic distance matric (specifically 1-D, where D is the genetic distance matrix) 

in the place of the structured A matrix, to see if the inferences varied between the two methods. 

The package MCMCglmm (Hadfield 2010) requires the inverse of the structured matrix and has 

built in functions to take the inverse of the relatedness matrix from either pedigree or phylogeny 
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information. To use the genetic distance matrix, I used the ginv function from the MASS 

(Venables and B.D 2002) package to find the generalized inverse of the 1-D matrix.  

 

Interpreting model outputs 

In the Bayesian framework used in MCMCglmm, there is no formal distinction between 

fixed and random effects, but for ease of explanation I will call all parameters to be estimated 

(except for phylogenetic variances) fixed effects. I can test any specific hypothesis of fixed 

effects by examining the highest posterior density (HPD) of the parameter from a given model. 

For example, to test whether there is a difference in average reproductive isolation between 

allopatric and sympatric species pairs, the test evaluates if the regression coefficient (𝛾!"#) 

overlaps 0. If it does not than there is evidence for significant differences in reproductive 

isolation between the two groups. Similarly, evaluating whether the rate of accumulation of 

reproductive isolation differs between two groups (e.g. sympatric and allopatric pairs), involves 

evaluating the slope 𝛽!"# to again assess whether the HPD does not include 0. For all analyses I 

set the prior distributions for random effect covariances and residuals as follows. MCMCglmm 

uses inverse Wishart distributions for random effects, with scale parameter V, and degrees of 

freedom parameter n. For each model I set V to be 1/3 the total variance in the response variable 

because there were three covariance matrices (two matrices for male and female parent, and the 

residual covariance matrix).  

For each model I ran two MCMC chains; this enabled me to determine lack of 

convergence by examining within and between chain properties. The trace plots (iteration 

number vs. value of the draw) were visually inspected for all variables/chains, to see if chains 

were mixing well or if there was high auto-correlation (which would signify chain being stuck on 
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a local maximum and thereby give a false signal of convergence). Along with visual inspection, 

the primary tool used to determine if the MCMC chains failed to converge was the Gelman-

Rubin Diagnostic (Gelman and Rubin 1992). This test uses information from the variance of the 

mixture of both chains, and the variance within a single chain to calculate a potential reduction 

factor (Gelman and Rubin 1992, Brooks and Gelman 1998). A value of 1 indicates that the 

chains have converged because the ratio of variance between and within chains is identical. In 

practice chains are typically run until the reduction factor for all variables is less than 1.1 

(Brooks and Gelman 1998). I used coda package (Plummer et al. 2006) in R to calculate the 

convergence diagnostics. I considered a model to have converged if the all scale reduction 

factors for all variables (both fixed and random effects) were less than or equal to 1.1 and the 

trace plots indicate good mixing (actual scale reduction factors were generally less than 1.06, and 

the multivariate scale reduction factors were less than 1.02.) Code for all analyses are available 

through Dryad digital repository. 

Data Sets  

Four different data sets were used here and are explained in detail below; as outlined, in several 

cases these were enriched with additional tree construction, biogeographical information, and/or 

trait data prior to performing analyses. All data sets and phylogenies are available Dryad digital 

repository.  

Drosophila 

The Drosophila dataset is an expansion of the original data set used by Coyne and Orr (Coyne 

and Orr 1989) and was accessed from http://www.drosophila-speciation-patterns.com/. In this 

dataset, prezygotic isolation estimates are based on choice and no-choice mating assays, 

depending on specific species pair. Post-zygotic isolation is a combination of hybrid sterility and 
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inviability. To include phylogenetic information in my model, I combined data from two 

phylogenies that had complementary information and largely agreed on phylogenetic 

relationships. The first phylogeny (van der Linde et al. 2010) (VL) provides a useful backbone 

for different species groups, but lacks species richness within some groups. The second 

phylogeny (Morales-Hojas and Vieira 2012) (MH) has more species represented for particular 

clades. The VL tree includes more groups in total so I used this tree as a skeleton for the major 

groups. Since this tree was already formed from a supermatrix I was able to combine the two 

trees as follows. After scaling both trees so that they were ultrametric I could substitute 

relationships from the MH tree into the VL tree, by simply transforming the branch length from 

ML, so they were proportional to the branch length VL tree (see example: Supplementary Fig 1). 

For some clades, races or subspecies were used. I represented these as polytomies. After 

constructing the phylogeny I only retained crossing data where both members were represented 

in the phylogeny, leaving me with 182 crosses total to include in analyses.  

 

Bufonidae 

The primary dataset analyzed in the original study was post-zygotic isolation estimated from in 

vitro crosses (Malone and Fontenot 2008). Several phenotypes were used to calculate a 

reproductive isolation index including: fertilization rate, hatching rate, the number of tadpoles 

produced, percentage of tadpoles metamorphosed, fertility in backcross analysis, and the stage at 

which eggs ceased to develop. The reproductive isolation index was then calculated similarly to 

(Coyne and Orr 1989, Presgraves 2002). To evaluate the sensitivity of the inferences to this 

index, I also conducted analyses on an additional reproductive isolation index that takes into 
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account that these barriers are sequential (Ramsey et al. 2003). This made the response variable 

more continuous instead of considering only a fixed number of values. 

  I used the original sequence alignment to construct a neighbor-joining tree that 

corresponded to the tree used in the original analysis (Malone and Fontenot 2008). In addition, I 

also enriched this dataset by determining allopatry/sympathy relationships, by downloading 

shape files (vector storing geometric information) for each species from the IUCN Red List 

Database (IUCN 2014.). These files were reprojected (changed from 3D to 2D objects) to Albers 

Equal areas using rgdal (Bivand et al. 2013) and maptools (Bivand and Lewin-Koh 2013) in R 

with parameters specific for the region where they were located (Asia, Africa, Europe, or North 

America). I then determined whether species ranges overlapped using PBSmapping (Schnute et 

al. 2012) in R. Species that had no overlap were designated as allopatric.  

Silene 

The original crossing dataset was compiled in Moyle et al. (2004). Prezygotic isolation was a 

measure of the total number of failed pollinations (likely due to pollen pistil interactions) in 

interspecific crosses, compared to the crossability of the parental species. Postzygotic isolation 

was estimated from pollen sterility of F1 hybrids. These data already had sympatric and 

allopatric relationships designated but I additionally included flower color for each species. 

Floral color data were summarized from the available literature, online flora projects, and 

personal observations. The phylogeny comes from a super tree (Jenkins and Keller 2011). 

Similar to the Drosophila data I only retained taxa for analysis that could be placed into the 

phylogeny, and I allowed polytomies for certain taxa where different subspecies were used in 

crosses. This yielded 65 crosses in total, for analyses. 
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Nolana 

The Nolana data were originally presented in Jewell et al. (2012). Since the authors found no 

measurable prezygotic isolation, I focused on total post-zygotic isolation that was a combination 

of fruit set, mericarp size, and seed set. The phylogeny used in the original study had several 

large polytomies. To resolve these polytomies I used the original sequence data to construct a 

new phylogeny in Raxml (Stamatakis 2014), by allowing each gene (genes on chloroplast were 

concatenated and treated as one unit) to have its own substitution model. These data also 

contained a complete pairwise genetic distance matrix, pairwise measures of geographic 

distance, and pairwise measures of differences in specific aspects of floral morphology, all three 

of which are significantly correlated with one another. In my analyses I used corolla diameter 

differences to quantify floral distance, though similar results were achieved with another 

measure of floral divergence (corolla depth difference) likely because these measures were 

highly similar (data not shown). 

 

Results 

Drosophila 

Using data on Drosophila crossability I analyzed a model where I could compare differences 

between allopatric and sympatric species pairs in their baseline levels of reproductive isolation 

(𝜇=baseline for allopatry and 𝛾!"#= change in RI for sympatry) and in their rate of isolation 

accumulation (i.e. slope; 𝛽!"#.!"#$=relationship between genetic distance and RI for allopatric 

pairs and 𝛽!"#.=change in slope for sympatric pairs). To interpret these models it is often easiest 

look at which coefficients contribute to reproductive isolation in allopatric vs. sympatric species 
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pairs. The overall model has many coefficients but only a few differentiate the allopatric vs. 

sympatric species pairs. The overall model has the following form: 

𝑦!" = 𝜇 + 𝑥!𝛽!"#.!"#$. + 𝑥!𝛾!"# + 𝑥! ∗ 𝑥! 𝛽!"# + 𝑍!𝑓 + 𝑍!𝑚 + 𝑒                   (9) 

The variable x1 is a continuous variable, but the variable x2 is binary and is equal to 0 for 

allopatric pairs and 1 for sympatric pairs. Thus for allopatric pairs the model simplifies to: 

𝑦!" = 𝜇 + 𝑥!𝛽!"#.!"#$. + 𝑍!𝑓 + 𝑍!𝑚 + 𝑒                                        (10) 

For sympatric pairs the model simplifies to 

𝑦!" = 𝜇 + 𝛾!"# + 𝑥!(𝛽!"#.!"#$. + 𝛽!"#)+ 𝑍!𝑓 + 𝑍!𝑚 + 𝑒                           (11) 

This highlights that the coefficient 𝛽!"#. represents the change in slope for sympatric pairs and 

that the total slope for sympatric species pairs is the sum of the two beta coefficients. 

For prezygotic isolation the intercept (baseline level of reproductive isolation) was 

significantly different than zero, and reproductive isolation was significantly elevated in 

sympatric pairs (𝛾!"#= (0.2533, 0.4764), (Lower 95% HPD interval, Upper 95% HPD interval); 

Table 1).  There was also a significant relationship between genetic distance and reproductive 

isolation, as detected in the original study (Coyne and Orr 1989), but only for allopatric species 

pairs. In comparison, the overall relationship between genetic distance and reproductive isolation 

is non-significant for sympatric pairs (Table 1). In this model the coefficients are additive 

(Equation 11), and the relationship between genetic distance and reproductive isolation is not 

significantly different from zero (HPD for 𝛽!"#.!"#$+ 𝛽!"#=(-0.1250, 0.3571)). The effect of 

sympatry on reproductive isolation (𝛾!"#) is so strong that most of the reproductive isolation 

values are near 1 across all genetic distances (completely isolated; Supplemental Fig 1). 

For post-zygotic isolation the intercept and increase in reproductive isolation in sympatry 

were not significantly different than zero (𝜇 and 𝛾!"# had HPD overlapping zero; Table 1). This 
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indicates that there is little to no postzygotic isolation in recently diverged species regardless of 

geographical context. The relationship between genetic distance and reproductive isolation 

(𝛽!"#.!"#$) was significant and the rate of increase of reproductive isolation with genetic distance 

was greater in sympatric pairs (𝛽!"#= 0.1326, 0.5247). This suggests that reproductive isolation 

may accumulate more quickly between sympatric pairs of species than allopatric pairs, and the 

difference increases as divergence time (genetic distance) increases.  

 

Bufonidae 

Results of analyses of the Bufonidae data using the two alternative indices of reproductive 

isolation were qualitatively the same (Table 2), so I only discuss results using the original index 

of reproductive isolation. The model intercept was significantly different than zero (𝜇 =0.2980, 

0.6945) and the effect of sympatry was to actually decrease the level of reproductive isolation 

(𝛾!"#=-0.2816, -0.0427) though the overall level of reproductive isolation was still non-zero (the 

HPD for 𝜇 + 𝛾!"#=(0.0164,0.6518)). The relationship between genetic distance and reproductive 

isolation was quite steep (𝛽!"#.!"#$=3.6212, 5.8819), and the increased rate of accumulation in 

sympatric pairs was also significant (𝛽!"#= 0.4679, 3.5163). In combination, these coefficients 

suggest that even though there is little reproductive isolation for very recently diverged 

sympatric pairs (those separated by small genetic distances), reproductive isolation accumulates 

more quickly for sympatric pairs than allopatric pairs.  

Silene 

Sympatry had no effect on the baseline prezygotic reproductive isolation (𝛾!"#=-0.3643, 0.1510) 

or on the rate of accumulation of reproductive isolation  (𝛽!"#=-1.5671, 3.5080), which is 

consistent with the original results from Moyle et al (2004). There was a significant relationship 
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between genetic distance and reproductive isolation (𝛽!"#.!"#$), which did not differ between 

sympatry and allopatry (Table 3).  The lack of allopatric pairs for the postzygotic and total 

reproductive isolation measurements precluded analysis of the effects of geographical context on 

these measures (though the general relationship between reproductive isolation and genetic 

distance was positive and significant consistent with (Moyle et al. 2004); data not shown). 

 For all three measures of reproductive isolation, floral color differences did not increase 

reproductive isolation. Regardless of whether considering crosses between vs. within floral 

colors, or further separating the within class crosses into crosses among red species vs. crosses 

among white species, there was no effect of floral color on the average levels of reproductive 

isolation or on the accumulation of reproductive isolation over time (Table 3; prezygotic model 

shown). 

 

Nolana 

When genetic distance, geographic distance, and measures of flower size differences were 

considered jointly, the only significant predictor of reproductive isolation was geographic 

distance (𝛽!"#.!"#$=0.0001, 0.0004; note, the small coefficient is due to the scale of reproductive 

isolation/kilometers), signifying that there is more reproductive isolation between pairs of 

species that are more geographically distant. This is consistent with the original study in the 

sense that only geographical distance was significant using the Mantel test (Jewell et al. 2012). 

The analysis using the genetic distance matrix also indicated that geographic distance was the 

only significant predictor of reproductive isolation (Table 4) and the coefficients were similar to 

the previous analysis. The main difference was there was no significant intercept (𝜇=(-1.0166, 

1.4672)). This is likely caused by the differences in inferred relatedness between the phylogeny 
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and the genetic distance matrix (Supplemental Fig. 2), as this was the only difference in the two 

models.  In a phylogeny relatedness is based on shared ancestry, whereas a distance matrix 

includes all nucleotide changes without context of whether they are shared with other taxa or 

phylogenetically informative. The result of using the genetic distance matrix to infer relatedness 

may have been to infer that more closely related species had little reproductive isolation, so the 

intercept was not significantly different than zero.  

 

Discussion 

Understanding how reproductive isolation accumulates over time in different geographic 

contexts (allopatry vs. sympatry) or according to specific trait differences requires analyzing the 

interaction between genetic distance and these factors and their joint effects on reproductive 

isolation. These comparisons cannot be made using PICs or Mantel tests, so in many classical 

studies the effects of these factors are instead indirectly compared (Coyne and Orr 1989, 1997, 

Moyle et al. 2004, Jewell et al. 2012). Using a phylogenetic mixed model framework, and classic 

data sets on species ability to cross with one another, I was able to formally test these 

relationships.  I explicitly tested for interactions between categorical and continuous variables 

and accounted for correlations between predictor variables, something that is not possible in the 

standard PICs framework (Burt 1989, Garland et al. 1992) and difficult to implement using 

Mantel tests when there are more than two levels of the categorical variable. Additionally Mantel 

tests only evaluate the correlation between two variables but not average effects (i.e. intercepts), 

which must be tested with other methods, whereas estimates of mean differences between two 

groups are simultaneously generated using a mixed model approach.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072264doi: bioRxiv preprint 

https://doi.org/10.1101/072264
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

In addition, in the mixed modeling framework specific variance matrices for independent 

variables can model correlations between these variables, which enables several predictors to be 

tested simultaneously (as demonstrated in the analysis of Nolana). In comparison, current 

approaches to evaluating the effect of multiple variables on reproductive isolation have clear 

limitations. Partial Mantel tests do not examine multiple effects simultaneously, but instead 

evaluate what additional variance a variable may explain after accounting for variance due to 

other variables (Smouse et al. 1986). Although multiple variables can be accommodated in a 

standard regression using PICs, it is be difficult to determine the significance/validity of 

coefficients when the analysis involves correlated independent variables because 

multicollinearity causes spurious variance inflation (Mundry 2014). This is especially troubling, 

given that the nature of the data used in these studies will often contain correlations between the 

variables that may explain the accumulation of reproductive isolation.  

 The phylogenetic mixed effect model is also flexible in that relationships between taxa 

can be conveyed either through a phylogenetic relatedness matrix or a genetic distance matrix. In 

contrast, often the use of PICs vs. Mantel test reflects the scale of relatedness that researchers are 

examining: PICs typically examine interspecific data using phylogenies while Mantel tests can 

focus on intraspecific data using genetic distance matrices. The mixed model approach is a 

natural way to apply these analyses across different phylogenetic scales. 

 

New insights from phylogenetic mixed model framework 

Given the advantages of the phylogenetic mixed model framework I discuss the 

inferences from the hypotheses I examined, both in the context of how they compared to the 

original results and what additional inferences can be made.  
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For the Drosophila and Bufonidae analyses I specifically tested whether geographic 

context (allopatry or sympatry) influences the rate of accumulation of reproductive isolation. 

These data were both originally analyzed using linear regression (similar to PICS), however the 

difference in the rate of accumulation (represented by the slope relating genetic distance to 

reproductive isolation) could not be tested directly because of the inability to calculate contrasts 

for binary variables and therefore the interaction between geographic context and genetic 

distance could not be evaluated. Using the phylogenetic mixed model enabled direct tests of the 

differences in the rate of isolation accumulation, and doing so produced new insights into these 

previously analyzed datasets. In particular, I found that in both Drosophila and Bufonidae there 

was an increase in the rate of accumulation of postzygotic reproductive isolation in sympatric 

species pairs compared to allopatric species pairs. This result contrasts with the analysis by 

(Coyne and Orr 1997) and likely reflects the fact that (Coyne and Orr 1997) used a subset of the 

data that only included recently diverged species (D<0.25), whereas analyses here included the 

entire dataset. Other studies that have included data from both sympatric and allopatric pairs in 

Lepidoptera (Presgraves 2002) and birds (Price and Bouvier 2002) failed to find differences 

between sympatry and allopatry in the level of reproductive isolation, although the inferences 

were based on informal analyses.  

For prezygotic isolation, the presence of stronger prezygotic isolation among closely 

related species pairs in sympatry is often assumed to be a product of reinforcement (Yukilevich 

2012), but reinforcement is an unlikely force directly contributing to increased accumulation of 

postzygotic isolation in sympatry (Servedio 2000; Servedio and Saetre 2003). An alternative 

hypothesis, called the Templeton Effect or differential fusion effect, proposes that strong 

reproductive isolation in sympatry is a consequence of a systematic bias among species pairs that 
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are able to maintain their integrity in sympatry, whereby weakly isolated species fail to maintain 

species boundaries (and therefore undergo species collapse), leaving only species pairs with 

strong reproductive isolation. This hypothesis has previously been proposed to explain patterns 

of strong prezygotic isolation in sympatry (Templeton 1981, Noor 1999, Yukilevich 2012), 

however (unlike reinforcement) the effect may be equally applicable to postzygotic isolation. 

The Templeton/differential fusion effect may be reinterpreted and applied to postzygotic 

isolation such that the level of postzygotic isolation that exists between species will determine 

the likelihood of species coexistence. This is because sexual isolation alone is often not strong 

enough to maintain species barriers (Lande 1982; Payne and Krakauer 1997; Servedio and 

Burger 2014), and reinforcement is sensitive to gene flow. If the strength of postzygotic isolation 

between sympatric lineages drives reinforcement and ultimately the strength of prezygotic 

isolation (Servedio 2000; Servedio and Saetre 2003), we should observe stronger postzygotic 

isolation in sympatry (as observed for both the Drosophila and Bufonidae data sets) and a 

correlation between postzygotic and prezygotic isolation in sympatry. Interestingly, postzygotic 

and prezygotic isolation are correlated in sympatry in the Drosophila dataset (Yukelivich 2012). 

The mixed model approach can also be used to evaluate the effect of categorical trait 

variation on the strength and accumulation of reproductive isolation, to address additional 

mechanistic questions. In my analyses of whether floral divergence can contribute to post-mating 

and postzygotic reproductive isolation, independent of effects on pollinator visitation, I found no 

support in Silene for the hypothesis that floral divergence could also influence these reproductive 

isolation phenotypes through pleiotropic effects (Haak et al. 2014). Specifically, floral 

divergence in the form of flower color differences did not contribute to either prezygotic 

isolation (most likely via pollen-pistil interactions) or postzygotic isolation (F1 pollen sterility). 
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It is possible that the pleiotropic effects of floral traits on reproductive isolation could manifest in 

a different traits (seed sterility, F1 germination/viability) or floral divergence could contribute to 

extrinsic post zygotic isolation (Ramsey et al. 2003a, Lowry et al. 2008), all of which were not 

captured in this analysis.  Alternatively (or in addition), differentiation in floral traits other than 

color might be more important in this context. In Silene, for example, there is some evidence that 

floral traits other than red vs. white flower color, including flower display height and orientation 

(Brothers and Atwell 2014, Fenster et al. 2015) and floral scent (Waelti et al. 2008, Castillo et al. 

2014) may contribute to reproductive isolation via pollinator visitation.  

Trait variation like floral variation might also be correlated with other factors that 

contribute to reproductive isolation. For example, if floral shape has phylogenetic signal then 

floral divergence would be correlated with genetic distance; similarly, if there is selection for 

different flower sizes in different environments, floral divergence would be associated with 

geographical distance. Under these scenarios floral divergence might seem to be contributing to 

reproductive isolation, merely because it shares a main driving factors with the accumulation of 

isolation, so it is important to be able to distinguish these potential mechanisms.  In the original 

Nolana analysis (Jewell et al. 2012), floral, geographical, and genetic distance measures were all 

observed to be correlated. In the reanalysis here, I did not observe an independent effect of floral 

divergence (floral size difference) on reproductive isolation. Indeed, I was able to explicitly rule 

out the possibility of floral changes contributed to reproductive isolation while simultaneously 

testing the effects of genetic distance and geographic distance, and found geographical distance 

alone contributed to reproductive isolation in this system. This result might reflect both reduced 

gene flow between geographically distant species and/or differences in habitats, both of which 

could contribute to reproductive isolation. Regardless, it is clear that, differences in flower size 
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do not appear to relay into pleiotropic effects on reproductive isolation in this system, as has 

been hypothesized for differences in traits associated with pollinator preference (Haak 2014). 

 

Conclusion 

The phylogenetic mixed model framework utilized in this study remedies difficulties for Mantel 

tests and PICs in testing hypothesis about factors contributing to the evolution of reproductive 

isolation. To demonstrate the utility of this framework, I performed several analyses to evaluate 

the roles of categorical geographic and trait variation, and quantitative divergence measures, on 

the accumulation and strength of isolation in four published datasets.  I tested the role of 

geography in the evolution of reproductive isolation and was able to show that reproductive 

isolation accumulates more quickly in sympatry not only for prezygotic isolation but also for 

postzygotic isolation. In the datasets examined, floral traits did not contribute to the pattern or 

strength of reproductive isolation measures included in the original studies. This framework can 

enable future studies to test complex hypothesis, test the effects of multiple variables 

simultaneously (even if they are correlated), and use a generalized framework to examine 

reproductive isolation between species or at the intraspecies level.  
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Table 1. Summary of coefficients estimated for the analysis of prezygotic (left) and postzygotic 
(right) reproductive isolation from the Drosophila data. The confidence intervals are for 95% 
Highest posterior density (HPD) and are significant if they do not include zero (in bold). 
 
  Prezygotic Postzygotic 
Coefficient Biological meaning Lower Upper Lower Upper 
𝜇 (intercept) average RI 0.1975 0.6033 -0.0005 0.4001 
𝛽!"#.!"#$. slope relating genetic distance 

and RI 
0.1959 0.4164 0.1906 0.4644 

𝛾!"# additional RI in sympatry 0.2533 0.4764 -0.1162 0.1355 
𝛽!"# increase in slope for sympatry -0.3209 -0.0593 0.1326 0.5247 

 
 
Table 2. Summary of coefficients estimated for the analysis of postzygotic reproductive isolation 
from the Bufonidae data. The original index of reproductive isolation (left) was calculated by 
Malone and Fotenont (2008) following the procedure of Coyne and Orr (1989) and Presgraves 
(2002). The new index (right) takes into account that reproductive barriers are sequential  
following Ramsey et al. (2003) The confidence intervals are for 95% Highest posterior density 
(HPD) and are significant if they do not include zero (in bold). 
 
  Postzygotic (Original) Postzygotic (New) 
Coefficient Biological meaning Lower Upper Lower Upper 
𝜇 (intercept) average RI 0.2980 0.6945 0.8398 0.9686 
𝛽!"#.!"#$. slope relating genetic distance 

and RI 
3.6212 5.8819 0.4472 1.2592 

𝛾!"# additional RI in sympatry -0.2816 -0.0427 -0.0988 -0.0105 
𝛽!"# increase in slope for sympatry 0.4679 3.5163 0.2665 1.3992 

 
Table 3. Summary of coefficients estimated for the analysis of prezygotic reproductive isolation 
when considering geographical context (left) or floral divergence (right) from the Silene data. 
The confidence intervals are for 95% Highest posterior density (HPD) and are significant if they 
do not include zero (in bold). 
 
  Prezygotic (Geographic model) 

Coefficient Biological meaning Lower Upper 
𝜇 (intercept) average RI -1.2138 1.9094 
𝛽!"#.!"#$. slope relating genetic distance and RI 0.9126 7.1054 
𝛾!"# additional RI in sympatry -0.3643 0.1510 
𝛽!"# increase in slope for sympatry -1.5671 3.5080 

  Prezygotic (Floral differences model) 
Coefficient Biological meaning Lower Upper 
𝜇 (intercept) average RI -1.0166 1.4672 
𝛽!"#.!"#$. slope relating genetic distance and RI 3.4368 9.5154 
𝛾!"#"$ additional RI due to color differences -0.1556 0.3158 
𝛽!"# increase in slope for color differences -2.4138 2.2990 
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Table 4. Summary of coefficients estimated for the analysis of total reproductive isolation when 
using the phylogeny (left) or genetic distance matrix (right) from the Nolana data. The 
confidence intervals are for 95% Highest posterior density (HPD) and are significant if they do 
not include zero (in bold). 
 
  Total reproductive isolation 

(phylogenetic matrix) 
Total reproductive isolation 
(genetic distance matrix) 

Coefficient Biological meaning Lower  Upper Lower  Upper 
𝜇 (intercept) average RI  0.1166  0.6249 -0.3126 0.4921 
𝛽!"#.!"#$. slope relating 

genetic distance to 
RI 

-0.3149  0.4861 -0.4088 0.3945 

𝛽!"#.!"#$. slope relating 
geographic 
distance (km) to RI 

 0.0001   0.0004 0.0001 0.0004 

𝛽!"#"$$% slope relating 
differences in 
corolla diameter to 
RI 

-0.0071  0.0140 -0.0106 0.0115 
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Supplemental Figures 

 

Figure S1. The relationship between genetic distance an prezygotic isolation for Drosophila 

species pairs that are either allopatric or sympatric, demonstrating that most sympatric species 

pairs show almost complete isolation, resulting in no relationship between genetic distance and 

reproductive isolation. The best fit lines were constructed using the mode of the parameters from 

the MCMCglmm analysis. 
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Figure S2. Comparison of relationships in the genus Nolana when either a phylogeny made from 

several loci or matrix of pairwise genetic distances are used. The topology on the left represents 

the maximum likelihood tree based on sequence from the ADH2, atpB, ndhF, psbA-trnH, rps16 

genes. The topology on the right was generated using Ward’s hierarchical clustering method for 

pairwise genetic distances reported in Jewell et al (2012). 
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