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Abstract ;

High-order epistasis has been observed in many genotype-phenotype maps. These multi-way inter- 8
actions could have profound implications for evolution and may be useful for dissecting complex o
traits. Previous analyses have assumed a linear genotype-phenotype map, and then applied a linear 10
high-order epistasis model to dissect epistasis. The assumption of linearity has not been tested u
in most of these data sets. Using simulations, we demonstrate that neglecting nonlinearity leads 1
to spurious high-order epistasis. We find we can account for this nonlinearity in simulated maps 13
using a power transform. We then measure and account for nonlinearity in experimental maps 1a
for which high-order epistasis has been previously reported. When applied to seven experimen-  1s
tal genotype-phenotype maps, we find that five of the seven exhibited nonlinearity. Correcting 16
for this nonlinearity had a large effect on the magnitudes and signs of the estimated high-order 1
epistatic coefficients, but only a minor effect on additive and pairwise epistatic coefficients. Even 1
after accounting for nonlinearity, we found statistically significant fourth-order epistasis in every 1o
map studied. One map even exhibited fifth-order epistasis. The contributions of high-order epis- 20
tasis to the total variation in the map ranged from 2.2% to 31.0%, with an average across maps =
of 12.7%. Our work describes a simple method to account for nonlinearity in binary genotype- 2
phenotype maps. Further, it provides strong evidence for extensive high-order epistasis, even after 23

nonlinearity is taken into account. 2
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Introduction 2

Epistasis is an important feature of genotype-phenotype maps (Wolf et al| (2000 [Phillips| 2008} 2

Breen et al| [2012). It provides powerful insights for dissecting complex traits and regulatory =

pathways (Carlborg and Haley| 2004; [Shao et al| [2008; Hill et al| [2008; |Wu and Lin| 2006; 2

[Sackton and Hartl [2016). Further, it can play important roles in shaping evolutionary dynamics 2

and outcomes (Poon and Chao| [2005; [Weinreich et al.| 2006; Blount et al.| 2008; Bridgham et al.| s

[2009; [Stern and Orgogozo| 2009 [Bloom et al| [2010; [@stman et al.| [2011; Pollock et al.| 2012, =«

[Salverda et al.| 2011} Breen et al.| [2012} Soylemez and Kondrashov| 2012; Dickinson et al| 2013;|de] =
\Visser and Krug| 2014; Harms and Thornton| 2014; Kryazhimskiy et al.| [2014; |Shah et al| [2015). s

Recent work has revealed “high-order” epistasis—that is, interactions between three, four, and

even more mutations (Ritchie et al| [2001} [Segre et al.| [2005; [(Xu et al.| [2005; Tsai et al| 2007} s

Tmielinski and Belta [2008} [Matsuura et al| [2009} [da Silva et al.| [2010} [Pettersson et al| 2011 s
Wang et al| [2012} Weinreich et al] [2013} [Hu et al| [2013} [Sun et al.| [2014; [Anderson et al| s

2015; [Yokoyama et al| 2015). High-order epistasis raises some intriguing possibilities. If it can be s

interpreted mechanistically, it may help dissect the complex architecture of biological systems (Lehdr| s

let al.| [2008; Hu et al,| 2011} |2013} |Taylor and Ehrenreich| [2015). Conversely, neglecting high-order  «

epistasis could introduce bias into analyses of low-order epistasis (Otwinowski and Plotkin| 2014). &

High-order epistasis also has profound implications for evolution (Weinreich et al.| 2013). Epistasis

creates temporal dependency between mutations: the effect of a mutation depends strongly on

specific mutations that fixed earlier in time (Bedau and Packard| 2003 Desail [2009). High-order 4

epistasis could, in principle, lead to long-range dependency across the map, such that a mutation 4
has a different effect when introduced first, second, third, or even later in an evolutionary trajectory. s
This would amplify the importance of processes like contingency and entrenchment, which depend

on mutations having different effects when introduced early or late in an evolutionary trajectory s

(Shah et al| 2015; Harms and Thornton [2014; Bridgham et al.| [2009; Pollock et al.| 2012). a9

Because the word epistasis is used in different, sometimes contradictory, ways in the literature s

(Phillips| 2008), we will be explicit: we use epistasis to refer to the quantitative difference in the =
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phenotypic effect of mutations introduced together versus separately (sometimes called statistical s

epistasis) (Cordell et al| [2001; [Phillips| [1998, 2008)). High-order epistasis is the difference in =

phenotype for a combination of mutations introduced together relative to the sum of their individual s

and low-order epistatic effects (Horovitz |1996; (Cordell et al.| 2001; |Cordell] |2002; [Poelwijk et al.| s

High-order epistasis is thought provoking, but its biological and evolutionary interpretation is s

unclear. A major deficiency of previous studies is the assumption that phenotypes scale linearly s

(Anderson et al.| [2015; Poelwijk et al.| [2015; Weinreich et al.| [2013; [Yokoyama et al.| 2015). If s

these maps are nonlinear, high-order epistasis may be an artifact arising from the assumption of e

linearity (Phillips [2008}; [Mani et al| 2008). oL

The difficulty presented by nonlinearity can be illustrated with an example. Imagine two muta- ¢
tions to an enzyme. When expressed in bacteria, these mutant enzymes exhibit negative epistasis on e
bacterial growth rate. This epistasis could have two origins. The first is at the level of the enzyme s
chemistry itself: maybe the mutations have a specific interaction that alters enzyme chemistry. s
This epistasis at the level of the enzyme directly translates to epistasis in growth rate (Fig 1A).
Alternatively, epistasis could reflect a nonlinear relationship between enzyme activity and growth &
rate. When activity is low, small changes in activity lead to large changes in growth rate; when s
activity is high already, improving the activity further has little effect on growth rate. In this e
scenario, additive mutations at the level of enzyme chemistry will still exhibit negative epistasis at 7
the level of bacterial growth rate (Fig 1B). n

Epistasis arising at the level of the enzyme is genotypic epistasis: the genotype of the background =
determines non-additivity. Epistasis arising from growth-rate saturation is phenotypic epistasis: the
phenotype of the background determines non-additivity. For clarity, we will refer to the former as 7
genotypic epistasis and the latter as phenotypic nonlinearity throughout the text. Epistasis arising

from phenotypic linearity has been referred to as prevailing magnitude epistasis (de Visser et al.|
2009), global epistasis (Kryazhimskiy et al| [2014), and diminishing-returns epistasis (when effect- =

size decreases with increasing numbers of mutations) (Chou et al| [2011; MacLean et al| [2010; s

|Otto and Feldman| 1997; [Tokuriki et al.| [2012)). 79



https://doi.org/10.1101/072256
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072256; this version posted August 30, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Linear models of epistasis assume genotypic epistasis—a scenario like Fig 1A—and attribute all s
variation in the effects of mutations to specific interactions between them. But this, potentially, &
conflates very different aspects of a biological system. If the map between mutations and observable
is nonlinear, some fraction of the variation in the observable arises from nonlinearity. A linear model &
will naively partition this into the specific interactions. This will both overestimate the magnitude s
of genotypic epistasis and could even scramble the signs of specific epistatic coefficients. While the s
effects of nonlinearity can be understood intuitively for a two-site system, the effects on a high-order s
epistatic interaction are much more difficult to predict. Further, describing a nonlinear phenotype &
as specific interactions between mutations would miss the main “biology” of the system—in this s
case, saturation of growth rate. 80

These two origins of epistasis also have profoundly different evolutionary implications. Geno-
typic epistasis reveals specific collections of mutations that open or close evolutionary trajectories, o
potentially revealing highly-specific evolutionary contingencies. In contrast, epistasis arising from o
phenotypic nonlinearity reveals general limits on evolution, but does not imply radical dependence
on a specific genetic background to follow a given evolutionary trajectory (Harms and Thornton| o
2014)). For example, recent work has shown that pairwise genotypic epistasis leads to sequence-level o
unpredictability, while a nonlinear map leads to predictable phenotypes in evolution (Kryazhimskiy|
et al.| [2014). o7

Given these considerations, we set out separate the effects of high-order genotypic epistasis and
phenotypic nonlinearity in genotype-phenotype maps. We start with simulated maps with known o
genotypic epistasis and phenotypic nonlinearity, and then turn our attention to experimental maps 100
in which high-order epistasis has been noted previously (Weinreich et al. 2013} [Anderson et al.| 101
2015} [Poelwijk et al.| [2015)). Through this analysis, we find that both phenotypic nonlinearity and 10

high-order genotypic epistasis make large contributions to experimental genotype-phenotype maps. 10
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Materials and Methods 100

Experimental data sets 105

We collected a set of published genotype-phenotype maps for which high-order epistasis had been 106
reported previously. Measuring an L"-order interaction requires knowing the phenotypes of all o7
binary combinations of I mutations—that is, 2& genotypes. The data sets we used had exhaustively 10
covered all 2% genotypes for five or six mutations. These data sets cover a broad spectrum of 1o

genotypes and phenotypes. Genotypes included point mutations to a single protein 110

2006)), point mutations in both members of a protein/DNA complex (Anderson et al.| |2015), 1w

random genomic mutations (Khan et al.| 2011; de Visser et al.| 2009), and binary combinations of 1.

alleles within a biosynthetic network (Hall et al.| |2010). Measured phenotypes included selection us

coefficients (Weinreich et al.| |2006; Khan et al.| 2011; de Visser et al| [2009)), molecular binding 1

affinity (Anderson et al.| [2015)), and yeast growth rate (Hall et al.| |2010). (For several data sets, us

the “phenotype” is a selection coefficient. We do not differentiate fitness from other properties for 1
our analyses; therefore, for simplicity, we will refer to all maps as genotype-phenotype maps rather ur
than specifying some as genotype-fitness maps). All data sets had a minimum of three independent 1
measurements of the phenotype for each genotype. All data sets are available in a standardized o

ascii text format. 120

Genotypic epistasis model 121

We dissected genotypic epistasis using a linear epistasis model that decomposes binary genotype- 12

phenotype maps into coefficients that capture contributions from individual mutations and inter- 123

actions between them. These have been discussed extensively elsewhere (Heckendorn and Whitley| 12

11999; Poelwijk et al| [2015; |Weinreich et al.| [2013); however, in the interest of clarity, we will 12s

briefly and informally review them here. 126
A linear, high-order epistasis model transforms a genotype-phenotype map into an orthogonal 12
set of vectors (i.e. a change of basis) that account for all variation in the map (Fig 2). The lengths 12

and signs of the vectors are epistatic coefficients that quantify the effect of mutations or interactions 1o
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between them. A binary map with 27 genotypes requires 2% epistatic coefficients and captures all 1z

interactions, up to L**-order, between them. This is conveniently described in matrix notation. 131

— —

P=Xg: (1)

a vector of phenotypes P can be transformed into a vector of epistatic coefficients ﬁ using a 2 x 21 1
decomposition matrix that encodes which coefficients contribute to which phenotypes. If X is 13

invertible, one can determine E from a collection of measured phenotypes by 134

f=X"'P. (2)

X can be formulated in a variety of ways (Poelwijk et al.| 2015), but a common form in the genetics 13

literature is derived from Walsh polynomials (Heckendorn and Whitley| |1999; Weinreich et al.| 2013; 13

Poelwijk et al.| [2015). In this form, X is a Hadamard matrix. Conceptually, the transformation s

identifies the geometric center of the genotype-phenotype map and then measures the average effects 138
of each mutation and combination of mutations in this “average” genetic background (Fig 2). We 1z

encoded each mutation in each site in each genotype as -1 (wildtype) or +1 (mutant) (Heckendorn| 1o

land Whitley| [1999; [Weinreich et al.| 2013; Poelwijk et al.| 2015). This leads to the following matrix —1a

for a three-mutation genotype-phenotype map: 142
[ Py | (121 101 -1 11 ] B ]
Pioo 1 1 -1 -1 -1 -1 1 1 B;
Poio 1 -1 1 -1 -1 1 -1 1 B;
Poor 1 1 1 1 -1 -1 -1 -1 Bk o
= = Xwalshﬂ' (3)
Py 1 -1 -1 1 1 -1 -1 1 Bij
Pio1 11 -1 -1 1 1 -1 -1 Bik
Pou i -1 1 -1 1 -1 1 -1 Bjk
P 1 1 1 1 1 1 1 1 Bijk
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One data set (IV, Table I) has four possible states (A, G, C and T) at two of the sites. We 13
encoded these using the WYK tetrahedral-encoding scheme(Zhang and Zhang| 1991} Anderson et al.| 1x
2015). Each state is encoded by a three-bit state. The ancestral state is given the bits (1,1,1). s
The remaining states are encoded with bits that form corners of a tetrahedron. For example, the s
ancestral state of site 1 is G and encoded as the (1,1, 1) state. The remaining states are encoded 1

as follows: A is (1,—1,—1), Cis (—1,1,—1) and T is (1,—1,—1). 148

Nonlinear scales 149

We accounted for nonlinearity in the genotype-phenotype map by a power transformation (see 1o
Results). The independent variable for the transformation was ﬁadch the predicted phenotypes of 1
all genotypes assuming purely additive affects for each mutation. The estimated additive phenotype 15

of genotype i, is given by: 153

<L
Pogai = Z (APj) z; ; (4)
=1

where (AP;) is the average effect of mutation j across all backgrounds, z; ; is an index that encodes s

whether or not mutation j is present in genotype i, and L is the number of sites. The dependent 1ss

—

variables are the observed phenotypes P, taken from the genotype-phenotype data. 156
We use nonlinear least-squares regression to fit and estimate the power transformation from s

— —

Padd to Pobs : 158

— ~

Pobs ~ T(-ﬁadd; 5\7"47 B) + éa
where ¢ is a residual and 7 is a power transform function. This is given by: 159

5 (I%add + AN+
Py =0t T° 4 p
b NGMT

where A and B are translation constants, GM is the geometric mean of (ﬁadd +A),and Misa 10

scaling parameter. We used standard nonlinear regression techniques to minimize d: 161

d= (ﬁscale - ﬁobs)Q +e€.
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We then reversed this transformation to linearize P,,s using the estimated parameters A B7 and e

A. We did so by the back-transform: 163
Pabs,linear = {S\(GM)A_I(POZ)S - B) - ].}1/X — A (5)
Experimental uncertainty 164

We used a bootstrap approach to propagate uncertainty in measured phenotypes into uncertainty in e
genotypic epistatic coefficients. To do so we: 1) calculated the mean and standard deviation for each 16
phenotype from the published experimental replicates; 2) sampled the uncertainty distribution for e
each phenotype to generate a pseudoreplicate vector ﬁpseudo that had one phenotype per genotype, 16
just like ]3; 3) rescaled ﬁpseudo using a power-transform; and 4) determined the epistatic coefficients 160
for ﬁpseudo,scaled~ We then repeated steps 2-4 until convergence. We determined the mean and 17
variance of each epistatic coefficient after every 50 pseudoreplicates. We defined convergence as n
the mean and variance of every epistatic coefficient changed by < 0.1 % after addition of 50 more 17
pseduoreplicates. On average, convergence required = 100,000 replicates per genotype-phenotype 173
map. Finally, we used a z-score to determine if each epistatic coefficient was significantly different 17
than zero. To account for multiple testing, we applied a Bonferroni correction to all p-values (Abdi s

2007).

Computational methods 177

Our full epistasis software package—written in Python3 extended with Numpy and Scipy (van der| 1
Walt et al| |2011))—is available for download via github (https://harmslab.github.com/epistasis).
We used the python package scikit-learn for all regression (Pedregosa et al.| [2011)). Plots were 1

generated using matplotlib and jupyter notebooks (Hunter| 2007} [Perez and Granger| [2007)). 181
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Results & Discussion -

Phenotypic nonlinearity induces apparent high-order genotypic epistasis 1

Our first goal was to understand how phenotypic nonlinearity affects estimates of genotypic high- s
order epistasis. We constructed an additive five-site binary genotype-phenotype map, applied in- 1ss
creasing amounts of nonlinearity, and then decomposed the map using a high-order genotypic 1ss
epistasis model. To add nonlinearity, we transformed each phenotype using a simple saturation 1

model: 188
1+ K)P,
( ) g (6)

Pg,trans = l—I—KPg ’

where P, is the linear phenotype of genotype g, Py trans is the transformed phenotype of genotype  1s
g, and K is a scaling constant. As K — 0, the map becomes linear. As K increases, mutations 10
have systematically smaller effects when introduced into backgrounds with higher phenotypes. We 1o
calculated P, for all 2F binary genotypes using the random, additive coefficients shown in Fig 3A. 1o
We then calculated Py ;rqns using the relatively shallow (K = 2) saturation curve shown in Fig 3B. 10
Finally, we applied a linear epistasis model to P, +rqns to extract epistatic coefficients. 104

We found that nonlinearity in the genotype-phenotype map induced extensive genotypic, high- 10
order epistasis (Fig 3C). We observed epistasis up to the fourth order, despite building the map with 10
additive coefficients. This result is unsurprising: the only mechanism by which a linear model can 107
account for variation in phenotype is through epistatic coefficients. When given a nonlinear map, 19
it partitions the variation arising from nonlinearity into specific interactions between mutations. 1%
This high-order epistasis is mathematically valid, but does not capture the major feature of the 200
map—namely, saturation. Indeed, this epistasis is deceptive, as it is naturally interpreted as specific 20
interactions between mutations. For example, this analysis identifies a specific interaction between 20
mutations one, two, four, and five (Fig 3C, purple). But this four-way interaction is an artifact of 2

the nonlinearity in phenotype of the map, rather than a specific interaction. 204

10
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Genotypic epistasis and phenotypic nonlinearity induce different patterns s

of nonadditivity 206

Our next question was whether we could separate the effects of phenotypic nonlinearity and geno- 20
typic epistasis in binary maps. For a pair of mutations, it is impossible to distinguish these two 208
origins of epistasis, as they give identical signals (Fig 1). As more mutations are characterized, o
however, it may become possible to disentangle these effects. In particular, by measuring the effect 210
of a mutation across a large number of genetic backgrounds, one might be able to ask to what ou
extent the genotype versus the phenotype of each genetic background predicts mutational effects. 2w

One useful approach to develop intuition about epistasis is to plot the the observed phenotypes a3
(Pyps) against the predicted phenotype of each genotype, assuming additive mutational effects 2
(Padd) (Rokyta et al| |2011; |Schenk et al| [2013). In the absence of any epistasis, P,ps equals 2
P, 44, because each mutation would have the same, additive effect in all backgrounds. As a result, 26
deviation from the P,,s = P,qq line reflects epistasis. 217

To disentangle the effects of genotypic epistasis from phenotypic nonlinearity, we simulated s
maps including both forms of epistasis and then constructed P,,s vs. P,qq plots. We added 210
genotypic epistasis by generating random epistatic coefficients then calculating linear phenotypes 20
using Eq. We introduced nonlinearity by transforming these phenotypes with Eq. [6] For each 2z
genotype in these simulations, we calculated P,4q as the sum of the first-order coefficients used 22
in the generating model. P, is the observable phenotype, including both genotypic epistasis and 23
phenotypic nonlinearity. 204

Genotypic epistasis and a phenotypic nonlinearity gave qualitatively different P,ps vs. Poqq 25
plots. Fig 4A shows plots of Pups vs. Py4q for increasing phenotypic nonlinearity (left-to-right) 22
and genotypic epistasis (top-to-bottom). As phenotypic nonlinearity increases, Py curves system- 2
atically relative to P,qq. The smallest phenotypes are underestimated and the largest phenotypes s
overestimated, reflecting the saturation we added to the map. In contrast, genotypic epistasis 20
induces random scatter away from the P,,s = P,4q line. 230

These patterns can be understood from the origins of epistasis. Genotypic epistasis is determined  2a

11
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solely by genotype, without reference to phenotype. This leads to scatter away from the P,gq = Pops 22
line, but no systematic structure in the curve with respect to P,qq. For a phenotypic nonlinearity, s
the magnitude of the epistasis depends on the magnitude of the phenotype. This induces systematic 23

structure in the relationship between P,;; and P,;s—in this case, a saturating curve. 235

Nonlinearity can be separated from genotypic epistasis 2%

The P,y vs. Paqq plots suggest an approach to disentangle genotypic epistasis from nonlinearity in 23
phenotype. By fitting a function to the P,s vs P,4q curve, we can describe the observed nonlinearity 238
(Schenk et al.| [2013). Once the form of the nonlinearity is known, we can then linearize the 23
phenotypes using this function. Any variation remaining after linearization (i.e. scatter) is due to 2w
genotypic epistasis. 241

In the absence of knowledge about the source of the nonlinearity, a natural choice for such 2
an analysis is a power transform, which identifies a monotonic, continuous function through P,,s 243
vs. P,qq. A key feature of this approach is that power-transformed data are normally distributed 2
around the fit curve (Box and Cox] [1964} |Carroll and Ruppert| 1981) and thus appropriately scaled 2
for regression of a linear epistasis model. 246

We tested this approach using one of our simulated data sets. One complication is that, for 2
an experimental map, we would not know P,;q. We determined P,y4; above using the additive s
coefficients used to generate the space. These are not known in a real map. We therefore estimated 20
P,qq from P,,;. We determined If’add by measuring the average effect of each mutation across all 20
backgrounds, and then calculating P44 for each genotype as the sum of these average effects (Eq. s

We then fit the power transform to Poys vs. Pada (solid red line, Fig 4B). The curve captures 2s
the nonlinearity added in the simulation. We linearized P,ps using the fit model (Eq. , and s
then extracted high-order genotypic epistatic coefficients. The extracted coefficients were highly  2ss
correlated with the coefficients used to generate the map (R? = 0.998) (Fig 4C). In contrast, s
applying the linear epistasis model to this map without first accounting for nonlinearity gives much 257

greater scatter between the input and output coefficients (R? = 0.934) (Fig 4D). This occurs s

12
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because phenotypic variation from nonlinearity is incorrectly partitioned into the linear epistatic 250

coefficients. 260

High-order genotypic epistasis is a common feature of genotype-phenotype

maps 262

Our next question was whether the high-order genotypic epistasis observed in experimental maps 2
could be accounted for as an artifact of phenotypic nonlinearity. We selected seven genotype- 264
phenotype maps that had previously been reported to exhibit high-order epistasis (Table 1) and fit s
power transforms to each dataset (Fig 5, S1). We expected some phenotypes to be multiplicative s
(e.g. datasets I, IT and IV were relative fitness), while we expected some to be additive (e.g. dataset s
III is a free energy). Rather than asserting a scale by taking logarithms of phenotypes, we allowed s
our power transform to capture the appropriate scale. The power-transform identified nonlinearity 260
in the majority of data sets. Of the seven data sets, three were less-than-additive (II, V, VI), two o
were greater-than-additive (ITI, IV), and three were approximately linear (I, VII). All data sets gave an
random residuals after fitting the power transform (Fig 5, S1). a2

We then linearized the data with the power transform and re-measured genotypic epistasis. In a3
an effort to avoid false positives, we took a conservative approach. We used bootstrap sampling of 2
uncertainty in the measured phenotypes to determine the uncertainty of each epistatic coefficient 27
(set Methods), and then integrated these distributions to determine whether each coefficient was 2
significantly different than zero. We then applied a Bonferroni correction to each p-value to account 27
for multiple testing. 278

Despite our conservative approach, we found high-order epistasis in every map studied (Fig 6A, 2w
S2). Every data set exhibited at least one statistically significant epistatic coefficient of fourth order 250
or higher. We even detected statistically significant fifth-order genotypic epistasis (blue bar in Fig
6A, data set II). High-order coefficients were both positive and negative, often with magnitudes 2
equal to or greater than the second-order terms. These results reveal that high-order epistasis 2s3
is a robust feature of these maps, even when nonlinearity and measurement uncertainty in the s

genotype-phenotype map is taken into account. 25

13
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We also dissected the relative contributions of each epistatic order to the remaining variation. s
To do so, we created truncated epistasis models: an additive model, a model containing additive s
and pairwise terms, a model containing additive through third-order terms, etc. We then measured 2
how well each model accounted for variation in the phenotype using a Pearson’s coefficient between 280
the fit and the data. Finally, we asked how much the Pearson coefficient changed with addition of 20
more epistatic coefficients. For example, to measure the contribution of pairwise epistasis, we took 2
the difference in the correlation coefficient between the additive plus pairwise model and the purely e
additive model. 203

The contribution of epistasis to the maps was highly variable. For data set I, epistatic terms 20
explained 5.9% of the variation in the data. The contributions of epistatic coefficients decayed with 20
increasing order, with fifth-order epistasis only explaining 0.1% of the variation in the data. In 20
contrast, for data set II, epistasis explains 43.3% of the variation in the map. Fifth-order epistasis 2o
accounts for 6.3% of the variation in the map. The other data sets had epistatic contributions 20

somewhere between these extremes. 209

Accounting for nonlinear genotype-phenotype maps alters epistatic coef- o

ficients 301

Finally, we probed to what extent accounting for nonlinearity in phenotype altered the genotypic o
epistatic coefficients extracted from each space. Fig 7 and S3 show correlation plots between s
genotypic epistatic coefficients extracted both with and without a correction for nonlinearity. The 30
first-order coefficients were all highly correlated between the linear and nonlinear analyses for all o
data sets (Fig S4). 306

For the epistatic coefficients, the degree of correlation depended on the degree of nonlinearity in o
the dataset. Data set I—which was essentially linear—had identical epistatic coefficients depend- 308
ing whether the phenotypic scale was taken into account or not. In contrast, the other data sets 3o
exhibited scatter off of the line. Data set III was particularly noteworthy. The epistatic coefficients s
were systematically overestimated when the nonlinear scale was ignored. Two large and favorable su

pairwise epistatic terms in the linear analysis became essentially zero when nonlinearity was taken s
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into account. These interactions—M182T /g4205a and G283S/g4205a—were both noted as deter-
minants of evolutionary trajectories in the original publication (Weinreich et al.| |2006)); however, s
our results suggest the interaction is an artifact of applying a linear model to a nonlinear data s

set. Further ~ 20% (six of 27) epistatic coefficients flipped sign when nonlinearity was taken into s

account (Fig 7, III, bottom right quadrant). 317
Discussion o
Nonlinearity is a common feature of genotype-phenotype maps 319

A key observation from our work is that the majority of the genotype-phenotype maps exhibit s
nonlinearity. This is, perhaps, expected given the nonlinearity intrinsic in biological systems. Be- sz
cause these maps cover relatively large stretches of sequence space—six mutations across—factors s
outside specific interactions between mutations come into play. While this complicates analyses of 32
genotypic epistasis, it also provides insight into the architecture of these systems. 324

The less-than-additive maps were unsurprising. Many have previously observed saturating, s
less-than-additive maps in which mutations have lower effects when introduced into more optimal 3
backgrounds (MacLean et al.| 2010; |Chou et al.| [2011]). Such saturation has been proposed to be a 3
key factor shaping evolutionary trajectories (MacLean et al.| 2010; (Chou et al.| 2011 Kryazhimskiy| s
et al.| 2014; Tokuriki et al.| 2012; |Otto and Feldman| [1997)). Further, it is intuitive that optimizing s
a phenotype becomes more difficult as that phenotype improves. 330

The greater-than-additive maps, in contrast, were more surprising: why would mutations have s
a larger effect when introduced into a more favorable background? For the -lactamase genotype- 33
phenotype map (III, Fig. 5), it appears this is an artifact of the original analysis used to generate 3
the data set. This data set describes the fitness of bacteria expressing variants of an enzyme 33
with activity against S-lactam antibiotics. The original authors measured the minimum-inhibitory s
concentration (MIC) of the antibiotic against bacteria expressing each enzyme variant. They then s
converted their MIC values into apparent fitness by sampling from an exponential distribution of s

fitness values and assigning these fitness values to rank-ordered MIC values. Our epistasis model 33
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extracts this original exponential distribution (Fig S5). This result demonstrates the effectiveness s
of our approach in extracting nonlinearity in the genotype-phenotype map. 340

The origins of the growth in the transcription factor/DNA binding data set are less clear (IV, su
Fig. 5). The data set measures the binding free energy of variants of a transcription factor binding s
to different DNA response elements. We are aware of no physical reason for mutations to have a 3
larger effect on free energy when introduced into a background with better binding. One possibility 3.
is that the genotype-phenotype map reflects multiple features that are simultaneously altered by  s4s
mutations, giving rise to this nonlinear shape. This is a distinct possibility in this data set, where s
mutations are known to alter both DNA binding affinity and DNA binding cooperativity (McKeown| sz

et al. 2014) 348

Best Practice 349

Because nonlinearity is a common feature of these maps, linearity should not be assumed in s3s0
analyses of statistical epistasis in binary genotype-phenotype maps. Unlike pairs of mutations, s
where nonlinearity is difficult to estimate because of the paucity of observations, the large number s
of genotypes characterized in these maps makes it possible to detect nonlinearity directly from s
the data. This provides information about the architecture of the system—in the form of its s
nonlinearity—and gives confidence in the assignment of genotypic epistatic coefficients. Our soft-  sss
ware pipeline automates this process. It takes any genotype-phenotype map in a standard text sse
format, fits for nonlinearity, and then estimates high-order epistasis. It is freely available for down- 352
load (https://harmslab.github.com/epistasis). 358

One important question is how the choice of nonlinear model alters the observed high-order s
coefficients. A power transform captures the primary curvature within a data set. Use of a more 30
complicated function would shift more of the variation in the data away from genotypic epistasis s
and into global structure in the map. Adding this complexity could be motivated by external s
biological knowledge about the map (Schenk et al.| [2013). It could also be motived by examination  ses
of the P,s vs Padd plot. Because genotypic epistasis is scatter off the scale line, standard nonlinear 364

regression tools such as an F-test, Akaike Information criterion, and examination of fit residuals e
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could be used to identify a nonlinear function that captures the maximum amount of phenotypic 366
variation in the data set without fitting stochastic (genotypic) variation in the data. 367

Practically, we believe the choice of a different nonlinear model would have little effect on our e
results for these data sets. Other possible models of nonlinearity—gamma functions, exponential s
functions, polynomials, etc.—would likely give similar curves when fit to the small amount of cur- 3w
vature in these data sets. Further, our bootstrap protocol integrates over uncertainty in the power 3n
transform coefficients, so higher and lower curvature fits consistent with the data are incorporated s
into the uncertainty in the epistatic coefficients. 373

Neglecting nonlinearity entirely has variable effects on different orders of epistatic coefficients. s
Overall, low-order coefficients were more robust to the linear assumption than high-order epistatic s
coefficients. Data set IV is a clear example of this behavior. The map exhibited noticeable non- s
linearity (Fig 5). The first- and second-order terms were well correlated between the linear and s
nonlinear analyses (Fig 7, S3, S4). Higher-order terms, however, exhibited much poorer overall s
correlation. While the R? for second-order coefficients was 0.95, the correlation was only 0.43 for s
third-order. This suggests that previous analyses of these data sets, which assumed linear scales, 380
are correct in their identification of the key mutations responsible for variation in the map, but s

that their analysis of higher-order epistatic coefficients was not reliable. 382

High-order epistasis 383

Finally, our work shows that high-order epistasis is a common feature of genotype-phenotype maps. 38
Our study could be viewed as an attempt to “explain away” previously observed high-order epistasis. s
To do so, we both accounted for nonlinearity in the map and propagated experimental uncertainty sss
to the epistatic coefficients. Surprisingly—to the authors, at least—high-order epistasis was robust ssr
to these corrections. 388

High-order epistasis can make huge contributions to genotype-phenotype maps. In data set II, s
third-order and higher epistasis accounts for fully 31.0% of the variation in the map. The average 3o
contribution, across maps, is 12.7%. We also do not see a consistent decay in the contribution of 3o

epistasis with increasing order. In data sets II, V and VI, third-order epistasis contributes more 3o
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variation to the map than second-order epistasis. This suggests that epistasis could go to even 30
higher orders in larger genotype-phenotype maps. 304

The generality of these results across all genotype-phenotype maps is unclear. The maps we 3o
analyzed were measured and published because they were “interesting,” either from a mechanistic or 39
evolutionary perspective. Further, most of the maps have a single, maximum phenotype peak. The 3o
nonlinearity and high-order epistasis we observed may be common for collections of mutations that, s
together, optimize a function, but less common in “flatter” or more random genotype-phenotype 390
maps. This can only be determined by characterization of genotype-phenotype maps with different 0
structural features. 201

The meaning of these genotypic epistatic coefficients is also an open question. What are the
origins of third, fourth, and even fifth-order correlations in these data sets? What, mechanistically, 403
leads to a five-way interaction between mutations? What can this epistasis tell us about the 4
biological underpinning of these maps? The evolutionary implications are also unclear. How does 45
this high-order epistasis shape evolutionary outcomes and dynamics? These, and questions like 6

them, are challenging and fascinating future avenues for further research. a07
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Fig 1. Epistasis can arise at the level of genotype or phenotype. A) Genotypic s
epistasis. The leftmost panel shows a two-site genotype/enzyme-activity map. Genotypes are as
given by numerical coordinates, with “0” denoting wildtype at a site and “1” denoting a mutation. s
Enzyme activity is encoded both on the z-axis and as a spectrum from white to red. The middle ar
panel shows how enzyme activity (white-to-red, x-axis) maps to growth rate (white-to-blue, y-axis). as
In this case, the map is linear. The rightmost panel shows the observed epistasis in growth rate a0
given the genotype/enzyme activity map and activity to growth rate map. B) Epistasis arising o
from phenotypic nonlinearity. The sub panels are colored and labeled as in panel B. For this
map, enzyme activity behaves additively (left), but the relationship between activity and growth
saturates (middle). This leads to epistasis in growth rate that is indistinguishable from genotypic s

epistasis (right). 2
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425

Fig 2: Genotypic epistasis can be quantified using Walsh polynomials. A) A genotype-
phenotype map exhibiting negative epistasis. Axes are genotype at position 1 (g1), genotype at  «r
position 2 (g2), and phenotype (P). For genotypic axes, “0” denotes wildtype and “1” denotes a s
mutant. Phenotype is encoded both on the P-axis and as a spectrum from white to blue. The
map exhibits negative epistasis: relative to wildtype, the effect of the mutations together (P;; =2)
is less than the sum of the individual effects of mutations (Pig + Py = 1 +2 = 3). B) The
map can be decomposed into epistatic coefficients using a Walsh polynomial. Geometrically, one 43
finds the center of the genotype-phenotype map (green sphere). The first-order coefficients §; and 33
B2 (red arrows) are the average effect of each mutation relative to this center. The second-order 4
coefficient 812 (orange arrow) is the magnitude and sign of the vector, along the phenotype axis, s
between the average phenotype and the line drawn between Pyy and Py; (the “fold” in the map). 4
C) The genotype-phenotype map transformed into the Walsh space. Axes are epistatic coefficients
B1, B2 and B12. Each phenotype, relative to the center of the space, is a linear sum of all epistatic s

coefficients (noted on the figure for P;; as dimensions). 439
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Fig 3: Nonlinearity in phenotype creates spurious high-order epistatic coefficients.
A) Simulated, random, first-order epistatic coefficients. The mutated site is indicated by panel o
below the bar graph; bar indicates magnitude and sign of the epistatic coefficient. B) A nonlinear s
map between a linear phenotype and a saturating, nonlinear phenotype. The first-order coefficients s
in panel A are used to generate a linear phenotype, which is then transformed by the function shown s
in B. C) Epistatic coefficients extracted from the genotype-phenotype map generated in panels A as
and B. Bars denote coefficient magnitude and sign. Color denotes the order of the coefficient: first
(Bi, red), second (B;;, orange), third (Bi;k, green), fourth (B3;;x;, purple), and fifth (B;;xim, blue).  as
Filled squares in the grid below the bars indicate the identity of mutations that contribute to the a9
coeflicient. 450

451
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Fig 4: Genotypic epistasis and phenotypic nonlinearity induce different patterns
of nonadditivity. A) Patterns of nonadditivity for increasing genotypic epistasis and phenotypic
nonlinearity. Main panel shows grid ranging from no epistasis (bottom left) to high genotypic
epistasis and nonlinearity (top right). Insets in sub-panels show added nonlinearity. Going from
left to right: K = 0, K = 2, K = 4. Epistatic coefficient plots to right show magnitude of input

genotypic epistasis, with colors and annotation as in Fig 3C. B) Plot of P, against Pgq for the
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middle sub panel in panel A. Red line is the fit of the power transform to these data. C) Correlation  4so
between epistatic coefficients input into the simulation and extracted from the simulation after o
correction for nonlinearity with the power transform. Each point is an epistatic coefficient, colored s
by order. The Pearson’s correlation coefficient is shown in the upper-left quadrant. D) Correlation s
between epistatic coefficients input into the simulation and extracted from the simulation without ses
application of the power transform. a64
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Fig 5: Experimental genotype-phenotype maps exhibit nonlinear phenotypes. Plots s
show observed phenotype P,;s plotted against Praa (Eq. for data sets I through IV. Points are s
individual genotypes. Error bars are experimental standard deviations in phenotype. Red lines are 4o
the fit of the power transform to the data set. Pearson’s coefficient for each fit are shown on each o
plot. Dashed lines are P,qq = P,ps. Bottom panels in each plot show residuals between the observed
phenotypes and the red fit line. Points are the individual residuals. Errorbars are the experimental 4
standard deviation of the phenotype. The horizontal histograms show the distribution of residuals a3

across 10 bins. The red lines are the mean of the residuals. a4
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Fig 6: High-order epistasis is present in genotype-phenotype maps. A) Panels show e
epistatic coefficients extracted from data sets I-IV (Table 1, data set label circled above each graph). —«
Bars denote coefficient magnitude and sign; error bars are propagated measurement uncertainty. s
Color denotes the order of the coefficient: first (5;, red), second (8;;, orange), third (5;x, green), w9
fourth (B, purple), and fifth (8;jkim, blue). Bars are colored if the coefficient is significantly — as
different than zero (Z-score with p-value < 0.05 after Bonferroni correction for multiple testing).
Stars denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled squares in 4
the grid below the bars indicate the identity of mutations that contribute to the coefficient. The 43
names of the mutations, taken from the original publications, are indicated to the left of the grid sss
squares. B) Sub-panels show fraction of variation accounted for by first through fifth order epistatic s

coefficients for data sets I-IV (colors as in panel A). Fraction described by each order is proportional  4ss
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Fig 7: Nonlinear phenotypes distort measured epistatic coefficients. Sub-panels show 4
correlation plots between epistatic coefficients extracted without accounting for nonlinearity (z-axis) a0
and accounting for linearity (y-axis) for data sets I-IV. Each point is an epistatic coefficient, colored

by order. Error bars are standard deviations from bootstrap replicates of each fitting approach. 292
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Table 1 493
ID | genotype phenotype N | reference
I scattered genomic mutations E. coli fitness 5 Khan et al.| [2011
II chromosomes in asexual fungi | A. niger fitness 5 de Visser et al.| {2009
IIT | protein point mutants bacterial fitness ) Weinreich et al| 2006
IV | DNA /protein point mutants in vitro DNA /protein binding affinity | 5 Anderson et al. 201;')
v chromosomes in asexual fungi | A. niger fitness 5 de Visser et al.| {2009
VI | alleles in biosynthetic network | S. cerevisiae haploid growth rate 6 Hall et al.| 2010
VII | alleles in biosynthetic network | S. cerevisiae diploid growth rate 6 Hall et al.| 2010 .

All data sets have 2% genotypes except the DNA /protein interaction data set (IV), which has s
128 genotypes. This occurs because the data set has 2 DNA sites (each of which have 4 possible a7

bases) and 3 protein sites (each of which has two possible amino acids). 498
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Fig S1: Experimental genotype-phenotype maps exhibit nonlinear phenotypes. 70
Plots show observed phenotype P,,s plotted against Poaq (Eq. @) for data sets V through VII. -
Points are individual genotypes. Error bars are experimental standard deviations in phenotype.
Red lines are the fit of the power transform to the data set. Pearson’s coefficient for each fit are 3
shown on each plot. Dashed lines are P,qq = P,ps. Bottom panels in each plot show residuals be- 74
tween the observed phenotypes and the red fit line. Points are the individual residuals. Errorbars s
are the experimental standard deviation of the phenotype. The horizontal histograms show the 76

distribution of residuals across 10 bins. The red lines are the mean of the residuals. 7
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Fig S2: High-order epistasis is present in genotype-phenotype maps. A) Panels show 7o
epistatic coefficients extracted from data sets V-VII (Table 1, data set label circled above each 7o
graph). Bars denote coefficient magnitude and sign; error bars are propagated measurement un-
certainty. Color denotes the order of the coefficient: first (5;, red), second (f;;, orange), third 7=
(Bijk, green), fourth (Bi;xi, purple), and fifth (B;jxim, blue). Bars are colored if the coefficient is 72
significantly different than zero (Z-score with p-value <0.05 after Bonferroni correction for multiple 7
testing). Stars denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled s
squares in the grid below the bars indicate the identity of mutations that contribute to the coeffi- 72
cient. The names of the mutations, taken from the original publications, are indicated to the left of 77
the grid squares. B) Sub-panels show fraction of variation accounted for by first through fifth order s
epistatic coefficients for data sets I-IV (colors as in panel A). Fraction described by each order is 7o

proportional to area. 730
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Fig S3: Nonlinear phenotypes distort measured epistatic coefficients. Sub-panels show 7
correlation plots between epistatic coefficients extracted without accounting for nonlinearity (z-axis) s
and accounting for linearity (y -axis) for data sets V-VII. Each point is an epistatic coeflicient, 7

colored by order. 735
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Fig S4: Additive coefficients are well estimated, even when nonlinearity is neglected. s
Sub-panels show correlation plots between both additive and epistatic coefficients extracted without 73
accounting for nonlinearity (z-axis) and accounting for linearity (y-axis) for data sets I-VIL. Each w0
point is an epistatic coefficient, colored by order. Error bars are standard deviations from bootstrap 7a

replicates of each fitting approach. 42
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Fig S5: Exponential fitness model leads to global nonlinearity in the g-lactamase .
data set (III). A) A recapitulation of the map used in the original publication (Weinreich et al.| s
2006). We first rank-ordered the genotypes according to the measured property (the minimum s
inhibitory concentration of a 8-lactam antibiotic against a clonal population of bacteria expressing 7
that protein). This gave us 13 classes of genotypes, as some genotypes had equivalent MIC values. s
We then drew 3,000 random fitness values from the distribution W = 14z, where x is an exponential 79
distribution centered around = 0.1. We took the top 13 values from this distribution and assigned 7o
them, in value order, to each of the 32 p-lactamase genotypes. Panel A shows the average and
standard deviation of the fitness values W assigned to each of these ranks if we repeat the protocol 7
above 1,000 times. B) Best fit for the power-transform for data set III. Solid red line denotes the 3

best fit (nonlinear). This fit successfully pulls out the original distribution of W. 754
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