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Ecological networks represent the backbone of biodiversity. As species diversify over macro-evolutionary time-scales, the struc-
ture of these networks changes; this happens because species are gained and lost, and therefore add or remove interactions in
their communities. The mechanisms underlying such dynamic changes in ecological network structure, however, remain poorly
understood. Here we show that several types of ecological interactions share common evolutionary mechanisms that can be
parametrised based on extant interaction data. In particular, we found that a model mimicking birth-death processes for species
interactions describes the structure of extant networks remarkably well. Moreover, the various types of ecological interactions
we considered—seed dispersal, herbivory, parasitism, bacteriophagy, and pollination—only differed in the position they occupy
in the parameters’ multi-dimensional space. Notably, we found no clustering of parameters values between antagonistic and
mutualistic interactions. Our results provide a common modelling framework for the evolution of ecological networks that we an-
ticipate will contribute to the greater consideration of the explicit role played by species interactions in models of macro-evolution
and adaptive radiations.
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The extant structure and distribution of biodiversity is the out-
come of macro-evolutionary processes, and the modelling of
these processes has stimulated a large variety of approaches
(Nee 2006; Strotz & Allen 2013). At their core, these ap-
proaches are all essentially birth-death processes, in that they
model the rate of speciation and extinction to generate a pre-
diction about both the temporal dynamics of species richness
and its predicted current state. Surprisingly, these models tend
to consider species as isolated entities; even though they share
ancestry, they are not explicitly linked via inter-specific interac-
tions. This fact is problematic from both an ecological (Gravel
et al. 2011) and evolutionary (Eklof et al. 2011; Stouffer et al.

2012; Eklöf et al. 2013a, 2013b) standpoint since it is widely
accepted that interactions serve as an essential scaffold for bio-
diversity and its emergent properties such as community persis-
tence or ecosystem function (Thompson et al. 2012). After all,
predators invariably require prey, hosts require parasites, flow-
ering plants require pollinators, and so on.

Althoughmodernmacro-ecological models give an increasingly
central role to interactions (Thuiller et al. 2013), such models
are still unable to predict the structure of complex interacting
communities (Jablonski 2008). Nevertheless, there are two key
observations upon which solutions to overcome this limitation
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can be devised. First, extant networks are decidedly non-random
with regard to their structure, and their structure is equally non-
random with regards to macro-evolutionary processes (Stouffer
et al. 2012). Second, the structure of ecological networks is
dynamic over evolutionary timescales (Roopnarine 2006). Both
these points are strongly suggestive of perpetual and ongoing
action of macro-evolutionary processes. It stands to reason then
that models of macro-evolution with explicit consideration of
species interactions will therefore provide an appropriate theo-
retical framework to understand how networks evolve. Notably,
such a framework enables the estimation of how much of ex-
tant network structure originated through macro-evolution, as
opposed to reflecting extant opportunities and constraints (Per-
alta 2016).

If one assumes that the conservatism of interactions across phy-
logenies can be explained by the fact that an incipient species
inherits its ancestor’s interactions upon speciation (Bock 1972;
Futuyma & Agrawal 2009), even a simple model with rela-
tively few parameters can describe the possible evolutionary
rules that shape a community’s interaction network. Ideally, the
parameters of any model such as this—no matter how simple or
complex—ought to be calibrated against real-world evolution-
ary dynamics, similar to how the fossil and molecular record
has been used to study species diversification (Alroy 1998). Un-
fortunately, the dearth of well-resolved, long-term time series
of species interactions rules out such a comparison to temporal
network dynamics. Therefore, we instead addressed the ques-
tion of network macro-evolution here by using extant ecologi-
cal networks to calibrate the end points of an interaction-centric
birth-death simulationmodel under the assumption that the best-
fitting models will provide insight into the network’s likely evo-
lutionary history. Among the variety of ecological networks
types, bipartite ones are the most appropriate family to test this
model: they have well partitioned interactions between guilds
with no complex feedback loops, are present in a variety of sys-
tems and types of biological interactions, and there is a wealth
of well-studied data available (Williams 2011). Moreover, taxa
from both guilds of a bipartite ecological network are usually
tightly evolutionarily linked and require interactions to persist,
making them ideal to elucidate evolutionary rules of community
structure.

We posit that four simple rules govern the evolution of networks.
First, every network originally consists of just two species shar-
ing a single interaction; for example, a plant and its herbivore.
Second, a speciation event happens at the top level (e.g. the
herbivore) with probability p, or at the bottom level with prob-
ability 1 − p. Third, the incipient species starts with all interac-
tions of its ancestor. Fourth, some of these interactions are lost
with probability �(�, k, c), which allows interactions—that are
gained through speciation—to be lost either at a fixed rate � or
as a function of the incipient species’ degree k. The c param-
eter modulates this relationship further by influencing whether
high degree of an ancestor increases, or decreases, the probabil-
ity of the incipient species losing interactions. Interpretation of
this model is straightforward: if the evolutionary dynamics of
interactions are critical for the evolutionary dynamics of com-

munities, we expect that the values of any speciation-related pa-
rameters will be less important than those of interaction-related
one(s).

Following our macro-evolutionary model, we repeated its four
steps 104 times to generate a large ensemble of model net-
works whose structure we could compare to those of the empir-
ical networks. We then compared these model-generated net-
works to a large collection of 271 bipartite ecological networks
whose interactions encode seed dispersal, herbivory, parasitism,
bacteriophagy or pollination (see Methods) using Approximate
Bayesian Computation (ABC). When no analytical expression
of a model’ likelihood can be derived, ABC (Beaumont 2010;
Csilléry et al. 2010) gives estimates of the posterior distribu-
tions of best-fit parameters (i.e. the most likely parameter values
given the empirical data) by comparing a measure of distance
between empirical observations and a model. Here, we define
the distance between a simulated (i) and empirical (j) network
as d(vi, vj), where v is an array of network structural properties,
including connectance, modularity (Olesen et al. 2007; Fortuna
et al. 2010), nestedness (Bastolla et al. 2009), and the distri-
bution of different network motifs (Stouffer et al. 2007) (see
Methods). For each network, the posterior distribution of best-
fitting parameters is given by the set parameters of the closest
500 simulated models (to top 1% of the total).

We first observed that the posterior distribution of the param-
eters differs across interaction types (Figure 1). The probabil-
ity of speciation at either level (p) is the least strongly selected,
which suggests that mechanisms pertaining to the evolution of
interactions have a stronger impact on extant network structure
than does the distribution of speciation rates. We also encoun-
tered two situations for the distribution of the interaction rate �:
herbivory and pollination networks have higher values of this
parameter, implying that herbivores and pollinators tend to re-
tain the interactions of their ancestors more than other types of
top-level organisms did (Johnson 2010; Gomez et al. 2013). All
other types of networks were best described by low values of �;
their interactions consequently appear to bemore labile through-
out the course of macro-evolution. Finally, all systems show a
strong bias towards moderately high values of c; this indicates
that the effective probability of a species retaining its ancestor’s
interactions decreases with its ancestor’s degree. That is, the
generalism of species over time has an emergent upper bound,
a fact that results in the very spectrum of high-degree and low-
degree species that is ubiquitous empirically (Williams 2011).

The optimal values of � and c, however, are not independent
since they ultimately affect the same process: the probability of
the incipient species losing its ancestor’s interactions. A more
thorough understanding of the dynamics of interactions through-
out evolution can therefore be obtained by examining these pa-
rameters’ joint distribution. Doing so reveals two additional
“states” for networks to occupy based on the results of our model
(Figure 2); either c is close to 0 and � is large or c is close to
1 and � is low. Notably, different types of networks fall in a
specific place within this continuum. Herbivory and pollination
tend to have both low values of c and low to high values of �—
implying that the control on interaction persistence is at the com-
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munity level—whereas parasitism networks have low values of
� and low-to-high values of c—implying that the control on in-
teraction persistence is at the species level. The two remaining
network types, seed dispersal and bacteriophagy, do not show a
strong signal as to their position alongside this gradient.

For each network, we next calculated the average distance to
all its best matching simulation outputs, and used the z-score
of this value to determine which type of networks was best pre-
dicted using our model (Figure 3). The best predicted networks
were herbivory and pollination; this suggest that these networks
have a particularly strong macro-evolutionary signal (Strauss &
Armbruster 1997).

Finally, we applied a classification tree to the parameter values
describing each empirical network (Figure 4). The tree had a
misclassification rate of 35.4%, meaning that knowing only the
value of parameters � and c, the correct type of ecological inter-
action can be estimated in around 65% of cases. The structure
of tree also reveals that antagonistic and mutualistic interactions
do not form different clusters (as opposed to what has been hy-
pothesized before; Thébault & Fontaine 2008), which contra-
dicts the frequent assumption that different consequences of the
interaction should imply different macro-evolutionary rules and
trajectories (Fontaine et al. 2011).

Our results demonstrate that the structure of extant bipartite net-
works can be adequately reproduced by a speciation/extinction
model that accounts for biotic interactions. The selection on
parameters related to interaction diversification and persistence
was stronger than on the parameter related to the rate of spe-
ciation, suggesting that the importance of biotic interactions in
macro-evolution may have been understated. Our results also
highlight that, while the evolutionary persistence of interactions
is undeniably important in the macro-evolution of community
structure, different type of ecological interactions respond in
largely different ways. This offers a very stimulating possibil-
ity – namely, that because the mode of coevolution within the
interaction between two species differ as a function of their eco-
logical interactions (Thompson 1994), this can cascade up to the
macro-evolutionary scale in the form of a signal of long-term in-
teraction persistence.

METHODS

Data selection We used empirical data of plant-pollinator
interactions (59 networks), plant-herbivore interactions
(23 networks), phage-bacteria networks (38 interactions),
plant-dispersers interactions (30 networks), and host-
parasite interactions (121 networks). Pollination and seed-
dispersal interactions come from the WebOfLife dataset
(http://mangal.io/data/dataset/7/). Phage-bacteria
(which are functionally equivalent to host-parasitoid) data
are from Flores et al. (2011). Host-parasite data (Stanko &
Miklisova 2014) are from Canard et al. (2014). Plant-herbivore
data are from Thébault & Fontaine (2008). Every network
was “cleaned” in the following way. First, species with no
interactions (if any) were removed. This yields networks

in which all species have at least one interaction. Second,
interactions strengths (if present) were removed since our
model only requires information about the presence or absence
of interactions.

Simulations We conducted the following two numerical ex-
periments. First, we conducted a systematic exploration of the
model’s behaviour using evenly spaced parameter values. Each
combination of parameters was simulated 1000 times. This al-
lowed us to ensure that the model could return networks with
all possible configurations, and that the output covered a range
of network structures larger than what was observed in nature.
Second, we sampled the parameter space uniformly, by drawing
105 parameter sets at random from within the aforementioned
bounds. These outputs were used in the parameter selection ex-
periment described below.

Each timestep in the simulation consists of three sub-steps. First,
a level is picked at random: the top-level is picked with proba-
bility p, and the bottom-level is picked with probability 1 − p.
This is independent of the number of species at each level. Sec-
ond, one species from the selected level is picked at random (all
species within a level have equal chance of being picked), and
duplicated (i.e. a novel species with the same interactions is
added to the network). Each interaction of the incipient species
is then removed with probability

�(�, k, c) = 1

1 +
(

1
� − 1

)

× ck−1
. (1)

In this formulation, k is the number of interactions of the in-
cipient species, � is the basal rate of interaction loss, and c is
a parameter regulating whether species with more interactions
tend to gain or lose interactions over time. Negative values of
c imply that rich get richer, i.e. species with more interactions
tend to conserve them more over speciation. The special case
of c = 0 corresponds to no relationship between the degree of
a species and its probability of losing or retaining an interaction
over speciation.

We ran the model for 104 timesteps, for 105 random combina-
tions of < p, �, c >. Whenever either level has more than 102
species, some are deleted at random within this level. This en-
sure that the network is at most composed of 200 species. Pre-
liminary analyses revealed that this threshold had no impact on
the results presented as long as it was reasonably large (≥ 50).

Network measures We measured four key families of bipar-
tite network structure indices. To facilitate their use in distance
calculations, we transformed all measures so that they fell in the
range [0, 1]. First, connectance, which is the L

T×B , with L the
number of interactions, and T and B the number of species in
the top and bottom groups. Second, nestedness (Almeida-Neto
et al. 2008), using the � measure of Bastolla et al. (2009), which
returns a global nestedness score based on the fact that interac-
tions of relatively specialized species should be a subset of the
interactions of more generalized ones. Third, modularity, us-
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ing LP-BRIM (Barber 2007; Liu & Murata 2009), which gives
values close to 1 when there are modules in the network, and val-
ues closer to 0 otherwise. Finally, we measured the proportion
of all four-species bipartite motifs (Baker et al. 2014). Bipartite
motifs are all the possible conformations of four species spread
across two levels, such as for example three consumers sharing
one resource, or two consumers both exploiting resources, etc..

So that the motif measure would also fall in the range [0, 1], we
corrected the raw number of motifs to account for the number
of species in each layer of the bipartite network. For example,
the maximum number of motifs with 2 species at the top and
2 species at the bottom is the product of the number of com-
binations of 2 species in the top layer, and of 2 species in the
bottom layer (evaluated by their binomial coefficients

(T
2

)

and
(B
2

)

, respectively). This gives a total number of sets of species
that could be involved in a 2 × 2 motif. Note that this implies
that all values represent the proportion of sets of species that do
form a given motif out of the sets of species that could.

Parameter selection We used ABC (Approximate Bayesian
Computation) to select the parameter values that yielded realis-
tic networks by assessing how closely each replicate of the sec-
ond numerical experiment resembles empirical communities.
For each empirical network, its observed set of summary statis-
tics was compared to each output of the stochastic model. The
inverse of the Euclidean distance between the two arrays was
recorded as the score of the parameter set. Because each em-
pirical network is in practice a different optimization problem
submitted to the ABC routine, and because ABC requires to set
the rejection threshold on a per-problem basis, setting a global
value was not meaningful. To circumvent this problem, we in-
stead selected the posterior distribution as the 500 parameters
sets that gave the best scores (i.e. above the 95th percentile).
The distribution of distances (i.e. how well each point within
the posterior distributions actually describes the empirical net-
work) is kept to evaluate the global fit on a per-network basis.

Decision tree We used a classification tree to separate the net-
works along the continuum of values of c and �. The response
was the type of network, and the classifiers where the log10 of c
and � and the log transformation helped do something real and
spectacular. We used the implementation from the tree pack-
age (v. 1.0.36) for R (v. 3.2.2). Splits where decided according
to Gini ratio. The weight of each datapoint was proportional to
the inverse of the Euclidean distance between the output of the
simulation and the actual network, so that networks that were
poorly described by the model have a lessened impact on the
classification.

REFERENCES

Almeida-Neto et al. (2008). A consistent metric for nestedness
analysis in ecological systems: reconciling concept and mea-
surement. Oikos. 117:1227–39.

Alroy. (1998). Cope’s Rule and the Dynamics of Body

Mass Evolution in North American Fossil Mammals. Science.
280:731–4.

Baker et al. (2014). Species’ roles in food webs show fidelity
across a highly variable oak forest. Ecography. 38:130–9.

Barber. (2007). Modularity and community detection in bipar-
tite networks. Physical Review E. 76.

Bastolla et al. (2009). The architecture of mutualistic net-
works minimizes competition and increases biodiversity. Na-
ture. 458:1018–20.

Beaumont. (2010). Approximate Bayesian Computation in
Evolution and Ecology. Annu Rev Ecol Evol Syst. 41:379–406.

Bock. (1972). Species Interactions andMacroevolution. Evolu-
tionary Biology. Springer Science + Business Media; pp. 1–24.

Canard et al. (2014). Empirical Evaluation of Neutral Inter-
actions in Host-Parasite Networks. The American Naturalist.
183:468–79.

Csilléry et al. (2010). Approximate Bayesian Computation
(ABC) in practice. Trends in Ecology & Evolution. 25:410–8.

Eklof et al. (2011). Relevance of evolutionary history for food
web structure. Proceedings of the Royal Society B: Biological
Sciences. 279:1588–96.

Eklöf et al. (2013a). The dimensionality of ecological net-
works. Ecology Letters. 16:577–83.

Eklöf et al. (2013b). Secondary extinctions in food webs: a
Bayesian network approach. Methods Ecol Evol. 4:760–70.

Flores et al. (2011). Statistical structure of host-phage in-
teractions. Proceedings of the National Academy of Sciences.
108:E288–97.

Fontaine et al. (2011). The ecological and evolutionary impli-
cations of merging different types of networks. Ecology Letters.
14:1170–81.

Fortuna et al. (2010). Nestedness versus modularity in ecolog-
ical networks: two sides of the same coin? Journal of Animal
Ecology.

Futuyma&Agrawal. (2009). Evolutionary history and species
interactions. Proceedings of the National Academy of Sciences.
106:18043–4.

Gomez et al. (2013). Evolution of pollination niches and floral
divergence in the generalist plant Erysimum mediohispanicum.
Annals of Botany. 113:237–49.

Gravel et al. (2011). Trophic theory of island biogeography.
Ecology Letters. 14:1010–6.

Jablonski. (2008). BIOTIC INTERACTIONS AND
MACROEVOLUTION: EXTENSIONS AND MISMATCHES

Preprint: Network macro-evolution Page 4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2016. ; https://doi.org/10.1101/071993doi: bioRxiv preprint 

https://doi.org/10.1101/071993
http://creativecommons.org/licenses/by/4.0/


ACROSS SCALES AND LEVELS. Evolution. 62:715–39.

Johnson. (2010). The pollination niche and its role in the diver-
sification and maintenance of the southern African flora. Philo-
sophical Transactions of the Royal Society B: Biological Sci-
ences. 365:499–516.

Liu & Murata. (2009). Community Detection in Large-Scale
Bipartite Networks. 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technol-
ogy. Institute of Electrical & Electronics Engineers (IEEE);

Nee. (2006). Birth-Death Models in Macroevolution. Annu Rev
Ecol Evol Syst. 37:1–17.

Olesen et al. (2007). The modularity of pollination networks.
Proceedings of the National Academy of Sciences. 104:19891–
6.

Peralta. (2016). Merging evolutionary history into species in-
teraction networks. Functional Ecology.

Roopnarine. (2006). Extinction cascades and catastrophe in
ancient food webs. Paleobiology. 32:1–19.

Stanko & Miklisova. 2014. Data from: Empirical evaluation
of neutral interactions in host-parasite networks [Internet]. The
American Naturalist. Dryad Digital Repository;

Stouffer et al. (2007). Evidence for the existence of a robust
pattern of prey selection in food webs. Proceedings of the Royal
Society B: Biological Sciences. 274:1931–40.

Stouffer et al. (2012). Evolutionary Conservation of Species’
Roles in Food Webs. Science. 335:1489–92.

Strauss & Armbruster. (1997). Linking Herbivory and
Pollination–New Perspectives on Plant and Animal Ecology and
Evolution. Ecology. 78:1617.

Strotz & Allen. (2013). Assessing the role of cladogenesis
in macroevolution by integrating fossil and molecular evidence.
Proceedings of the National Academy of Sciences. 110:2904–9.

Thébault & Fontaine. (2008). Does asymmetric specializa-
tion differ between mutualistic and trophic networks? Oikos.
0:080227085440234–0.

Thompson. (1994). The Coevolutionary Process [Internet].
University of Chicago Press;

Thompson et al. (2012). Food webs: reconciling the structure
and function of biodiversity. Trends in Ecology & Evolution.
27:689–97.

Thuiller et al. (2013). A road map for integrating eco-
evolutionary processes into biodiversity models. Ecology Let-
ters. 16:94–105.

Williams. (2011). Biology, Methodology or Chance? The
Degree Distributions of Bipartite Ecological Networks. PLoS

ONE. 6:e17645.

Preprint: Network macro-evolution Page 5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2016. ; https://doi.org/10.1101/071993doi: bioRxiv preprint 

https://doi.org/10.1101/071993
http://creativecommons.org/licenses/by/4.0/


Probability of bottom−level speciation

S
ee

d 
di

sp
er

sa
l

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Interaction persistence

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.3

0.6

0.9

Rich get richer

−1.0 −0.5 0.0 0.5 1.0

4

8

12

Probability of bottom−level speciation

H
er

bi
vo

ry

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Interaction persistence

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.3

0.6

0.9

Rich get richer

−1.0 −0.5 0.0 0.5 1.0

4

8

12

Probability of bottom−level speciation

P
ar

as
iti

sm

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Interaction persistence

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.3

0.6

0.9

Rich get richer

−1.0 −0.5 0.0 0.5 1.0

4

8

12

Probability of bottom−level speciation

B
ac

te
rio

ph
ag

y

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Interaction persistence

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.3

0.6

0.9

Rich get richer

−1.0 −0.5 0.0 0.5 1.0

4

8

12

Probability of bottom−level speciation

P
ol

lin
at

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Interaction persistence

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.3

0.6

0.9

Rich get richer

−1.0 −0.5 0.0 0.5 1.0

4

8

12

Figure 1 Posterior distributions of parameters p, log10� and log10c. The grey shaded area is a representation of the uniform prior distribu-
tion. Although there is no strong selections on the values of p, networks do differ strongly both from the prior, and from one another, in
terms of � and c.
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Figure 2 Relationships between parameters � and c in the five different types of networks. It is visually apparent that different types of
ecological interactions occupy different positions along the �-c continuum.
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Figure 3 Z-score of average distances for the top 1% of best-matching simulations. Herbivory and pollination networks are better predicted
by this model, while z-scores for seed dispersal, parasitism, and bacteriophagy, are centred around 0. The differences in z-scores may
arise for the fact that macro-evolutionary processes have left stronger fingerprint on the extant structure of some types of interactions
(e.g. herbivory and pollination).
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Figure 4 Classification tree on parameters c and �. Networks are
split in two main groups (herbivory and pollination vs others) by
�. It is worth noting that the groups do not delineate antagonistic
(grey labels) from mutualistic (black labels) interactions. Note
that the two longest branches have been shortened to improve
visual clarity.
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