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Abstract 7

High-order epistasis has been observed in many genotype-phenotype maps. These multi-way inter- 8

actions could have profound implications for evolution and may be useful for dissecting complex 9

traits. Previous analyses have assumed a linear genotype-phenotype map, and then applied a linear 10

high-order epistasis model to dissect epistasis. The assumption of linearity has not been tested 11

in most of these data sets. Using simulations, we demonstrate that neglecting nonlinearity leads 12

to spurious high-order epistasis. We find we can account for this nonlinearity in simulated maps 13

using a power transform. We then measure and account for nonlinearity in experimental maps 14

for which high-order epistasis has been previously reported. When applied to seven experimen- 15

tal genotype-phenotype maps, we find that five of the seven exhibited nonlinearity. Correcting 16

for this nonlinearity had a large effect on the magnitudes and signs of the estimated high-order 17

epistatic coefficients, but only a minor effect on additive and pairwise epistatic coefficients. Even 18

after accounting for nonlinearity, we found statistically significant fourth-order epistasis in every 19

map studied. One map even exhibited fifth-order epistasis. The contributions of high-order epis- 20

tasis to the total variation in the map ranged from 2.2% to 31.0%, with an average across maps 21

of 12.7%. Our work describes a simple method to account for nonlinearity in binary genotype- 22

phenotype maps. Further, it provides strong evidence for extensive high-order epistasis, even after 23

nonlinearity is taken into account. 24
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Introduction 25

Epistasis is an important feature of genotype-phenotype maps (Wolf et al. 2000; Phillips 2008; 26

Breen et al. 2012). It provides powerful insights for dissecting complex traits and regulatory 27

pathways (Carlborg and Haley 2004; Shao et al. 2008; Hill et al. 2008; Wu and Lin 2006; 28

Sackton and Hartl 2016). Further, it can play important roles in shaping evolutionary dynamics 29

and outcomes (Poon and Chao 2005; Weinreich et al. 2006; Blount et al. 2008; Bridgham et al. 30

2009; Stern and Orgogozo 2009; Bloom et al. 2010; Østman et al. 2011; Pollock et al. 2012; 31

Salverda et al. 2011; Breen et al. 2012; Soylemez and Kondrashov 2012; Dickinson et al. 2013; de 32

Visser and Krug 2014; Harms and Thornton 2014; Kryazhimskiy et al. 2014; Shah et al. 2015). 33

Recent work has revealed “high-order” epistasis—that is, interactions between three, four, and 34

even more mutations (Ritchie et al. 2001; Segrè et al. 2005; Xu et al. 2005; Tsai et al. 2007; 35

Imielinski and Belta 2008; Matsuura et al. 2009; da Silva et al. 2010; Pettersson et al. 2011; 36

Wang et al. 2012; Weinreich et al. 2013; Hu et al. 2013; Sun et al. 2014; Anderson et al. 37

2015; Yokoyama et al. 2015). High-order epistasis raises some intriguing possibilities. If it can be 38

interpreted mechanistically, it may help dissect the complex architecture of biological systems (Lehár 39

et al. 2008; Hu et al. 2011, 2013; Taylor and Ehrenreich 2015). Conversely, neglecting high-order 40

epistasis could introduce bias into analyses of low-order epistasis (Otwinowski and Plotkin 2014). 41

High-order epistasis also has profound implications for evolution (Weinreich et al. 2013). Epistasis 42

creates temporal dependency between mutations: the effect of a mutation depends strongly on 43

specific mutations that fixed earlier in time (Bedau and Packard 2003; Desai 2009). High-order 44

epistasis could, in principle, lead to long-range dependency across the map, such that a mutation 45

has a different effect when introduced first, second, third, or even later in an evolutionary trajectory. 46

This would amplify the importance of processes like contingency and entrenchment, which depend 47

on mutations having different effects when introduced early or late in an evolutionary trajectory 48

(Shah et al. 2015; Harms and Thornton 2014; Bridgham et al. 2009; Pollock et al. 2012). 49

Because the word epistasis is used in different, sometimes contradictory, ways in the literature 50

(Phillips 2008), we will be explicit: we use epistasis to refer to the quantitative difference in the 51
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phenotypic effect of mutations introduced together versus separately (sometimes called statistical 52

epistasis) (Cordell et al. 2001; Phillips 1998, 2008). High-order epistasis is the difference in 53

phenotype for a combination of mutations introduced together relative to the sum of their individual 54

and low-order epistatic effects (Horovitz 1996; Cordell et al. 2001; Cordell 2002; Poelwijk et al. 55

2015). 56

High-order epistasis is thought provoking, but its biological and evolutionary interpretation is 57

unclear. A major deficiency of previous studies is the assumption that phenotypes scale linearly 58

(Anderson et al. 2015; Poelwijk et al. 2015; Weinreich et al. 2013; Yokoyama et al. 2015). If 59

these maps are nonlinear, high-order epistasis may be an artifact arising from the assumption of 60

linearity (Phillips 2008; Mani et al. 2008). 61

The difficulty presented by nonlinearity can be illustrated with an example. Imagine two muta- 62

tions to an enzyme. When expressed in bacteria, these mutant enzymes exhibit negative epistasis on 63

bacterial growth rate. This epistasis could have two origins. The first is at the level of the enzyme 64

chemistry itself: maybe the mutations have a specific interaction that alters enzyme chemistry. 65

This epistasis at the level of the enzyme directly translates to epistasis in growth rate (Fig 1A). 66

Alternatively, epistasis could reflect a nonlinear relationship between enzyme activity and growth 67

rate. When activity is low, small changes in activity lead to large changes in growth rate; when 68

activity is high already, improving the activity further has little effect on growth rate. In this 69

scenario, additive mutations at the level of enzyme chemistry will still exhibit negative epistasis at 70

the level of bacterial growth rate (Fig 1B). 71

Epistasis arising at the level of the enzyme is genotypic epistasis: the genotype of the background 72

determines non-additivity. Epistasis arising from growth-rate saturation is phenotypic epistasis: the 73

phenotype of the background determines non-additivity. For clarity, we will refer to the former as 74

genotypic epistasis and the latter as phenotypic nonlinearity throughout the text. Epistasis arising 75

from phenotypic linearity has been referred to as prevailing magnitude epistasis (de Visser et al. 76

2009), global epistasis (Kryazhimskiy et al. 2014), and diminishing-returns epistasis (when effect- 77

size decreases with increasing numbers of mutations) (Chou et al. 2011; MacLean et al. 2010; 78

Otto and Feldman 1997; Tokuriki et al. 2012). 79
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Linear models of epistasis assume genotypic epistasis—a scenario like Fig 1A—and attribute all 80

variation in the effects of mutations to specific interactions between them. But this, potentially, 81

conflates very different aspects of a biological system. If the map between mutations and observable 82

is nonlinear, some fraction of the variation in the observable arises from nonlinearity. A linear model 83

will naively partition this into the specific interactions. This will both overestimate the magnitude 84

of genotypic epistasis and could even scramble the signs of specific epistatic coefficients. While the 85

effects of nonlinearity can be understood intuitively for a two-site system, the effects on a high-order 86

epistatic interaction are much more difficult to predict. Further, describing a nonlinear phenotype 87

as specific interactions between mutations would miss the main “biology” of the system—in this 88

case, saturation of growth rate. 89

These two origins of epistasis also have profoundly different evolutionary implications. Geno- 90

typic epistasis reveals specific collections of mutations that open or close evolutionary trajectories, 91

potentially revealing highly-specific evolutionary contingencies. In contrast, epistasis arising from 92

phenotypic nonlinearity reveals general limits on evolution, but does not imply radical dependence 93

on a specific genetic background to follow a given evolutionary trajectory (Harms and Thornton 94

2014). For example, recent work has shown that pairwise genotypic epistasis leads to sequence-level 95

unpredictability, while a nonlinear map leads to predictable phenotypes in evolution (Kryazhimskiy 96

et al. 2014). 97

Given these considerations, we set out separate the effects of high-order genotypic epistasis and 98

phenotypic nonlinearity in genotype-phenotype maps. We start with simulated maps with known 99

genotypic epistasis and phenotypic nonlinearity, and then turn our attention to experimental maps 100

in which high-order epistasis has been noted previously (Weinreich et al. 2013; Anderson et al. 101

2015; Poelwijk et al. 2015). Through this analysis, we find that both phenotypic nonlinearity and 102

high-order genotypic epistasis make large contributions to experimental genotype-phenotype maps. 103
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Materials and Methods 104

Experimental data sets 105

We collected a set of published genotype-phenotype maps for which high-order epistasis had been 106

reported previously. Measuring an Lth-order interaction requires knowing the phenotypes of all 107

binary combinations of L mutations—that is, 2L genotypes. The data sets we used had exhaustively 108

covered all 2L genotypes for five or six mutations. These data sets cover a broad spectrum of 109

genotypes and phenotypes. Genotypes included point mutations to a single protein (Weinreich 110

et al. 2006), point mutations in both members of a protein/DNA complex (Anderson et al. 2015), 111

random genomic mutations (Khan et al. 2011; de Visser et al. 2009), and binary combinations of 112

alleles within a biosynthetic network (Hall et al. 2010). Measured phenotypes included selection 113

coefficients (Weinreich et al. 2006; Khan et al. 2011; de Visser et al. 2009), molecular binding 114

affinity (Anderson et al. 2015), and yeast growth rate (Hall et al. 2010). (For several data sets, 115

the “phenotype” is a selection coefficient. We do not differentiate fitness from other properties for 116

our analyses; therefore, for simplicity, we will refer to all maps as genotype-phenotype maps rather 117

than specifying some as genotype-fitness maps). All data sets had a minimum of three independent 118

measurements of the phenotype for each genotype. All data sets are available in a standardized 119

ascii text format. 120

Genotypic epistasis model 121

We dissected genotypic epistasis using a linear epistasis model that decomposes binary genotype- 122

phenotype maps into coefficients that capture contributions from individual mutations and inter- 123

actions between them. These have been discussed extensively elsewhere (Heckendorn and Whitley 124

1999; Poelwijk et al. 2015; Weinreich et al. 2013); however, in the interest of clarity, we will 125

briefly and informally review them here. 126

A linear, high-order epistasis model transforms a genotype-phenotype map into an orthogonal 127

set of vectors (i.e. a change of basis) that account for all variation in the map (Fig 2). The lengths 128

and signs of the vectors are epistatic coefficients that quantify the effect of mutations or interactions 129
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between them. A binary map with 2L genotypes requires 2L epistatic coefficients and captures all 130

interactions, up to Lth-order, between them. This is conveniently described in matrix notation. 131

~P = X~β : (1)

a vector of phenotypes ~P can be transformed into a vector of epistatic coefficients ~β using a 2L×2L 132

decomposition matrix that encodes which coefficients contribute to which phenotypes. If X is 133

invertible, one can determine ~β from a collection of measured phenotypes by 134

~β = X−1 ~P . (2)

X can be formulated in a variety of ways (Poelwijk et al. 2015), but a common form in the genetics 135

literature is derived from Walsh polynomials (Heckendorn and Whitley 1999; Weinreich et al. 2013; 136

Poelwijk et al. 2015). In this form, X is a Hadamard matrix. Conceptually, the transformation 137

identifies the geometric center of the genotype-phenotype map and then measures the average effects 138

of each mutation and combination of mutations in this “average” genetic background (Fig 2). We 139

encoded each mutation in each site in each genotype as -1 (wildtype) or +1 (mutant) (Heckendorn 140

and Whitley 1999; Weinreich et al. 2013; Poelwijk et al. 2015). This leads to the following matrix 141

for a three-mutation genotype-phenotype map: 142



P000

P100

P010

P001

P110

P101

P011

P111



=



1 −1 −1 1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1





β0

βi

βj

βk

βij

βik

βjk

βijk



= Xwalsh
~β. (3)
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One data set (IV, Table I) has four possible states (A, G, C and T) at two of the sites. We 143

encoded these using the WYK tetrahedral-encoding scheme(Zhang and Zhang 1991; Anderson et al. 144

2015). Each state is encoded by a three-bit state. The ancestral state is given the bits (1, 1, 1). 145

The remaining states are encoded with bits that form corners of a tetrahedron. For example, the 146

ancestral state of site 1 is G and encoded as the (1, 1, 1) state. The remaining states are encoded 147

as follows: A is (1,−1,−1), C is (−1, 1,−1) and T is (1,−1,−1). 148

Nonlinear scales 149

We accounted for nonlinearity in the genotype-phenotype map by a power transformation (see 150

Results). The independent variable for the transformation was ~P add, the predicted phenotypes of 151

all genotypes assuming purely additive affects for each mutation. The estimated additive phenotype 152

of genotype i, is given by: 153

P̂add,i =

j≤L∑
j=1

〈∆Pj〉xi,j (4)

where 〈∆Pj〉 is the average effect of mutation j across all backgrounds, xi,j is an index that encodes 154

whether or not mutation j is present in genotype i, and L is the number of sites. The dependent 155

variables are the observed phenotypes ~Pobs taken from the genotype-phenotype data. 156

We use nonlinear least-squares regression to fit and estimate the power transformation from 157

~Padd to ~Pobs : 158

~Pobs ∼ τ( ~̂Padd; λ̂, Â, B̂) + ε̂,

where ε is a residual and τ is a power transform function. This is given by: 159

~Pobs =
( ~̂Padd +A)λ + 1

λ(GM)λ−1
+B,

where A and B are translation constants, GM is the geometric mean of ( ~̂Padd + A) , and λ is a 160

scaling parameter. We used standard nonlinear regression techniques to minimize d: 161

d = (~Pscale − ~Pobs)
2 + ε.
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We then reversed this transformation to linearize Pobs using the estimated parameters Â, B̂, and 162

λ̂. We did so by the back-transform: 163

Pobs,linear = {λ̂(GM)λ−1(Pobs − B̂)− 1}1/λ̂ − Â. (5)

Experimental uncertainty 164

We used a bootstrap approach to propagate uncertainty in measured phenotypes into uncertainty in 165

genotypic epistatic coefficients. To do so we: 1) calculated the mean and standard deviation for each 166

phenotype from the published experimental replicates; 2) sampled the uncertainty distribution for 167

each phenotype to generate a pseudoreplicate vector ~Ppseudo that had one phenotype per genotype, 168

just like ~P ; 3) rescaled ~Ppseudo using a power-transform; and 4) determined the epistatic coefficients 169

for ~Ppseudo,scaled. We then repeated steps 2-4 until convergence. We determined the mean and 170

variance of each epistatic coefficient after every 50 pseudoreplicates. We defined convergence as 171

the mean and variance of every epistatic coefficient changed by < 0.1 % after addition of 50 more 172

pseduoreplicates. On average, convergence required ≈ 100, 000 replicates per genotype-phenotype 173

map. Finally, we used a z-score to determine if each epistatic coefficient was significantly different 174

than zero. To account for multiple testing, we applied a Bonferroni correction to all p-values (Abdi 175

2007). 176

Computational methods 177

Our full epistasis software package—written in Python3 extended with Numpy and Scipy (van der 178

Walt et al. 2011)—is available for download via github (https://harmslab.github.com/epistasis). 179

We used the python package scikit-learn for all regression (Pedregosa et al. 2011). Plots were 180

generated using matplotlib and jupyter notebooks (Hunter 2007; Perez and Granger 2007). 181
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Results & Discussion 182

Phenotypic nonlinearity induces apparent high-order genotypic epistasis 183

Our first goal was to understand how phenotypic nonlinearity affects estimates of genotypic high- 184

order epistasis. We constructed an additive five-site binary genotype-phenotype map, applied in- 185

creasing amounts of nonlinearity, and then decomposed the map using a high-order genotypic 186

epistasis model. To add nonlinearity, we transformed each phenotype using a simple saturation 187

model: 188

Pg,trans =
(1 +K)Pg
1 +KPg

, (6)

where Pg is the linear phenotype of genotype g, Pg,trans is the transformed phenotype of genotype 189

g, and K is a scaling constant. As K → 0, the map becomes linear. As K increases, mutations 190

have systematically smaller effects when introduced into backgrounds with higher phenotypes. We 191

calculated Pg for all 2L binary genotypes using the random, additive coefficients shown in Fig 3A. 192

We then calculated Pg,trans using the relatively shallow (K = 2) saturation curve shown in Fig 3B. 193

Finally, we applied a linear epistasis model to Pg,trans to extract epistatic coefficients. 194

We found that nonlinearity in the genotype-phenotype map induced extensive genotypic, high- 195

order epistasis (Fig 3C). We observed epistasis up to the fourth order, despite building the map with 196

additive coefficients. This result is unsurprising: the only mechanism by which a linear model can 197

account for variation in phenotype is through epistatic coefficients. When given a nonlinear map, 198

it partitions the variation arising from nonlinearity into specific interactions between mutations. 199

This high-order epistasis is mathematically valid, but does not capture the major feature of the 200

map—namely, saturation. Indeed, this epistasis is deceptive, as it is naturally interpreted as specific 201

interactions between mutations. For example, this analysis identifies a specific interaction between 202

mutations one, two, four, and five (Fig 3C, purple). But this four-way interaction is an artifact of 203

the nonlinearity in phenotype of the map, rather than a specific interaction. 204
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Genotypic epistasis and phenotypic nonlinearity induce different patterns 205

of nonadditivity 206

Our next question was whether we could separate the effects of phenotypic nonlinearity and geno- 207

typic epistasis in binary maps. For a pair of mutations, it is impossible to distinguish these two 208

origins of epistasis, as they give identical signals (Fig 1). As more mutations are characterized, 209

however, it may become possible to disentangle these effects. In particular, by measuring the effect 210

of a mutation across a large number of genetic backgrounds, one might be able to ask to what 211

extent the genotype versus the phenotype of each genetic background predicts mutational effects. 212

One useful approach to develop intuition about epistasis is to plot the the observed phenotypes 213

(Pobs) against the predicted phenotype of each genotype, assuming additive mutational effects 214

(Padd) (Rokyta et al. 2011; Schenk et al. 2013). In the absence of any epistasis, Pobs equals 215

Padd, because each mutation would have the same, additive effect in all backgrounds. As a result, 216

deviation from the Pobs = Padd line reflects epistasis. 217

To disentangle the effects of genotypic epistasis from phenotypic nonlinearity, we simulated 218

maps including both forms of epistasis and then constructed Pobs vs. Padd plots. We added 219

genotypic epistasis by generating random epistatic coefficients then calculating linear phenotypes 220

using Eq. 1. We introduced nonlinearity by transforming these phenotypes with Eq. 6. For each 221

genotype in these simulations, we calculated Padd as the sum of the first-order coefficients used 222

in the generating model. Pobs is the observable phenotype, including both genotypic epistasis and 223

phenotypic nonlinearity. 224

Genotypic epistasis and a phenotypic nonlinearity gave qualitatively different Pobs vs. Padd 225

plots. Fig 4A shows plots of Pobs vs. Padd for increasing phenotypic nonlinearity (left-to-right) 226

and genotypic epistasis (top-to-bottom). As phenotypic nonlinearity increases, Pobs curves system- 227

atically relative to Padd. The smallest phenotypes are underestimated and the largest phenotypes 228

overestimated, reflecting the saturation we added to the map. In contrast, genotypic epistasis 229

induces random scatter away from the Pobs = Padd line. 230

These patterns can be understood from the origins of epistasis. Genotypic epistasis is determined 231
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solely by genotype, without reference to phenotype. This leads to scatter away from the Padd = Pobs 232

line, but no systematic structure in the curve with respect to Padd. For a phenotypic nonlinearity, 233

the magnitude of the epistasis depends on the magnitude of the phenotype. This induces systematic 234

structure in the relationship between Padd and Pobs—in this case, a saturating curve. 235

Nonlinearity can be separated from genotypic epistasis 236

The Pobs vs. Padd plots suggest an approach to disentangle genotypic epistasis from nonlinearity in 237

phenotype. By fitting a function to the Pobs vs Padd curve, we can describe the observed nonlinearity 238

(Schenk et al. 2013). Once the form of the nonlinearity is known, we can then linearize the 239

phenotypes using this function. Any variation remaining after linearization (i.e. scatter) is due to 240

genotypic epistasis. 241

In the absence of knowledge about the source of the nonlinearity, a natural choice for such 242

an analysis is a power transform, which identifies a monotonic, continuous function through Pobs 243

vs. Padd. A key feature of this approach is that power-transformed data are normally distributed 244

around the fit curve (Box and Cox 1964; Carroll and Ruppert 1981) and thus appropriately scaled 245

for regression of a linear epistasis model. 246

We tested this approach using one of our simulated data sets. One complication is that, for 247

an experimental map, we would not know Padd. We determined Padd above using the additive 248

coefficients used to generate the space. These are not known in a real map. We therefore estimated 249

Padd from Pobs. We determined P̂add by measuring the average effect of each mutation across all 250

backgrounds, and then calculating P̂add for each genotype as the sum of these average effects (Eq. 251

4). 252

We then fit the power transform to Pobs vs. P̂ add (solid red line, Fig 4B). The curve captures 253

the nonlinearity added in the simulation. We linearized Pobs using the fit model (Eq. 5), and 254

then extracted high-order genotypic epistatic coefficients. The extracted coefficients were highly 255

correlated with the coefficients used to generate the map (R2 = 0.998) (Fig 4C). In contrast, 256

applying the linear epistasis model to this map without first accounting for nonlinearity gives much 257

greater scatter between the input and output coefficients (R2 = 0.934) (Fig 4D). This occurs 258

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072256doi: bioRxiv preprint 

https://doi.org/10.1101/072256
http://creativecommons.org/licenses/by/4.0/


because phenotypic variation from nonlinearity is incorrectly partitioned into the linear epistatic 259

coefficients. 260

High-order genotypic epistasis is a common feature of genotype-phenotype 261

maps 262

Our next question was whether the high-order genotypic epistasis observed in experimental maps 263

could be accounted for as an artifact of phenotypic nonlinearity. We selected seven genotype- 264

phenotype maps that had previously been reported to exhibit high-order epistasis (Table 1) and fit 265

power transforms to each dataset (Fig 5, S1). We expected some phenotypes to be multiplicative 266

(e.g. datasets I, II and IV were relative fitness), while we expected some to be additive (e.g. dataset 267

III is a free energy). Rather than asserting a scale by taking logarithms of phenotypes, we allowed 268

our power transform to capture the appropriate scale. The power-transform identified nonlinearity 269

in the majority of data sets. Of the seven data sets, three were less-than-additive (II, V, VI), two 270

were greater-than-additive (III, IV), and three were approximately linear (I, VII). All data sets gave 271

random residuals after fitting the power transform (Fig 5, S1). 272

We then linearized the data with the power transform and re-measured genotypic epistasis. In 273

an effort to avoid false positives, we took a conservative approach. We used bootstrap sampling of 274

uncertainty in the measured phenotypes to determine the uncertainty of each epistatic coefficient 275

(set Methods), and then integrated these distributions to determine whether each coefficient was 276

significantly different than zero. We then applied a Bonferroni correction to each p-value to account 277

for multiple testing. 278

Despite our conservative approach, we found high-order epistasis in every map studied (Fig 6A, 279

S2). Every data set exhibited at least one statistically significant epistatic coefficient of fourth order 280

or higher. We even detected statistically significant fifth-order genotypic epistasis (blue bar in Fig 281

6A, data set II). High-order coefficients were both positive and negative, often with magnitudes 282

equal to or greater than the second-order terms. These results reveal that high-order epistasis 283

is a robust feature of these maps, even when nonlinearity and measurement uncertainty in the 284

genotype-phenotype map is taken into account. 285
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We also dissected the relative contributions of each epistatic order to the remaining variation. 286

To do so, we created truncated epistasis models: an additive model, a model containing additive 287

and pairwise terms, a model containing additive through third-order terms, etc. We then measured 288

how well each model accounted for variation in the phenotype using a Pearson’s coefficient between 289

the fit and the data. Finally, we asked how much the Pearson coefficient changed with addition of 290

more epistatic coefficients. For example, to measure the contribution of pairwise epistasis, we took 291

the difference in the correlation coefficient between the additive plus pairwise model and the purely 292

additive model. 293

The contribution of epistasis to the maps was highly variable. For data set I, epistatic terms 294

explained 5.9% of the variation in the data. The contributions of epistatic coefficients decayed with 295

increasing order, with fifth-order epistasis only explaining 0.1% of the variation in the data. In 296

contrast, for data set II, epistasis explains 43.3% of the variation in the map. Fifth-order epistasis 297

accounts for 6.3% of the variation in the map. The other data sets had epistatic contributions 298

somewhere between these extremes. 299

Accounting for nonlinear genotype-phenotype maps alters epistatic coef- 300

ficients 301

Finally, we probed to what extent accounting for nonlinearity in phenotype altered the genotypic 302

epistatic coefficients extracted from each space. Fig 7 and S3 show correlation plots between 303

genotypic epistatic coefficients extracted both with and without a correction for nonlinearity. The 304

first-order coefficients were all highly correlated between the linear and nonlinear analyses for all 305

data sets (Fig S4). 306

For the epistatic coefficients, the degree of correlation depended on the degree of nonlinearity in 307

the dataset. Data set I—which was essentially linear—had identical epistatic coefficients depend- 308

ing whether the phenotypic scale was taken into account or not. In contrast, the other data sets 309

exhibited scatter off of the line. Data set III was particularly noteworthy. The epistatic coefficients 310

were systematically overestimated when the nonlinear scale was ignored. Two large and favorable 311

pairwise epistatic terms in the linear analysis became essentially zero when nonlinearity was taken 312
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into account. These interactions—M182T/g4205a and G283S/g4205a—were both noted as deter- 313

minants of evolutionary trajectories in the original publication (Weinreich et al. 2006); however, 314

our results suggest the interaction is an artifact of applying a linear model to a nonlinear data 315

set. Further ≈ 20% (six of 27) epistatic coefficients flipped sign when nonlinearity was taken into 316

account (Fig 7, III, bottom right quadrant). 317

Discussion 318

Nonlinearity is a common feature of genotype-phenotype maps 319

A key observation from our work is that the majority of the genotype-phenotype maps exhibit 320

nonlinearity. This is, perhaps, expected given the nonlinearity intrinsic in biological systems. Be- 321

cause these maps cover relatively large stretches of sequence space—six mutations across—factors 322

outside specific interactions between mutations come into play. While this complicates analyses of 323

genotypic epistasis, it also provides insight into the architecture of these systems. 324

The less-than-additive maps were unsurprising. Many have previously observed saturating, 325

less-than-additive maps in which mutations have lower effects when introduced into more optimal 326

backgrounds (MacLean et al. 2010; Chou et al. 2011). Such saturation has been proposed to be a 327

key factor shaping evolutionary trajectories (MacLean et al. 2010; Chou et al. 2011; Kryazhimskiy 328

et al. 2014; Tokuriki et al. 2012; Otto and Feldman 1997). Further, it is intuitive that optimizing 329

a phenotype becomes more difficult as that phenotype improves. 330

The greater-than-additive maps, in contrast, were more surprising: why would mutations have 331

a larger effect when introduced into a more favorable background? For the β-lactamase genotype- 332

phenotype map (III, Fig. 5), it appears this is an artifact of the original analysis used to generate 333

the data set. This data set describes the fitness of bacteria expressing variants of an enzyme 334

with activity against β-lactam antibiotics. The original authors measured the minimum-inhibitory 335

concentration (MIC) of the antibiotic against bacteria expressing each enzyme variant. They then 336

converted their MIC values into apparent fitness by sampling from an exponential distribution of 337

fitness values and assigning these fitness values to rank-ordered MIC values. Our epistasis model 338
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extracts this original exponential distribution (Fig S5). This result demonstrates the effectiveness 339

of our approach in extracting nonlinearity in the genotype-phenotype map. 340

The origins of the growth in the transcription factor/DNA binding data set are less clear (IV, 341

Fig. 5). The data set measures the binding free energy of variants of a transcription factor binding 342

to different DNA response elements. We are aware of no physical reason for mutations to have a 343

larger effect on free energy when introduced into a background with better binding. One possibility 344

is that the genotype-phenotype map reflects multiple features that are simultaneously altered by 345

mutations, giving rise to this nonlinear shape. This is a distinct possibility in this data set, where 346

mutations are known to alter both DNA binding affinity and DNA binding cooperativity (McKeown 347

et al. 2014). 348

Best Practice 349

Because nonlinearity is a common feature of these maps, linearity should not be assumed in 350

analyses of statistical epistasis in binary genotype-phenotype maps. Unlike pairs of mutations, 351

where nonlinearity is difficult to estimate because of the paucity of observations, the large number 352

of genotypes characterized in these maps makes it possible to detect nonlinearity directly from 353

the data. This provides information about the architecture of the system—in the form of its 354

nonlinearity—and gives confidence in the assignment of genotypic epistatic coefficients. Our soft- 355

ware pipeline automates this process. It takes any genotype-phenotype map in a standard text 356

format, fits for nonlinearity, and then estimates high-order epistasis. It is freely available for down- 357

load (https://harmslab.github.com/epistasis). 358

One important question is how the choice of nonlinear model alters the observed high-order 359

coefficients. A power transform captures the primary curvature within a data set. Use of a more 360

complicated function would shift more of the variation in the data away from genotypic epistasis 361

and into global structure in the map. Adding this complexity could be motivated by external 362

biological knowledge about the map (Schenk et al. 2013). It could also be motived by examination 363

of the Pobs vs P̂add plot. Because genotypic epistasis is scatter off the scale line, standard nonlinear 364

regression tools such as an F-test, Akaike Information criterion, and examination of fit residuals 365
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could be used to identify a nonlinear function that captures the maximum amount of phenotypic 366

variation in the data set without fitting stochastic (genotypic) variation in the data. 367

Practically, we believe the choice of a different nonlinear model would have little effect on our 368

results for these data sets. Other possible models of nonlinearity—gamma functions, exponential 369

functions, polynomials, etc.—would likely give similar curves when fit to the small amount of cur- 370

vature in these data sets. Further, our bootstrap protocol integrates over uncertainty in the power 371

transform coefficients, so higher and lower curvature fits consistent with the data are incorporated 372

into the uncertainty in the epistatic coefficients. 373

Neglecting nonlinearity entirely has variable effects on different orders of epistatic coefficients. 374

Overall, low-order coefficients were more robust to the linear assumption than high-order epistatic 375

coefficients. Data set IV is a clear example of this behavior. The map exhibited noticeable non- 376

linearity (Fig 5). The first- and second-order terms were well correlated between the linear and 377

nonlinear analyses (Fig 7, S3, S4). Higher-order terms, however, exhibited much poorer overall 378

correlation. While the R2 for second-order coefficients was 0.95, the correlation was only 0.43 for 379

third-order. This suggests that previous analyses of these data sets, which assumed linear scales, 380

are correct in their identification of the key mutations responsible for variation in the map, but 381

that their analysis of higher-order epistatic coefficients was not reliable. 382

High-order epistasis 383

Finally, our work shows that high-order epistasis is a common feature of genotype-phenotype maps. 384

Our study could be viewed as an attempt to “explain away” previously observed high-order epistasis. 385

To do so, we both accounted for nonlinearity in the map and propagated experimental uncertainty 386

to the epistatic coefficients. Surprisingly—to the authors, at least—high-order epistasis was robust 387

to these corrections. 388

High-order epistasis can make huge contributions to genotype-phenotype maps. In data set II, 389

third-order and higher epistasis accounts for fully 31.0% of the variation in the map. The average 390

contribution, across maps, is 12.7%. We also do not see a consistent decay in the contribution of 391

epistasis with increasing order. In data sets II, V and VI, third-order epistasis contributes more 392
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variation to the map than second-order epistasis. This suggests that epistasis could go to even 393

higher orders in larger genotype-phenotype maps. 394

The generality of these results across all genotype-phenotype maps is unclear. The maps we 395

analyzed were measured and published because they were “interesting,” either from a mechanistic or 396

evolutionary perspective. Further, most of the maps have a single, maximum phenotype peak. The 397

nonlinearity and high-order epistasis we observed may be common for collections of mutations that, 398

together, optimize a function, but less common in “flatter” or more random genotype-phenotype 399

maps. This can only be determined by characterization of genotype-phenotype maps with different 400

structural features. 401

The meaning of these genotypic epistatic coefficients is also an open question. What are the 402

origins of third, fourth, and even fifth-order correlations in these data sets? What, mechanistically, 403

leads to a five-way interaction between mutations? What can this epistasis tell us about the 404

biological underpinning of these maps? The evolutionary implications are also unclear. How does 405

this high-order epistasis shape evolutionary outcomes and dynamics? These, and questions like 406

them, are challenging and fascinating future avenues for further research. 407
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413

Fig 1. Epistasis can arise at the level of genotype or phenotype. A) Genotypic 414

epistasis. The leftmost panel shows a two-site genotype/enzyme-activity map. Genotypes are 415

given by numerical coordinates, with “0” denoting wildtype at a site and “1” denoting a mutation. 416

Enzyme activity is encoded both on the z-axis and as a spectrum from white to red. The middle 417

panel shows how enzyme activity (white-to-red, x-axis) maps to growth rate (white-to-blue, y-axis). 418

In this case, the map is linear. The rightmost panel shows the observed epistasis in growth rate 419

given the genotype/enzyme activity map and activity to growth rate map. B) Epistasis arising 420

from phenotypic nonlinearity. The sub panels are colored and labeled as in panel B. For this 421

map, enzyme activity behaves additively (left), but the relationship between activity and growth 422

saturates (middle). This leads to epistasis in growth rate that is indistinguishable from genotypic 423

epistasis (right). 424
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425

Fig 2: Genotypic epistasis can be quantified using Walsh polynomials. A) A genotype- 426

phenotype map exhibiting negative epistasis. Axes are genotype at position 1 (g1), genotype at 427

position 2 (g2), and phenotype (P ). For genotypic axes, “0” denotes wildtype and “1” denotes a 428

mutant. Phenotype is encoded both on the P -axis and as a spectrum from white to blue. The 429

map exhibits negative epistasis: relative to wildtype, the effect of the mutations together (P11 = 2) 430

is less than the sum of the individual effects of mutations (P10 + P01 = 1 + 2 = 3). B) The 431

map can be decomposed into epistatic coefficients using a Walsh polynomial. Geometrically, one 432

finds the center of the genotype-phenotype map (green sphere). The first-order coefficients β1 and 433

β2 (red arrows) are the average effect of each mutation relative to this center. The second-order 434

coefficient β12 (orange arrow) is the magnitude and sign of the vector, along the phenotype axis, 435

between the average phenotype and the line drawn between P00 and P11 (the “fold” in the map). 436

C) The genotype-phenotype map transformed into the Walsh space. Axes are epistatic coefficients 437

β1, β2 and β12. Each phenotype, relative to the center of the space, is a linear sum of all epistatic 438

coefficients (noted on the figure for P11 as dimensions). 439
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440

Fig 3: Nonlinearity in phenotype creates spurious high-order epistatic coefficients. 441

A) Simulated, random, first-order epistatic coefficients. The mutated site is indicated by panel 442

below the bar graph; bar indicates magnitude and sign of the epistatic coefficient. B) A nonlinear 443

map between a linear phenotype and a saturating, nonlinear phenotype. The first-order coefficients 444

in panel A are used to generate a linear phenotype, which is then transformed by the function shown 445

in B. C) Epistatic coefficients extracted from the genotype-phenotype map generated in panels A 446

and B. Bars denote coefficient magnitude and sign. Color denotes the order of the coefficient: first 447

(βi, red), second (βij , orange), third (βijk, green), fourth (βijkl, purple), and fifth (βijklm, blue). 448

Filled squares in the grid below the bars indicate the identity of mutations that contribute to the 449

coefficient. 450

451
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452

Fig 4: Genotypic epistasis and phenotypic nonlinearity induce different patterns 453

of nonadditivity. A) Patterns of nonadditivity for increasing genotypic epistasis and phenotypic 454

nonlinearity. Main panel shows grid ranging from no epistasis (bottom left) to high genotypic 455

epistasis and nonlinearity (top right). Insets in sub-panels show added nonlinearity. Going from 456

left to right: K = 0, K = 2, K = 4. Epistatic coefficient plots to right show magnitude of input 457

genotypic epistasis, with colors and annotation as in Fig 3C. B) Plot of Pobs against P̂add for the 458
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middle sub panel in panel A. Red line is the fit of the power transform to these data. C) Correlation 459

between epistatic coefficients input into the simulation and extracted from the simulation after 460

correction for nonlinearity with the power transform. Each point is an epistatic coefficient, colored 461

by order. The Pearson’s correlation coefficient is shown in the upper-left quadrant. D) Correlation 462

between epistatic coefficients input into the simulation and extracted from the simulation without 463

application of the power transform. 464

465
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466

Fig 5: Experimental genotype-phenotype maps exhibit nonlinear phenotypes. Plots 467

show observed phenotype Pobs plotted against P̂add (Eq. 4) for data sets I through IV. Points are 468

individual genotypes. Error bars are experimental standard deviations in phenotype. Red lines are 469

the fit of the power transform to the data set. Pearson’s coefficient for each fit are shown on each 470

plot. Dashed lines are Padd = Pobs. Bottom panels in each plot show residuals between the observed 471

phenotypes and the red fit line. Points are the individual residuals. Errorbars are the experimental 472

standard deviation of the phenotype. The horizontal histograms show the distribution of residuals 473

across 10 bins. The red lines are the mean of the residuals. 474

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072256doi: bioRxiv preprint 

https://doi.org/10.1101/072256
http://creativecommons.org/licenses/by/4.0/


475

Fig 6: High-order epistasis is present in genotype-phenotype maps. A) Panels show 476

epistatic coefficients extracted from data sets I-IV (Table 1, data set label circled above each graph). 477

Bars denote coefficient magnitude and sign; error bars are propagated measurement uncertainty. 478

Color denotes the order of the coefficient: first (βi, red), second (βij , orange), third (βijk, green), 479

fourth (βijkl, purple), and fifth (βijklm, blue). Bars are colored if the coefficient is significantly 480

different than zero (Z-score with p-value < 0.05 after Bonferroni correction for multiple testing). 481

Stars denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled squares in 482

the grid below the bars indicate the identity of mutations that contribute to the coefficient. The 483

names of the mutations, taken from the original publications, are indicated to the left of the grid 484

squares. B) Sub-panels show fraction of variation accounted for by first through fifth order epistatic 485

coefficients for data sets I-IV (colors as in panel A). Fraction described by each order is proportional 486

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072256doi: bioRxiv preprint 

https://doi.org/10.1101/072256
http://creativecommons.org/licenses/by/4.0/


to area. 487
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488

Fig 7: Nonlinear phenotypes distort measured epistatic coefficients. Sub-panels show 489

correlation plots between epistatic coefficients extracted without accounting for nonlinearity (x-axis) 490

and accounting for linearity (y-axis) for data sets I-IV. Each point is an epistatic coefficient, colored 491

by order. Error bars are standard deviations from bootstrap replicates of each fitting approach. 492
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Table 1 493

ID genotype phenotype N reference

I scattered genomic mutations E. coli fitness 5 (Khan et al. 2011)

II chromosomes in asexual fungi A. niger fitness 5 (de Visser et al. 2009)

III protein point mutants bacterial fitness 5 (Weinreich et al. 2006)

IV DNA/protein point mutants in vitro DNA/protein binding affinity 5 (Anderson et al. 2015)

V chromosomes in asexual fungi A. niger fitness 5 (de Visser et al. 2009)

VI alleles in biosynthetic network S. cerevisiae haploid growth rate 6 (Hall et al. 2010)

VII alleles in biosynthetic network S. cerevisiae diploid growth rate 6 (Hall et al. 2010)

494

495

All data sets have 2L genotypes except the DNA/protein interaction data set (IV), which has 496

128 genotypes. This occurs because the data set has 2 DNA sites (each of which have 4 possible 497

bases) and 3 protein sites (each of which has two possible amino acids). 498
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708

709

Fig S1: Experimental genotype-phenotype maps exhibit nonlinear phenotypes. 710

Plots show observed phenotype Pobs plotted against P̂add (Eq. 4) for data sets V through VII. 711

Points are individual genotypes. Error bars are experimental standard deviations in phenotype. 712

Red lines are the fit of the power transform to the data set. Pearson’s coefficient for each fit are 713

shown on each plot. Dashed lines are Padd = Pobs. Bottom panels in each plot show residuals be- 714

tween the observed phenotypes and the red fit line. Points are the individual residuals. Errorbars 715

are the experimental standard deviation of the phenotype. The horizontal histograms show the 716

distribution of residuals across 10 bins. The red lines are the mean of the residuals. 717
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718

Fig S2: High-order epistasis is present in genotype-phenotype maps. A) Panels show 719

epistatic coefficients extracted from data sets V-VII (Table 1, data set label circled above each 720

graph). Bars denote coefficient magnitude and sign; error bars are propagated measurement un- 721

certainty. Color denotes the order of the coefficient: first (βi, red), second (βij , orange), third 722

(βijk, green), fourth (βijkl, purple), and fifth (βijklm, blue). Bars are colored if the coefficient is 723

significantly different than zero (Z-score with p-value <0.05 after Bonferroni correction for multiple 724

testing). Stars denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled 725

squares in the grid below the bars indicate the identity of mutations that contribute to the coeffi- 726

cient. The names of the mutations, taken from the original publications, are indicated to the left of 727

the grid squares. B) Sub-panels show fraction of variation accounted for by first through fifth order 728

epistatic coefficients for data sets I-IV (colors as in panel A). Fraction described by each order is 729

proportional to area. 730
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731

Fig S3: Nonlinear phenotypes distort measured epistatic coefficients. Sub-panels show 732

correlation plots between epistatic coefficients extracted without accounting for nonlinearity (x-axis) 733

and accounting for linearity (y -axis) for data sets V-VII. Each point is an epistatic coefficient, 734

colored by order. 735
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736

737

Fig S4: Additive coefficients are well estimated, even when nonlinearity is neglected. 738

Sub-panels show correlation plots between both additive and epistatic coefficients extracted without 739

accounting for nonlinearity (x-axis) and accounting for linearity (y-axis) for data sets I-VII. Each 740

point is an epistatic coefficient, colored by order. Error bars are standard deviations from bootstrap 741

replicates of each fitting approach. 742
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743

Fig S5: Exponential fitness model leads to global nonlinearity in the β-lactamase 744

data set (III). A) A recapitulation of the map used in the original publication (Weinreich et al. 745

2006). We first rank-ordered the genotypes according to the measured property (the minimum 746

inhibitory concentration of a β-lactam antibiotic against a clonal population of bacteria expressing 747

that protein). This gave us 13 classes of genotypes, as some genotypes had equivalent MIC values. 748

We then drew 3,000 random fitness values from the distribution W = 1+x, where x is an exponential 749

distribution centered around x̄ = 0.1. We took the top 13 values from this distribution and assigned 750

them, in value order, to each of the 32 β-lactamase genotypes. Panel A shows the average and 751

standard deviation of the fitness values W assigned to each of these ranks if we repeat the protocol 752

above 1,000 times. B) Best fit for the power-transform for data set III. Solid red line denotes the 753

best fit (nonlinear). This fit successfully pulls out the original distribution of W . 754
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