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ABSTRACT

Adaptation and survival in fluctuating environments is an evolutionary challenge faced

by organisms. Epigenetic switches (bistable, molecular systems built from self-reinforcing

feedback loops) have been suggested as a mechanism of bet-hedging and adaptation to fluc-

tuating environments. These epigenetic systems are capable of spontaneously switching be-

tween phenotypes in the absence of DNA mutation and these phenotypes are stably inherited

through multiple cell generations. The extent to which epigenetic switches outcompete adap-

tation through genetic mutation in fluctuating environments remains unexplored. To better

understand the conditions that select for epigenetic switching, we used computer simulation

to evolve a mechanistic model of a self-activating genetic circuit, which can adapt genetically

and exhibit epigenetic switching. We evolved this model in a fluctuating environment under

different selection pressures, mutation step-sizes, population sizes, and fluctuation frequen-

cies. There was a trade-off between minimizing the adaptation time after each environmental

transition and increasing the robustness of the phenotype during the constant environment

between transitions. We show that surviving lineages evolved bistable, epigenetic switching

to adapt quickly in fast fluctuating environments, whereas genetic adaptation was favored

in slowly fluctuating environments. For some evolutionary conditions, a strategy emerged

where the population adapted genetically between two bistable genotypes.

INTRODUCTION

Populations often need to adapt to new environments in order to survive. Classic models

of genetic adaptation presume the emergence of random genetic mutations, which can gen-

erate novel phenotypes that are then selected for by the new environment [1]. Under some

circumstances, e.g. small populations or fast fluctuating environments, the spontaneous

appearance of a beneficial mutation might be too infrequent and, thus, some organisms

may induce genetic variation to accelerate adaptation to a new environment. Examples

include adaptive mutation, where genetic variation occurs in response to the environment

[2], directed mutation, where non-random and useful mutations are induced [3], and cryp-

tic variation, where non-neutral mutations accumulate and are buffered without phenotypic

consequences until the environment changes [4].

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072199doi: bioRxiv preprint 

https://doi.org/10.1101/072199


Alternatively, many organisms have evolved biochemical networks that directly sense

environmental cues and induce adapted phenotypes to the new environment (known as

“phenotypic plasticity”). The frequency of environmental change, the accuracy of cues,

the penalty of non-adaptation, as well as the cost of producing the sensing machinery will

determine the advantage of phenotypic plasticity [5, 6].

A third option is to generate spontaneous phenotypic variation (i.e. not in response to

the environment) but restrict this variation to specific phenotypic states. This is possible

through the evolution of epigenetic switches, where multiple stable phenotypic states (e.g.

level of gene expression) are possible in a genetically identical population and stochastic

transitions between these states occur without genetic mutations [7]. This corresponds to

the original definition of “epigenetics” by Waddington [8], and has been proposed as one

mechanism of bet-hedging to deal with fluctuating environments [9]. Epigenetic switches can

emerge through self-reinforcing feedback loops in biochemical or genetic networks, and the

epigenetic phenotypes are heritable from mother to daughter cells. Examples of epigenetic

switches include heritable gene regulation by self-reinforcing transcription factor activity,

DNA methylation, chromatin modification, non-coding RNAs, and prions [10]. Spontaneous

transitions between epigenetic states (an “epimutation”) can occur due to biochemical fluc-

tuations and noisy gene expression, where the epimutation rate is usually much faster than

genetic mutation [11]. Epimutation generates phenotypic diversity and quick adaptation

when the new expression state is favored in the changed environment. As such, epigenetic

switches represent an alternative strategy to slower genetic adaptation and costly pheno-

typic plasticity. Epigenetic switches have been shown to occur in natural populations [12],

and to evolve as an adaptation to fluctuating selection during laboratory evolution of mi-

crobes [13, 14]. Nevertheless, the specific evolutionary conditions that lead to the selection

of epigenetic switches remain to be elucidated.

The advantage of phenotypic plasticity and epigenetic switches in fluctuating environ-

ments has been extensively studied using mathematical models and simulations [5, 15–35].

The authors analyzed the effect of different switching rates, either spontaneous or inducible

by the environment, on the population growth rate in the context of induction delays,

reliability of environmental cues, selection pressures, and environmental dynamics (see Sup-

plementary Table 1). Having phenotypic plasticity was almost always advantageous when

the associated cost was low (i.e. small induction delays, environmental cues reliably switch
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cells to optimal adapted phenotypes, small metabolic burden of biochemical network). In

conditions where phenotypic plasticity was disfavored or not available, the authors showed

that an epigenetic switch conferred an advantage when the spontaneous epimutation rates

matched the environmental fluctuation rate and when selection pressures on fit/unfit phe-

notypes were symmetric between the two different environments.

These theoretical models did not explicitly include genetic mutation, a competing process

that occurs in all organisms. Moreover, many models assumed a non-evolving population

and the pre-existence of an epigenetic switch with discrete phenotypes, each optimal in a

particular environment. These simplified models often had analytical solutions, however,

the absence of population dynamics and genetic adaptation might lead to model-specific

idiosyncrasies. For example, many epigenetic switches maximized long-term growth rate by

never switching and “ignoring” the environmental transitions [19, 21, 22]. The evolutionary

transition from favoring switching vs non-switching was abrupt and exhibited characteristics

of a first-order phase transition [22]. However, a non-switching strategy might be destabilized

by including competition from a continuous range of genotype-phenotypes accessible through

genetic mutation.

A self-activating gene is the simplest genetic circuit that can simultaneously adapt genet-

ically and exhibit epigenetic switching. Recent work by Soyer and colleagues used computer

simulation to evolve a self-activating gene in a population of cells surviving in a fluctuating

environment [27, 36]. Each generation, they simulated the stochastic gene expression (i.e.

phenotype) for each cell with a set of biophysical parameters (i.e. genotype). They modelled

the evolutionary process for a population of size N using a modified Wright-Fisher model

with selection and mutation. Cells with phenotypes that best matched the current environ-

ment were preferentially selected to populate the next generation. Each selected cell could

mutate its genotype with a fixed probability u. The environment fluctuated with frequency

ν between two discrete states where each environment selected a different gene expression

level. The authors concluded from their results that bistability and epigenetic switching

were an accidental byproduct of selection for increased nonlinearity.

Here, we used a similar model to simulate the evolution of a self-activating gene over a

wide range of selection pressures, mutation rates, mutation step-sizes, population sizes, and

environmental fluctuation frequencies. By tracking genotypes and individual lineages that

persisted –with or without mutations– across generations, we show that each type of strat-
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egy (epigenetic switching or genetic adaptation) was selected under different evolutionary

conditions. In fast fluctuating environments, the surviving lineages evolved bistable, epige-

netic switching as a strategy, where as genetic adaptation was favored in slowly fluctuating

environments. Importantly, we show that epigenetic switching is not an accidental byprod-

uct and that it was selected for in fast fluctuating environments precisely because it adapted

more quickly through epimutation. When the mutation step-size (M) was small in slowly

fluctuating environments, a hybrid adaptation strategy emerged where a bistable popula-

tion would adapt genetically. We observed a trade-off between minimizing the adaptation

time after each environmental transition and increasing the robustness of the phenotype

during the constant environment between transitions. The balance between these quantities

was modulated by the nonlinearity (Hill coefficient, nH) in the genetic circuit with smaller

values resulting in faster adaptations and larger values resulting in more robust gene ex-

pression. We show that each adaptation strategy favors a different aspect of this trade-off:

epimutation in epigenetic switching allows faster adaptation, while the adapted genotypes

via genetic adaptation are more robust to stochastic noise during the constant environment

between transitions. This trade-off helps explain the observed gradual progression between

selected adaptation strategies.

MODELS

The self-activating gene can display a unimodal distribution (monostable) or a bimodal

distribution of protein number (bistable), depending on the underlying biophysical param-

eters (Figure 1 and Figure S1). The spontaneous transitions (i.e. epimutation) between

bistable phenotypes are driven by stochastic gene expression. Genetic mutations change

the biophysical parameters (i.e. genotype) and will modify both the distribution of protein

number (i.e. phenotype, ρ(A)) and the stochastic transition rate between bistable pheno-

types. Two qualitatively different strategies of evolutionary adaptation could emerge from

a self-activating gene. The population could evolve from one monostable distribution to an-

other by mutating its biophysical parameters after each environmental change (i.e. genetic

adaptation). Alternatively, the population could reside at a bistable solution where each

bimodal state is optimal in one of the environments and epimutations from one bistable

state to another occur over time without an underlying genetic mutation (i.e. epigenetic
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switching). In both cases, the phenotypic distribution of the population P (A) expands each

generation due to gene expression noise and mutations, but natural selection keeps it cen-

tered on the optimal protein number as determined by the fitness function of the current

environment. After an environmental change, the fitness function changes and the tail of the

phenotypic distribution with higher fitness will be selected every generation. In the case of

genetic adaptation, this selection will gradually shift the population towards the new optimal

phenotype through the accumulation of new mutations until the population is well-adapted

again. The speed of genetic adaptation depends on the rate of arrival of fitter mutations,

as well as the selection pressure. When the population applies epigenetic switching, the

phenotypic noise also includes epimutations, which increase the maladapted fraction in the

population (epimutational load). However, after the environment and the fitness function

change, the “epimutated” individuals rapidly overtake the population, quickly shifting the

distribution to the new optimal value. Thus, genetic adaptation and epigenetic switching

can directly compete as two strategies of adaptation to a fluctuating environment.

Stochastic dynamics of a self-activating gene

For simplicity, we considered two biochemical events (protein synthesis or degradation)

that either increase or decrease the number of proteins A by one molecule:

Protein synthesis :A
f(A)−−→ A+ 1 (1)

Protein degradation :A
γ·A−−→ A− 1 (2)

The synthesis rate f(A), which describes the probability per unit time that protein synthesis

occurs and that A is increased by one, is a nonlinear function of activator A:

f(A) = k ·
(
α + (1− α)

AnH

AnH +KnH
D

)
(3)

where k (proteins/unit time) represent the maximum synthesis rate, α is the basal synthesis

rate relative to k, KD (proteins) is related to the protein-DNA dissociation constant, and

nH is the degree of molecular cooperativity (i.e. Hill coefficient). The degradation rate γ ·A,

which describes the probability per unit time that protein degradation occurs and that A

is decreased by one, is a linear function of activator A where γ (1/unit time) is the protein

degradation rate constant. With no loss of generality, we defined the unit of time as τ = t ·γ,
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FIG. 1. Genetic adaptation versus epigenetic switching of a self-activating gene. (A)

Diagram of a self-activating gene that considers two biochemical events: protein synthesis with a

rate that increases with number of proteins A (i.e., positive feedback loop) and protein degradation.

On the right, a cartoon of the biophysical parameter space or genotypes (θ) of this gene circuit with

two characteristic regions: monostable (white) and bistable (pink) phenotypes. In the monostable

region, a genotype might be optimal in either one environment (e.g. LOW protein numbers, θL) or

the other (e.g. HIGH protein numbers, θH). Genetic mutations are required to change from one

solution the other (blue arrow). In the bistable region, a single genotype (e.g. θB) can display two

different phenotypes with each phenotype potentially optimal in both environments. (B) Cartoon of

the protein number (A) dynamics in an individual cell with each of the genotypes described in (A).

Monostable genotypes (θL and θH) exhibit a unimodal distribution of protein expression (ρ(A)),

whereas a bistable genotype (θB) exhibits a bimodal distribution having spontaneous transitions

between phenotypic states over time (i.e. epimutations) triggered by stochastic gene expression.

Cartoon of the population dynamics using (C) genetic adaptation or (D) epigenetic switching to

adapt after an environmental change. The fitness score function (ω; orange dashed line) and the

phenotype distribution of the population (P (A); blue line) are shown for each generation (g), and

the fraction of the population expected to be selected in the next generation (i.e. individuals with

higher fitness scores) are highlighted (blue area). The environment changes from selecting HIGH

protein numbers (light green) to select LOW protein numbers (dark green).
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FIG. 2. Evolutionary model. The environment fluctuates periodically with frequency ν. The

total number of generations spent in a constant environment (epoch) has the same length (1/ν) and

each environment (HIGH or LOW) selects for a different distribution of protein levels (phenotypes).

Each generation, we simulated the stochastic protein dynamics of a self-activating gene in each cell

across a population of size N . At the end of each simulation, the population phenotypes varied

because gene expression is stochastic and because cells can have different underlying biochemical

parameters (genotypes). The current environment in each generation assigned a fitness (ωi) to

each cell (i) based on its final protein level. We used Tournament selection (where st determines

the strength of selection) to determine the next generation of cells according to their fitness. Each

cell in the next generation was mutated with probability u, where the current set of biophysical

parameters were multiplied or divided up to a maximum step-size of M .

which allows us to substitute time t with a time-dimensionless variable (see Methods). We

used the Gillespie algorithm, a kinetic Monte Carlo method that explicitly simulates the

probabilistic dynamics of a defined set of biochemical events [37], to simulate the stochastic

dynamics of our gene circuit (see Methods).
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Evolutionary model

For simplicity, we evolved a haploid, asexual population with non-overlapping generations

in a fluctuating environment (Figure 2). The underlying biophysical parameters depend on

protein stability, protein-protein, protein-RNA, and protein-DNA interactions, which can

increase or decrease through genetic mutations. For simplicity, we allowed mutations on

the maximum synthesis rate (k), Hill coefficient (nH) and DNA dissociation constant (KD)

during our evolutionary simulations, while keeping basal activity (α = 0.25) and degradation

rate (rescaled, γ = 1) fixed. The set of variable parameters {k, nH , KD} are the genotype

(θ). The environment fluctuated periodically with frequency ν between LOW (selects for

optimal phenotype A(L) = 20 proteins) and HIGH (selects for optimal phenotype A(H) = 80

proteins). The number of generations spent in a constant environment (“epoch”) was equal

to 1/ν generations. The selective environment switched to the alternative state at the end

of an epoch. Starting from an isogenic population, we ran each evolutionary simulation for

10,000 generations. We implemented the following algorithm each generation:

1. Simulate stochastic gene dynamics of a self-activating gene in each cell given its

biophysical parameters (i.e. genotype) and initial protein level inherited from its parent in

the previous generation for 4 units of time (the cell “life span”).

2. Evaluate the fitness of each cell i based on the protein level at the end of its life span

(Ai, phenotype). The individual fitness function (ωi) is:

ω
(E)
i (Ai) =

v2

v2 + (Ai − A(E))2
(4)

where E = {L,H} is the current environment, A(E) is the optimal phenotype for each

environment, and v2 = 0.2 · A(E) is the width of the Lorentzian function. We define the

population fitness (w) as the average ΣN
i=1ω

(E)
i (Ai)/N over all cells.

3. Select the next generation using Tournament selection [38, 39], where st cells are

chosen randomly from the population. The cell with highest fitness within the chosen

cohort is cloned into the new population. This “tournament” is repeated N times with

replacement to create a new population. The tournament size (st) modulates the selection

pressure, where small st is weak selection (e.g. for st = 1, there is no selection pressure

and only genetic drift because any randomly selected individual is the tournament winner).

Increasing st leads to stronger selection and a faster selective sweep of fitter cells (e.g. for
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st = N , only the fittest individual in the entire population will be cloned into the next

generation).

4. Allow random mutations with a fixed probability (u) in each cloned cell. If a mutation

occurs, the value of each parameter in the cell genotype is updated as follows:

k′ ← k ·M r sin(φ1) cos(φ2) (5)

n′H ← nH ·M r sin(φ1) sin(φ2) (6)

K ′D ← KD ·M r cos(φ1) (7)

where M is the maximum fold change (mutation step-size), r ∼ U(0, 1) is a uniformly

distributed random value between 0 and 1, φ1,2 ∼ U(0, 2π) are uniformly distributed random

values in radian units. Unlike additive mutation, multiplicative mutation better reflects

how mutations affect thermodynamics of protein stability, protein-DNA and protein-protein

interactions [40, 41]. All mutated parameters were constrained to lie within a physiological

range that is typical for a bacterial transcription factor (see Methods).

5. If the evolutionary simulation is at the end of an epoch, then change to other environ-

ment; otherwise keep the same environment. Return to Step 1 to simulate next generation.

RESULTS

The evolutionary model was simulated over a range of population size (N = [100, 10000]),

selection pressure (st = [3, 250]), environmental fluctuation frequency (ν = [0.01, 0.1]), mu-

tation rate (u = [0.01, 0.1]), and mutation step-size (M = [1.1, 5]). We restricted these

parameters to regions where our simulations were feasible and where epigenetic switching

and genetic adaptation were competitive with one another. For example, we only considered

uN ≥ 1; otherwise, mutations were too infrequent for genetic adaptation to compete with

epigenetic switching. We verified that our results presented below were robust to alternative

assumptions, such as different models of selection, non-periodic environmental fluctuations,

a Moran model of reproduction, and alternative mutation schemes (see Methods).

To control for the possibility that bistability could be selected for reasons other than

epigenetic switching [27], we also ran a parallel deterministic simulation (CONTROL) of

the expression of the auto-activating gene in Step 1 (see Methods). Given that there is

no biochemical noise in our CONTROL simulations, cells in the bistable region display
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hysteresis and stay in the stable state closest to the inherited parental state and never

stochastically switch to the other state (i.e. no epigenetic switching).

Epigenetic adaptation to fluctuating environments

All populations initially started with a monostable genotype θ0 that was adapted to one

environment but not the other. These populations all evolved to a higher fitness solution

and strategy that was best suited for the underlying evolutionary parameters. For example,

in a fast-fluctuating environment (ν = 0.1) with small mutation step size (M = 1.1), the

population evolved to a bistable genotype θB that used epigenetic switching. Initially, the

population had a slightly higher geometric mean fitness per cycle Wcycle = 2/ν
√

Πg={cycle}wg

because it accrued benefits by being adapted to the HIGH environment despite being mal-

adapted to the LOW environment (Figure 3). We plot geometric fitness per cycle rather than

fitness per generation (w) because it better reflects the long-term growth of fitter phenotypes

[42]. During the LOW epoch that follows the HIGH epoch, the population shifted towards

higher w(L) values. The epoch was too short and mutation too weak for the population to

perfectly adapt to the new environment before it changed again. The evolutionary dynamics

in early epochs were dominated by noisy genetic adaptation of a population maladapted to

at least one of the environments, even if this implied decreasing Wcycle (Figure S2). The

“no-response” behavior, i.e. being adapted to one environment and “ignoring” the alterna-

tive state, is not a stable solution for this system. Similar to previous work, this illustrates

the importance of considering the full population dynamics in the adaptation process and

not only the long-term average fitness [43].

The sub-optimal population eventually increased the nonlinearity in gene expression

〈nH〉cycle before transitioning from a monostable to a bistable genotype at ∼ 1800 gen-

erations (Figure 3A). The bistable genotype was a global optimum in Wcycle and adaptation

occurred in a few generations after each environmental change due to epigenetic switching.

We verified that this bistable genotype was globally optimal by re-running evolutionary sim-

ulations for different initial genotypes (θ0) and for more generations (data not shown). The

epigenetic switching can be visualized by plotting the actual phenotype A from stochastic

simulation versus expected deterministic phenotype A∗(θ) of the evolving population over

an environmental cycle (Figure 3B). Bistable cells have two possible deterministic pheno-
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FIG. 3. Evolutionary trajectory of a population adapting to a fast fluctuating envi-

ronment. The initial population started from a non-optimal genotype (θ0) where k = 80, nH =

1,KD = 10 with evolutionary parameters N = 10000, ν = 0.1, st = 6, u = 0.03, and M = 1.1.

(A) The geometric mean of the population fitness per environmental cycle (Wcycle) versus the

average Hill coefficient per cycle (〈nH〉cycle). Each cycle spans a LOW (dark green) and HIGH

(light green) epoch and there are 500 environmental cycles (increasing from gray to black) over

10,000 generations for this simulation. The initial genotype was well adapted only to the HIGH

environment (see population fitness w per generation in inset), but the forces of mutation-selection

in the alternative environment gradually shifted the population to an intermediate genotype with

higher 〈nH〉cycle that lay between the two optimal phenotypes for each environment (see inset). The

population then evolved to the bistable parameter space with higher 〈nH〉cycle and Wcycle. This

final genotype had high population fitness (w) in both environments and rapidly adapted after

each environmental transition through epigenetic switching (see inset). (B) Population dynamics

for initial, intermediate, and final cycles highlighted in (A) are shown. At each generation, we plot

the joint distribution of the actual phenotype (A) from stochastic simulation and the expected

steady-state phenotype(s) A∗(θ) from the deterministic solution given the individual’s genotype.

The optimal phenotype given the environment is shown as dotted line, and the fraction of bistable

individuals in the population (fB) is listed in the top.
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types A∗(θ) as shown on the y-axis. Our data show that the final population adapted to

the fluctuating environment by finding a genotype (θB) in the biophysical parameter space

where the transition between bistable solutions was efficient.

Genetic adaptation to fluctuating environments

Monostable populations can adapt genetically through mutation after a change in en-

vironment (i.e. random walk in parameter space θ to a new monostable phenotype; see

Figure 1). If mutations are frequent and mutation step-size (M) is large, then genetic

adaptation can occur within several generations and outcompete bistable epigenetic switch-

ing. Monostable populations have potentially lower gene expression noise cost than bistable

populations (which have an increased fraction of maladapted phenotypes arising from epimu-

tations). Thus, longer epochs in a constant environment (smaller ν) should also favor genetic

adaptation over epigenetic switching.

To explore the transition from epigenetic switching to genetic adaptation, we simulated

the dynamics of evolutionary adaptation for longer epochs (smaller ν) and bigger mutation

step-size (larger M). As expected, the fraction of monostable solutions increased in these

conditions. However, the fraction of bistable individuals in the population (fB) never became

zero and even showed regular temporal and environmental patterns (Figure 4 and Figure S3).

The monostable sub-population shifted their steady state values towards the given optimal

phenotype each time the environment changed; while, the bistable sub-populations kept

their expected steady-state phenotypes A∗(θ) centered on the two optimal values, regardless

of the current environment. This co-existence is intriguing because these sub-populations

apply different adaptation strategies. If one strategy is more fit than the other, then we

would expect one to fix and the other to go extinct. However, longer simulations displayed

the same pattern and a larger population size stabilized the observed bistable fraction fB

(Figure S3). In cases where a subpopulation would go extinct, it would re-appear and

re-establish itself in subsequent generations (Figure S3). This suggests that “seeding” of

one sub-population from another through genetic mutation plays a role in the evolutionary

stability of co-existing sub-population fractions.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/072199doi: bioRxiv preprint 

https://doi.org/10.1101/072199


A
gh=h9950 gh=h9952 gh=h9974 gh=h9975 gh=h9977 gh=h9999
fBh=h0.65 fBh=h0.58 fBh=h0.33 fBh=h0.33 fBh=h0.42 fBh=h0.63

20
80

A
*(
θ)

B
is

ta
bl

e

20 80A 20 80A 20 80A 20 80A 20 80A 20 80A

20
80

A
*(
θ)

M
on

os
ta

b
le

B
gh=h9800 gh=h9802 gh=h9899 gh=h9900 gh=h9902 gh=h9999
fBh=h0.32 fBh=h0.33 fBh=h0.61 fBh=h0.60 fBh=h0.49 fBh=h0.44

20
80

A
*(
θ)

B
is

ta
bl

e

20 80A 20 80A 20 80A 20 80A 20 80A 20 80A

20
80

A
*(
θ)

M
on

os
ta

b
le

0%

>5%

Percentagehinhthehpopulation

FIG. 4. Coexistence of bistable and monostable sub-populations in the final adapted

population under multiple evolutionary conditions. Population structure and evolutionary

dynamics of adaptation to two environmental states (LOW, dark green; HIGH, light green) at

10,000 generations. Each simulation started from the same genotype and evolutionary parameters

as Fig. 3 except (A) ν = 0.04, M = 2.1 (25-generation epoch, moderate mutation step-size) and (B)

ν = 0.01, M = 5.0 (100-generation epoch, large mutation step-size). The final adapted population

contained both monostable and bistable sub-populations with bistable fraction fB (shown in pink).

For each sub-population (bistable, top; monostable, bottom), we plot the joint distribution of the

actual phenotype (A) and deterministic phenotype A∗(θ). As a reference, the optimal phenotypes

for each generation are shown as a dotted line.

Lineage analysis demonstrates that one adaptation strategy is usually dominant

each cycle

To better understand the adaptation process and evolutionary forces that generate co-

existence, it was informative to analyze the genealogy (i.e. lineages) of the current population

(see Methods). We tracked the evolutionary history of the population to elucidate those

lineages that persisted with or without mutations over one full environmental cycle (i.e.

LOW epoch + HIGH epoch; Figure S4). If a particular adaptation strategy is successful,

then we expect those lineages using that strategy to have a higher fitness and to persist over

multiple environmental cycles. More than one lineage can persist over a cycle, but fewer

than expected from coalescent theory because our population is evolving under selection and
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faces a bottleneck at each environmental transition. The weight of each persisting lineage is

proportional to the number of progeny at the end of the cycle.

An epigenetic switch can adapt with no mutation; thus, lineages with a bistable geno-

type and no mutations during a cycle were classified as having an epigenetic switching (ES)

strategy (Figure 5A). On the other hand, those lineages that had at least one monostable

genotype and accumulated mutations during a cycle were classified as having a genetic

adaptation (GA) strategy. Lineages with only bistable genotypes that accumulated muta-

tions during a cycle were classified as having a hybrid bistable adaptation (BA) strategy.

Although some of these mutations can be neutral, most of them modulated the DNA disso-

ciation constant (KD) and directly affected the rate of epigenetic switching (“epimutation”);

see Figure 5A. Thus, the mutation can be adaptive in the hybrid BA strategy, although the

circuit remained bistable and ultimately adapted through epigenetic switching.

Lineage analysis demonstrated that distinct strategies were favored in different conditions

(Figure 5B). If the environment fluctuated frequently (i.e. high ν values), the dominant

adaptation strategy was ES. In slowly fluctuating environments (i.e. low ν values), GA

was used if the mutation step-size (M) was large enough; otherwise, BA was the dominant

adaptation strategy. Interestingly, we observed a mixture of strategies across lineages (no

strategy was 100%), and the transition between preferred adaptation strategies as a function

of ν and M was gradual. These trends persisted over a range of different evolutionary

parameters, although the location of the boundaries would shift. For example, increasing

the selection pressure (st) or the mutation rate (u) shifted boundaries to favor GA, whereas

increasing population size (N) favored ES (Figure S5).

Our CONTROL simulations with deterministic dynamics (where no stochastic epigenetic

switching can occur even if the system is bistable) showed that none of the parental lineages

exhibit ES or BA; see Figure 5C. The preference for GA in simulations with deterministic

dynamics demonstrates that ES and BA are selected for by stochastic simulations precisely

because of their ability to spontaneously switch phenotypes (epimutation).

We also investigated the average fraction of bistable genotypes (〈fB〉sim) as a function

of evolutionary parameters for stochastic simulation and deterministic CONTROL (Figure

5D). In broad agreement with Figure 4, 〈fB〉sim never decreased to zero even when GA was

the preferred lineage strategy (e.g. low ν, high M). These results arise from the increased

seeding of genetic mutants (which is facilitated by higher M) from the monostable to bistable
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subpopulation. Conversely, we expect more cases of neutral or near neutral mutations

in the bistable region for smaller mutational step-sizes (M). It is exactly in this regime

where the fraction of ES parental lineages decreased whereas BA increased. However, most

lineages displaying BA in this regime also persisted into the next cycle without accumulating

any mutations and, thus, automatically switched to ES (see Figure S6 for rates of lineage

switching from one strategy to another each cycle).

Fitness reflects a trade-off between adaptation time and phenotypic robustness

Our simulations showed that different portfolios of strategies are favored for different

mutation step sizes (M) and environmental transition frequencies (ν). Bistable strategies

(ES or BA) require genotypes with large nonlinearity (high nH), whereas GA genotypes are

presumably less constrained. However, all evolutionary simulations (including GA) evolved

to average genotypes with high nonlinearity 〈nH〉sim (Figure 6A). This trend persisted in de-

terministic CONTROL simulations where ES and BA cannot occur (data not shown). The

evolution to genotypes with high nonlinearity is consistent with previous work [27]; see Dis-

cussion for our explanation why all simulations evolved to genotypes with high nonlinearity.

Strikingly, 〈nH〉sim was mostly determined by the environmental fluctuation frequency and

it increased as ν decreased (i.e. longer epochs; Figure 6A). This same trend was observed

when we measured the geometric mean fitness averaged over the whole simulation 〈Wcycle〉sim
(Figure 6B). Populations that evolved in slowly fluctuating environments had higher average

fitness and higher nonlinearity.

The geometric mean fitness per cycle, which includes the lower fitness of the transient,

maladapted population immediately after a transition in addition to the higher fitness of the

adapted population, was surprisingly insensitive to the mutation step-size (M). One might

expect that a larger mutation step size increases the mutational load and, thus, decreases the

average fitness of the final adapted population. This discrepancy suggested to us that the

population fitness cost of new mutations (mutational load) was minimal for our mutation

rate (u) when compared to other costs (e.g. gene expression noise and/or epimutational

load). In agreement with this hypothesis, increasing the mutation rate (u) generated M -

dependence in fitness, whereas decreasing the mutation rate had little effect (Figure S7).

Varying the selection pressure (st) only affected the actual 〈Wcycle〉sim values observed, but
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FIG. 5. Each adaptation strategy is favored under different evolutionary conditions

and the transition between selected strategies is gradual. (A) Illustration of epigenetic

switching (ES), bistable adaptation (BA), and genetic adaptation (GA) strategies and underlying

genotypes with fixed synthesis rate (k = 80). The bistable region of genotype space is highlighted

in pink. The phenotype distribution ρ(A) for each genotype (θ) is shown in the inset, both in linear

and logarithmic scale. BA is bistable, as seen in logarithmic scale, but appears effectively monos-

table in linear scale. This arises because KD evolves each epoch to favor one mode over the other

by decreasing the relative rates of epigenetic switching between the largest and smallest mode. (B)

Each colormap shows the fraction of parental lineages using specific adaptation strategy (ES, BA,

or GA) averaged over all cycles and ten independent replica simulations for the corresponding mu-

tation step-size (M) and environmental fluctuation frequency (ν). Each simulation ran for 10,000

generations with evolutionary parameters N = 10000, st = 6, u = 0.03 and k = 80, nH = 6 and

KD = 45 as the initial genotype (θ1). This initial genotype sped up evolutionary simulations by

being closer to final selected genotypes in all simulations. (C) Results of the CONTROL simula-

tions where gene expression dynamics are deterministic and no stochastic epigenetic switching can

occur. All lineages exhibited GA and neither bistable strategy (ES or BA) was ever selected. (D)

The corresponding bistable fraction (〈fB〉sim) averaged over all cycles and ten independent replica

simulations for the stochastic simulations (top) and deterministic CONTROL (bottom).
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FIG. 6. Population fitness depends on environmental fluctuation frequency and re-

flects a trade-off between adaptation time and phenotypic robustness. (A) Hill coeffi-

cient 〈nH〉sim averaged over ten independent replica simulations for mutation step-size (M) and

environmental fluctuation frequency (ν). (B) Average geometric mean fitness per cycle 〈Wcycle〉sim

for the same simulations. (C) Average population fitness at the second generation 〈w〉+2g and (D)

ninth generation 〈w〉+9g after an environmental transition. Evolutionary strategies with a faster

adaptation time had larger fitness after the transition (C) whereas those with robust phenotypes

tended to have a larger fitness once they adapted to the new environment (D). All simulations ran

for 10,000 generations with identical evolutionary parameters and initial genotypes as in Figure 5.

not the trend (Figure S8). Similarly, varying the population size (N) had no significant

effect on the population fitness behavior, except that results became noisier as N decreased

(Figure S9).

The trend in average geometric mean fitness 〈Wcycle〉sim as a function of ν can be un-

derstood by considering the timescales of epochs. The population fitness is always low and

maladapted when the environment first changes. Selection favors those genotypes which

produce phenotypes that better match the selection pressure in the new environment. In

this first phase (the “adaptation phase”), the fitness increases as the population adapts

through genetic adaptation (GA and BA, mutation) and/or epigenetic switching (BA or

ES, epimutation). The average population fitness two generations after each environmental

change 〈w〉+2g is M -independent and highest for the ES genotypes that emerge for large ν

(Figure 5B and Figure 6C). The rate of epimutation is faster than genetic mutation and,
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thus, ES (the dominant strategy) adapts more quickly and has a higher transient fitness.

However, all populations reach a higher fitness and become adapted to the new environment.

In this second phase (the “constant phase”), purifying selection maintains the optimal phe-

notype against perturbations from gene expression noise, mutations, and/or epimutation.

The average population fitness nine generations after each environmental change 〈w〉+9g is

mostly M -independent and highest for small ν (Figure 6D). The population spends propor-

tionally more time in the constant phase as ν decreases, which favors those strategies with

robust phenotypes (i.e. minimize frequent, maladapted phenotypes that arise from epige-

netic switching). Thus, 〈Wcycle〉sim increases and GA or BA genotypes emerge as ν decreases

because the population spends more time in the “constant phase” and epigenetic switching

does not occur or is effectively zero (see ρ(A) in Figure 5A).

These results suggest a trade-off in the evolutionary process between minimizing the

adaptation time during the adaptation phase and increasing the robustness of the phenotype

during the constant phase (Figure 6). This trend correlates with the selected Hill coefficient

value in the population 〈nH〉sim, which suggests that natural selection tunes this trade-off via

this biophysical parameter (Figure S10); see Discussion. The trade-off between two fitness

costs also explains the observed gradual transition between selected adaptation strategies

(Figure 5B). These fitness costs are continuous and can have very similar values, such that

genetic drift will dominate during the selection process. As expected, the simulations in

regimes with co-dominant strategies showed a high temporal variation in the fraction of

adaptation strategies each evolutionary cycle (Figure S11).

DISCUSSION

Epigenetic switches are selected by fast fluctuating environments

Previous theoretical work established that optimal long-term growth occurs when the

phenotype switching rate matches the environmental switching rate [15–18]. The phenotype

could switch either due to genetic adaptation with a rate that depends on the mutation rate

and mutation step-size, or due to epigenetic switching (epimutation) with a rate determined

by the underlying molecular system. In the natural world, epimutation rates are often faster

than genetic mutation rates [11], which suggests that fast fluctuating environments might
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select for epigenetic switching (ES) over genetic adaptation (GA). Previous models did not

integrate and evaluate these two competing processes in a population of cells evolving in a

fluctuating environment.

To this end, Soyer and colleagues used computer simulations to evolve a population of self-

reinforcing gene circuits (which can exhibit epigenetic switching and genetic adaptation) in

a fluctuating environment [27, 36]. Their work demonstrated the emergence of ES (bistable

genotypes) in fast fluctuating environments. However, the authors proposed that ES was

accidental and that bistability emerged as a byproduct of selection for increased nonlinearity

and higher evolvability (i.e. large changes in phenotype with small changes in genotype).

Our simulations confirm that ES emerges in fast fluctuating environments across many

different conditions (Figure 5). In agreement with Soyer and colleagues, our populations

also evolved to genotypes with high nonlinearity (Figure 6A). However, we disagree that ES

is an accidental byproduct of selection for increased nonlinearity and evolvability. Bistable

genotypes were only favored in the presence of gene expression noise when cells can stochas-

tically switch phenotypes (i.e. non-zero epimutation rate). In CONTROL simulations (i.e.

deterministic dynamics with no noise and, hence, no epimutation), we only observed GA

(Figure 5C). We conclude that ES is selected over GA in fast fluctuating environments

precisely because of the benefits of epimutation.

Larger nonlinearity increases fitness and regulates the trade-off between adaptation

time and phenotypic robustness

Starting from an arbitrary initial condition and different evolutionary conditions, all

populations evolved to a similar region of genotype space with higher fitness (data not

shown). These final genotypes often had k ∼ 80, 20 < KD < 80, and large nH . To help

understand the forces that select for large nonlinearity, we considered a simple model of an

infinite, clonal population with steady-state protein distribution ρ(A) determined by nH ,

KD and fixed k = 80. We calculated the expected fitness in LOW and HIGH environment

as a function of nH , KD (Figure S10). Our simple model demonstrates that the fitness of

genotypes θ with steady state phenotypes A∗(θ) close to the optimal values always increases

with nH regardless of KD, the specific environmental state (LOW or HIGH), or whether the

genotype is bistable.
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The increased fitness arises from better buffering of gene expression (output) against

intrinsic biochemical noise in the protein levels (input). As the nonlinearity increases, the

gene expression rate f(A) both above and below KD becomes more zero-order and less

sensitive to fluctuations in protein levels (A). For the same reason, mutations in KD are

less likely to affect steady-state protein levels and will have a smaller effect on fitness.

Thus, increasing nonlinearity leads to higher fitness because of increased robustness of gene

expression to both biochemical noise and some de novo mutations. This connection between

nonlinearity, robustness to noisy gene expression and robustness to mutations may be an

interesting example of plastogenetic congruence [36, 44, 45].

The average population fitness was mostly determined by the environmental fluctuation

frequency (ν), where fitness decreased as the epoch length decreased (Figure 6). This agrees

with previous theoretical work, which showed that the evolutionary dynamics are governed

by environmental dynamics [15, 30]. In our simulations, the correlation between fitness and

epoch length arises from the balance between two competing fitness costs: reducing the time

required to adapt every time the environment changes (adaptation phase) and increasing the

phenotypic robustness when the environment is fixed (constant phase). The ES strategy is

selected at high ν (when the population spends proportionally more time in the adaptation

phase) because it has a faster adaptation time (Figure 6C) at the cost of lower phenotypic

robustness (Figure 6D). Our work suggests that the trade-off between adaptation time and

phenotypic robustness is mostly modulated by the nonlinearity. A smaller nH increases

the stochastic transition rates of ES at high ν and a larger nH increases the phenotypic

robustness of GA at low ν.

Lineages reveal hidden selection forces

All evolved bistable and monostable genotypes were relatively close to each other (Figure

5A). Our simulations had a relatively high mutation rate (u) such that bistable genotypes

could mutate to monostable genotypes, and vice versa. The elevated rate of seeding between

these subpopulations made it challenging to distinguish whether ES (bistable) was being

selected for. It has been shown previously that individual history or genealogy can efficiently

reveal hidden selection forces. For example, Kussell and colleagues [33, 46] demonstrated

that selective pressures on a population, such as those imposed by a fluctuating environment,
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can be efficiently quantified by measurements on the surviving lineages. More recently,

Cerulus et al. [47] used life-history traits of cellular growth to show that high single-cell

variance in growth rate can be beneficial for the population, and that this benefit depends

on the epigenetic inheritance of the growth rate between mother and daughter cells.

To this end, we analyzed the strategy of lineages across multiple cycles during our simula-

tions. Lineage analysis demonstrated that apparent coexistence of bistable and monostable

subpopulations was a transient phenomenon, and one type of strategy was typically dom-

inant across lineages (Figure 5). Our analysis suggests that population snapshots (e.g.

bimodal versus unimodal distribution of phenotypes) can miss the contribution of epige-

netic switching. Future experimental studies on the evolution of epigenetic switches might

consider analyzing lineages using time-lapse microscopy, as done by Balaban et al [12].

Model limitations and future directions

We verified that our observations were robust to many alternative model assumptions

(Figure S12). Nevertheless, our simple model of a haploid, asexual population [48] omits

some features of the evolutionary process. For example, variable population size, diploid

genetics, sexual reproduction and linkage disequilibrium could all affect the evolutionary

dynamics and selection of epigenetic switches in a fluctuating environment. Our model also

fixed the mutation rate (u) and step-size (M), which imposes a mutational load when the

population is adapted to a constant environment. Future simulations could allow natural

selection to mutate and tune these parameters, which might favor genetic adaptation over

epigenetic switching [49]. Our model also did not consider the case where mutations (e.g.

adaptive mutation) or biophysical parameters (e.g. phenotypic plasticity) directly respond

to changes in the environment. Last, we assumed that mutations continuously increase

or decrease the biochemical parameters. This overlooked an important class of mutations,

such as indels (i.e. rapid loss or abrupt change of function), gene duplication, and gene

recruitment, which could abruptly change the topology of the gene network.

We considered the simplest genetic circuit that can exhibit epigenetic switching. How-

ever, alternative gene regulatory networks could generate different dynamics and phenotypes

that are even better adapted to the fluctuating environment. For example, adding a negative

feedback loop could reduce gene expression noise [50, 51] or generate oscillations [52, 53].
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An oscillatory gene circuit (e.g. circadian clock) might anticipate and respond to an en-

vironment that fluctuates regularly (e.g. day/night). Future research will explore more

complicated gene regulatory circuits to understand the specific environmental dynamics and

evolutionary conditions that favor oscillation versus epigenetic switching in the context of

genetic adaptation. This should be of broad relevance to evolutionary biologists and systems

biologists.

METHODS

Biophysical parameters

The maximum synthesis rate k and the degradation rate γ depend on time. With no loss

of generality, we reduced the number of free parameters in our model by substituting time

t with a time-dimensionless variable τ = t · γ. Many proteins in bacteria are not actively

degraded and are diluted through cell growth and division. Thus, τ and k are in units of

cell cycle time. All mutated parameters were constrained to lie within a physiological range

(10−2 ≤ k ≤ 103, 10−2 ≤ nH ≤ 16, 10−2 ≤ KD ≤ 120) for a bacterium such as E. coli.

The number of molecules for a transcription factor ranges between 0 − 103 proteins per

bacterium or concentration range 0 − 103 nM for a bacterial volume of 1 fL [54, 55]. The

DNA dissociation constant (KD) has a similar range to the underlying transcription factors

[55, 56].

Gillespie algorithm

The propensity or probability rate (rj) of chemical reaction j occurring during the next

interval dt is related to the rates of mass-action chemical kinetics in a constant chemical

reactor volume V . In our simple biochemical network, the propensity of protein synthesis

is f(A) and the propensity of protein degradation is γ · A. Each step, given the current

number of chemical species, Gillespie’s direct algorithm first calculates the propensities rj

and then calculates when the next reaction occurs and which one occurred. The waiting

time of the next reaction is drawn from an exponential distribution with parameter Σjrj,

where the cumulative distribution function of any reaction occurring before time τ is F (τ) =

1− e−(Σjrj)·τ . Given that a reaction has occurred at time τ , the probability that the event is
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reaction i is equal to ri/(Σjrj). Thus, for each iteration, two random numbers are required

to determine τ and i as drawn from the probability distributions. The random numbers are

generated using the “Minimal” random number generator of Park and Miller with Bays-

Durham shuffle and added safeguards [57].

Deterministic CONTROL simulations

The dynamic of the mean concentration (A) obeys a first-order ordinary differential equa-

tion:

dA

dt
= f(A)− γ · A (8)

The cell life span was assumed to be long enough for steady state (where Eq. 8 equals

0) to be reached before selection. We used numerical methods to calculate the steady

state solution (phenotype) for any genotype and initial protein level inherited from the

parent. All Gillespie, deterministic, and evolution simulations were implemented in C++

(Supplementary code), and all the analyses and figures were done using MATLAB.

Lineage analysis

An unfit mutant could arise at the end of a cycle or a fit genotype might go extinct due

to genetic drift and gene expression noise. To obtain insights on the evolutionary stability

of different strategies, we focused our analysis on lineages that have persisted –with or

without mutations– through at least one full environmental cycle (i.e. LOW epoch + HIGH

epoch). We maintained genealogical records and traced the lineage and ancestral genotype

of all cells over 2 cycles (Figures S4). If any genotype between the 1-cycle or and 2-cycle

ancestors was monostable, then we classified the evolutionary strategy of that lineage as

genetic adaptation (GA). If all genotypes between the 1-cycle and 2-cycle ancestors were

bistable, then we classified the evolutionary strategy as either epigenetic switching (ES)

or bistable adaptation (BA). The lineage was BA only if the 1-cycle bistable ancestor had

accumulated at least one mutation since the 2-cycle bistable ancestor. At the end of each

cycle, we calculated the fraction of surviving cells whose ancestors had one of 3 strategies

(GA, ES, BA) and averaged over all cycles (Figure 5). Each individual ancestral lineage was
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counted regardless of whether it was shared with other individuals or not. To determine

the transition rate between evolutionary strategies, we analyzed lineages back to the 3-

cycle ancestor. We calculated the statistics of transitions between adaptation strategies by

comparing strategies in 1-cycle and 2-cycle ancestors (current adaptation strategy) versus

2-cycle and 3-cycle ancestors (previous adaptation strategy) and averaged over all cycles

(Figure S6).

Alternative model assumptions

We tested the robustness of our results to alternative choices and assumptions in the

evolutionary model.

Environmental fluctuations: Our fluctuations were regular and periodic with frequency ν.

We tested whether stochastic fluctuations with frequency ν produced different results, even

though previous work demonstrated little difference between the two types of fluctuations

[5, 16, 18, 19]. Our simulations confirmed that periodic and stochastic environmental fluc-

tuations generate the same qualitative trends (Figure S12).

Selection algorithms: We used Tournament selection to select the next generation of cells

based on the fitness of the individuals in the current generation. Other common selection

schemes are Truncation, Proportional, and Weighted selection [58]. These selection schemes

produced similar results to Tournament selection (Figure S12). We also obtained similar

results with a Moran model (Figure S12), where the birth and death events are treated

as continuous, stochastic events instead of non-overlapping generations (as in our modified

Wright-Fisher model). The Moran simulations were computationally expensive, which is

why we settled on Tournament selection with a Wright-Fisher model.

Fitness of phenotypes: Our simulations evaluated the protein number (phenotype) at the end

of Gillespie simulation (individual life span) to calculate a fitness score given by a Lorentzian

function centered the optimal phenotype. We also used the average protein number or the

distribution of protein numbers over the individual life span as phenotypes; our results did

not qualitatively change (Figure S12). We also changed the shape of the fitness function

from a Lorentzian to a Gaussian or a step-like function with similar width; the results did

not qualitatively change (Figure S12).
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Mutations: Our simulations used a spherically symmetric 3D mutation scheme to permit

co-variation in biophysical parameters in a single mutational step. The mutation step size

was determined by the radius of the spherical mutation, which was a uniformly distributed

random value between 0 and 1 (r ∼ U(0, 1)). Such a radial density produces a non-uniform

density of mutations with highest densities close to the parental phenotype because volume

scales as r3. We tested homogeneous spherical mutation by substituting r in Eqs (5-7) with

3
√
r and a homogeneous cubic mutation where three uniformly distributed random value

between -1 and 1 (ri ∼ U(−1, 1)) for each biophysical parameter. Both mutation schemes

produced the same qualitative results (Figure S12). We also verified that mutating only

one parameter at a time (1D mutation) and increasing the range of biophysical parameters

to allow higher nonlinearity (10−2 ≤ nH ≤ 24) and weaker DNA dissociation constants

(10−2 ≤ KD ≤ 103) did not fundamentally change our results (data not shown).

Timescales of epimutation and stochastic gene expression: The rate of epimutation is sen-

sitive to the frequency and magnitude of stochastic events. The magnitude of stochastic

events is inversely proportional to the total number of molecules. Thus, we expect a higher

rate of epimutation for smaller numbers of molecules. The rate of epimutation should also

increase as the two modes become closer. Thus, we expect a higher rate of epimutation

for larger α. Last, the protein degradation rate (γ) sets the timescale between stochastic

events (i.e. faster protein degradation leads to more stochastic events per unit time during

a Gillespie simulation). Thus, we expect a higher rate of epimutation for larger γ. In all

tested cases, a higher rate of epimutation favored ES over GA (Figure S12).

Matching α and the ratio of optimal phenotypes: At high levels of nonlinearity, the lowest

protein level is k ·α and the highest protein level is k. A bistable, epigenetic switch has two

solutions, each well-adapted to one of the environments only when the ratio R = A
(L)
opt/A

(H)
opt =

α (Figure S1). Any mismatch between α and R will disfavor epigenetic switching because

an epimutation from an adapted mode will jump to a maladapted mode, after which the

descendants must accumulate genetic mutations to further adapt. Although our simulations

fixed R = α = 0.25, we verified that variable α evolved to ES with α ≈ R in fast fluctuating

environments (high ν; Figure S13).
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