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Abstract

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In
songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-circuit that also contributes
a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue
downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient
descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms
in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning
framework through which the tutor can build its teaching signal. We show that mismatches between the
tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the
temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be
applied predictively to other paired brain areas showing two-stage learning.

1 Introduction

Two-stage learning has been described in a variety of different contexts and neural circuits. During hippocampal
memory consolidation, recent memories, that are dependent on the hippocampus, are transferred to the
neocortex for long-term storage (Frankland and Bontempi 2005). Similarly, the rat motor cortex provides
essential input to sub-cortical circuits during skill learning, but then becomes dispensable for executing certain
skills (Kawai et al. 2015). A paradigmatic example of two-stage learning occurs in songbirds learning their
courtship songs (Andalman and Fee 2009; Turner and Desmurget 2010; Warren et al. 2011). Zebra finches,
commonly used in birdsong research, learn their song from their fathers as juveniles and keep the same song
for life (Immelmann 1969).

The birdsong circuit has been extensively studied; see Figure 1A for an outline. Area HVC is a timebase
circuit, with projection neurons that fire sparse spike bursts in precise synchrony with the song (Hahnloser,
Kozhevnikov, and Fee 2002; Lynch et al. 2016; Picardo et al. 2016). A population of neurons from HVC
projects to the robust nucleus of the arcopallium (RA), a pre-motor area, which then projects to motor
neurons controlling respiratory and syringeal muscles (Leonardo and Fee 2005; Simpson and Vicario 1990; Yu
and Margoliash 1996). A second input to RA comes from the lateral magnocellular nucleus of the anterior
nidopallium (LMAN). Unlike HVC and RA activity patterns, LMAN spiking is highly variable across different
renditions of the song (Kao, Wright, and Doupe 2008; Ölveczky, Andalman, and Fee 2005). LMAN is the
output of the anterior forebrain pathway, a circuit involving the song-specialized basal ganglia (Perkel 2004).

Because of the variability in its activity patterns, it was thought that LMAN’s role was simply to inject
variability into the song (Ölveczky, Andalman, and Fee 2005). The resulting vocal experimentation would
enable reinforcement-based learning. For this reason, prior models tended to treat LMAN as a pure Poisson
noise generator, and assume that a reward signal is received directly in RA (Fiete, Fee, and Seung 2007). More
recent evidence, however, suggests that the reward signal reaches Area X, the song-specialized basal ganglia,
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rather than RA (Gadagkar et al. 2016; Hoffmann et al. 2016; Kubikova and Košťál 2010). Taken together with
the fact that LMAN firing patterns are not uniformly random, but rather contain a corrective bias guiding
plasticity in RA (Andalman and Fee 2009; Warren et al. 2011), this suggests that we should rethink our models
of song acquisition.

Here we build a general model of two-stage learning where one neural circuit “tutors” another. We develop
a formalism for determining how the teaching signal should be adapted to a specific plasticity rule, to best
instruct a student circuit to improve its performance at each learning step. We develop analytical results in
a rate based model, and show through simulations that the general findings carry over to realistic spiking
neurons. Applied to the vocal control circuit of songbirds, our model reproduces the observed changes in the
spiking statistics of RA neurons as juvenile birds learn their song. Our framework also predicts how the LMAN
signal should be adapted to properties of RA synapses. This prediction can be tested in future experiments.

Our approach separates the mechanistic question of how learning is implemented from what the resulting
learning rules are. We nevertheless demonstrate that a simple reinforcement learning algorithm suffices to
implement the learning rule we propose. Our framework makes general predictions for how instructive signals
are matched to plasticity rules whenever information is transferred between different brain regions.
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Figure 1: Relation between the song system in zebra finches and our model. A. Diagram of the major brain
regions involved in birdsong. B. Conceptual model inspired by the birdsong system. The line from output
to tutor is dashed because the reinforcement signal can reach the tutor either directly or, as in songbirds,
indirectly. C. Plasticity rule measured in bird RA (measurement done in slice). When an HVC burst leads
an LMAN burst by about 100 ms, the HVC–RA synapse is strengthened, while coincident firing leads to
suppression. Figure adapted from (Mehaffey and Doupe 2015). D. Plasticity rule in our model that mimics
the Mehaffey and Doupe (2015) rule.
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2 Results

2.1 Model

We considered a model for information transfer that is composed of three sub-circuits: a conductor, a student,
and a tutor (see Figure 1B). The conductor provides input to the student in the form of temporally precise
patterns. The goal of learning is for the student to convert this input to a predefined output pattern. The tutor
provides a signal that guides plasticity at the conductor–student synapses. For simplicity, we assumed that the
conductor always presents the input patterns in the same order, and without repetitions. This allowed us to
use the time t to label input patterns, making it easier to analyze the on-line learning rules that we studied.
This model of learning is based on the logic implemented by the vocal circuits of the songbird (Figure 1A).
Relating this to the songbird, the conductor is HVC, the student is RA, and the tutor is LMAN. The song can
be viewed as a mapping between clock-like HVC activity patterns and muscle-related RA outputs. The goal of
learning is to find a mapping that reproduces the tutor song.

Birdsong provides interesting insights into the role of variability in tutor signals. If we focus solely on
information transfer, the tutor output need not be variable; it can deterministically provide the best instructive
signal to guide the student. This, however, would require the tutor to have a detailed model of the student.
More realistically, the tutor might only have access to a scalar representation of how successful the student
rendition of the desired output is, perhaps in the form of a reward signal. A tutor in this case has to solve
the so-called ‘credit assignment problem’—it needs to identify which student neurons are responsible for the
reward. A standard way to achieve this is to inject variability in the student output and reinforcing the firing
of neurons that precede reward (see for example (Fiete, Fee, and Seung 2007) in the birdsong context). Thus,
in our model, the tutor has a dual role of providing both an instructive signal and variability, as in birdsong.

We described the output of our model using a vector ya(t) where a indexed the various output channels
(Figure 2A). In the context of motor control a might index the muscle to be controlled, or, more abstractly,
different features of the motor output, such as pitch and amplitude in the case of birdsong. The output ya(t)
was a function of the activity of the student neurons sj(t). The student neurons were in turn driven by the
activity of the conductor neurons ci(t). The student also received tutor signals to guide plasticity; in the
songbird, the guiding signals for each RA neuron come from several LMAN neurons (Canady et al. 1988;
Garst-Orozco, Babadi, and Ölveczky 2014; Herrmann and Arnold 1991). In our model, we summarized the net
input from the tutor to the jth student neuron as a single function gj(t).

We started with a rate-based implementation of the model (Figure 2A) that was analytically tractable but
averaged over tutor variability. We further took the neurons to be in a linear operating regime (Figure 2A)
away from the threshold and saturation present in real neurons. We then relaxed these conditions and tested
our results in spiking networks with initial parameters selected to imitate measured firing patterns in juvenile
birds prior to song learning. The student circuit in both the rate-based and spiking models included a global
inhibitory signal that helped to suppress excess activity driven by ongoing conductor and tutor input. Such
recurrent inhibition is present in area RA of the bird (Spiro, Dalva, and Mooney 1999). In the spiking model
we implemented the suppression as an activity-dependent inhibition, while for the analytic calculations we
used a constant negative bias for the student neurons.

2.2 Learning in a rate-based model

Learning in our model was enabled by plasticity at the conductor–student synapses that was modulated by
signals from tutor neurons (Figure 2B). Many different forms of such hetero-synaptic plasticity have been
observed. For example, in rate-based synaptic plasticity high tutor firing rates lead to synaptic potentiation
and low tutor firing rates lead to depression (Chistiakova, Bannon, et al. 2014; Chistiakova and Volgushev
2009). In timing-dependent rules, such as the one recently measured by Mehaffey and Doupe (2015) in slices of
zebra finch RA (see Figure 1C), the relative arrival times of spike bursts from different input pathways set
the sign of synaptic change. To model learning that lies between these rate and timing-based extremes, we
introduced a class of plasticity rules governed by two parameters α and β (see also Methods and Figure 2B):

dWij

dt
= ηc̃i(t)

(
gj(t)− θ

)
,

c̃i(t) =

∫ t

0

dt′ci(t
′)

[
α

τ1
e−(t−t′)/τ1 − β

τ2
e−(t−t′)/τ2

]
,

(1)
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Figure 2: Schematic representation of our rate-based model. A. Conductor neurons fire precisely-timed bursts,
similar to HVC neurons in songbirds. Conductor and tutor activities, c(t) and g(t), provide excitation to
student neurons, which integrate these inputs and respond linearly, with activity s(t). Student neurons also
receive a constant inhibitory input, xinh. The output neurons linearly combine the activities from groups of
student neurons using weights Maj . The linearity assumptions were made for mathematical convenience but
are not essential for our qualitative results (see Appendix). B. The conductor–student synaptic weights Wij

are updated based on a plasticity rule that depends on two parameters, α and β, and two timescales, τ1 and
τ2 (see eq. (1) and Methods). The tutor signal enters this rule as a deviation from a constant threshold θ.
The figure shows how synaptic weights change (∆W ) for a student neuron that receives a tutor burst and
a conductor burst separated by a short lag. Two different choices of plasticity parameters are illustrated in
the case when the threshold θ = 0. C. The amount of mismatch between the system’s output and the target
output is quantified using a loss (error) function. The figure sketches the loss landscape obtained by varying
the synaptic weights Wij and calculating the loss function in each case (only two of the weight axes are shown).
The blue dot shows the lowest value of the loss function, corresponding to the best match between the motor
output and the target, while the orange dot shows the starting point. The dashed line shows how learning
would proceed in a gradient descent approach, where the weights change in the direction of steepest descent in
the loss landscape.
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where Wij is the weight of the synapse from the ith conductor to the jth student neuron, η is a learning
rate, θ is a threshold on the firing rate of tutor neurons, and τ1 and τ2 are timescales associated with the
plasticity. This is similar to an STDP rule, except that the dependence on postsynaptic activity was replaced
by dependence on the input from the tutor. Thus plasticity acts heterosynaptically, with activation of the
tutor–student synapse controlling the change in the conductor–student synaptic weight. The timescales τ1
and τ2, as well as the coefficients α and β, can be thought of as effective parameters describing the plasticity
observed in student neurons. As such, they do not necessarily have a simple correspondence in terms of the
biochemistry of the plasticity mechanism, and the framework we describe here is not specifically tied to such
an interpretation.

If we set α or β to zero in our rule, eq. (1), the sign of the synaptic change is determined solely by the
firing rate of the tutor gj(t) as compared to a threshold, reproducing the rate rules observed in experiments.
When α/β ≈ 1, if the conductor leads the tutor, potentiation occurs, while coincident signals lead to depression
(Figure 2B), which mimics the empirical findings from (Mehaffey and Doupe 2015). For general α and β, the
sign of plasticity is controlled by both the firing rate of the tutor relative to the baseline, and by the relative
timing of tutor and conductor. The overall scale of the parameters α and β can be absorbed into the learning
rate η and so we set α− β = 1 in all our simulations without loss of generality (see Methods). Note that if α
and β are both large, it can be that α− β = 1 and α/β ≈ 1 also, as needed to realize the Mehaffey and Doupe
(2015) curve.

We can ask how the conductor–student weights Wij (Figure 2A) should change in order to best improve
the output ya(t). We first need a loss function L that quantifies the distance between the current output ya(t)
and the target ȳa(t) (Figure 2C). We used a quadratic loss function, but other choices can also be incorporated
into our framework (see Appendix). Learning should change the synaptic weights so that the loss function is
minimized, leading to a good rendition of the targeted output. This can be achieved by changing the synaptic
weights in the direction of steepest descent of the loss function (Figure 2C).

We used the synaptic plasticity rule from eq. (1) to calculate the overall change of the weights, ∆Wij , over
the course of the motor program. This is a function of the time course of the tutor signal, gj(t). Not every
choice for the tutor signal leads to motor output changes that best improve the match to the target. Imposing
the condition that these changes follow the gradient descent procedure described above, we derived the tutor
signal that was best matched to the student plasticity rule (detailed derivation in Methods). The result is that
the best tutor for driving gradient descent learning must keep track of the motor error

εj(t) =
∑
a

Maj(ya(t)− ȳa(t)) (2)

integrated over the recent past

gj(t) = θ − ζ

α− β
1

τtutor

∫ t

0

εj(t
′)e−(t−t′)/τtutor dt′ , (3)

where Maj are the weights describing the linear relationship between student activities and motor outputs
(Figure 2A) and ζ is a learning rate. Moreover, for effective learning, the timescale τtutor appearing in eq. (3),
which quantifies the timescale on which error information is integrated into the tutor signal, should be related
to the synaptic plasticity parameters according to

τtutor = τ∗tutor , where

τ∗tutor ≡
ατ1 − βτ2
α− β

(4)

is the optimal timescale for the error integration.
In short, motor learning with a heterosynaptic plasticity rule requires convolving the motor error with a

kernel whose timescale is related to the structure of the plasticity rule, but is otherwise independent of the
motor program.1 As explained in more detail in Methods, this result is derived in an approximation that
assumes that the tutor signal does not vary significantly over timescales of the order of the student timescales
τ1 and τ2. Given eq. (4), this implies that we are assuming τtutor � τ1,2. This is a reasonable approximation
because variations in the tutor signal that are much faster than the student timescales τ1,2 have little effect on
learning since the plasticity rule (1) blurs conductor inputs over these timescales.

1We thank the referees for suggesting this way of describing our results.
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2.3 Matched vs. unmatched learning

Our rate-based model predicts that when the timescale on which error information is integrated into the tutor
signal (τtutor) is matched to the student plasticity rule as described above, learning will proceed efficiently.
A mismatched tutor should slow or disrupt convergence to the desired output. To test this, we numerically
simulated the birdsong circuit using the linear model from Figure 2A with a motor output ya filtered to more
realistically reflect muscle response times (see Methods). We selected plasticity rules as described in eq. (1) and
Figure 2B and picked a target output pattern to learn. The target was chosen to resemble recordings of air-sac
pressure from singing zebra finches in terms of smoothness and characteristic timescales (Veit, Aronov, and Fee
2011), but was otherwise arbitrary. In our simulations, the output typically involved two different channels,
each with its own target, but for brevity, in figures we typically showed the output from only one of these.

For our analytical calculations, we made a series of assumptions and approximations meant to enhance
tractability, such as linearity of the model and a focus on the regime τtutor � τ1,2. These constraints can
be lifted in our simulations, and indeed below we test our numerical model in regimes that go beyond the
approximations made in our derivation. In many cases, we found that the basic findings regarding tutor–student
matching from our analytical model remain true even when some of the assumptions we used to derive it no
longer hold.

We tested tutors that were matched or mismatched to the plasticity rule to see how effectively they
instructed the student. Figure 3A and online Video 1 show convergence with a matched tutor when the sign of
plasticity is determined by the tutor’s firing rate. We see that the student output rapidly converged to the
target. Figure 3B and online Video 2 show convergence with a matched tutor when the sign of plasticity is
largely determined by the relative timing of the tutor signal and the student output. We see again that the
student converged steadily to the desired output, but at a somewhat slower rate than in Figure 3A.

To test the effects of mismatch between tutor and student, we used tutors with timescales that did not
match eq. (4). All student plasticity rules had the same effective time constants τ1 and τ2, but different
parameters α and β (see eq. (1)), subject to the constraint α− β = 1 described in section 2.2. Different tutors
had different memory time scales τtutor (eq. (3)). Figures 3C and 3D demonstrate that learning was more
rapid for well-matched tutor-student pairs (the diagonal neighborhood, where τtutor ≈ τ∗tutor). When the tutor
error integration timescale was shorter than the matched value in eq. (4), τtutor < τ∗tutor, learning was often
completely disrupted (many pairs below the diagonal in Figures 3C and 3D). When the tutor error integration
timescale was longer than the matched value in eq. (4), τtutor > τ∗tutor learning was slowed down. Figure 3C
also shows that a certain amount of mismatch between the tutor error integration timescale τtutor and the
matched timescale τ∗tutor implied by the student plasticity rule is tolerated by the system. Interestingly, the
diagonal band over which learning is effective in Figure 3C is roughly of constant width—note that the scale on
both axes is logarithmic, so that this means that the tutor error integration timescale τtutor has to be within a
constant factor of the optimal timescale τ∗tutor for good learning. We also see that the breakdown in learning is
more abrupt when τtutor < τ∗tutor than in the opposite regime.

An interesting feature of the results from Figures 3C, 3D is that the difference in performance between
matched and mismatched pairs becomes less pronounced for timescales shorter than about 100 ms. This is due
to the fact that the plasticity rule (eq. (1)) implicitly smooths over timescales of the order of τ1,2, which in our
simulations were equal to τ1 = 80 ms, τ2 = 40 ms. Thus, variations of the tutor signal on shorter timescales
have little effect on learning. Using different values for the effective timescales τ1,2 describing the plasticity
rule can increase or decrease the range of parameters over which learning is robust against tutor–student
mismatches (see Appendix).

2.4 Robust learning with nonlinearities

In the model above, firing rates for the tutor were allowed to grow as large as necessary to implement the most
efficient learning. However, the firing rates of realistic neurons typically saturate at some fixed bound. To
test the effects of this nonlinearity in the tutor, we passed the ideal tutor activity (3) through a sigmoidal
nonlinearity,

g̃j(t) = θ − ρ tanh
ζ

α− β
1

τtutor

∫ t

0

εj(t
′)e−(t−t′)/τtutor dt′ . (5)

where 2ρ is the range of firing rates. We typically chose θ = ρ = 80 Hz to constrain the rates to the range
0–160 Hz (Garst-Orozco, Babadi, and Ölveczky 2014; Ölveczky, Andalman, and Fee 2005). Learning slowed
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Figure 3: Learning with matched or mismatched tutors in rate-based simulations. A. Error trace showing
how the average motor error evolved with the number of repetitions of the motor program for a rate-based
(α = 0) plasticity rule paired with a matching tutor. (See online Video 1.) B. The error trace and final motor
output shown for a timing-based learning rule matched by a tutor with a long integration timescale. (See
online Video 2.) In both A and B the inset shows the final motor output for one of the two output channels
(thick orange line) compared to the target output for that channel (dotted black line). The output on the first
rendition and at two other stages of learning indicated by orange arrows on the error trace are also shown as
thin orange lines. C. Effects of mismatch between student and tutor on reproduction accuracy. The heatmap
shows the final reproduction error of the motor output after 1000 learning cycles in a rate-based simulation
where a student with parameters α, β, τ1, and τ2 was paired with a tutor with memory timescale τtutor. On
the y axis, τ1 and τ2 were kept fixed at 80 ms and 40 ms, respectively, while α and β were varied (subject to
the constraint α − β = 1; see text). Different choices of α and β lead to different optimal timescales τ∗tutor

according to eq. (4). The diagonal elements correspond to matched tutor and student, τtutor = τ∗tutor. Note
that the color scale is logarithmic. D. Error evolution curves as a function of the mismatch between student
and tutor. Each plot shows how the error in the motor program changed during 1000 learning cycles for the
same conditions as those shown in the heatmap. The region shaded in light pink shows simulations where the
mismatch between student and tutor led to a deteriorating instead of improving performance during learning.

Video 1: Evolution of motor output during learning in a rate-based simulation using a rate-based (α = 0)
plasticity rule paired with a matching tutor. This video relates to Figure 3A.

Video 2: Evolution of motor output during learning in a rate-based simulation using a timing-based (α ≈ β)
plasticity rule paired with a matching tutor. This video relates to Figure 3B.
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down with this change (Figure 4A and online Video 3) as a result of the tutor firing rates saturating when
the mismatch between the motor output and the target output was large. However, the accuracy of the final
rendition was not affected by saturation in the tutor (Figure 4A, inset). An interesting effect occurred when
the firing rate constraint was imposed on a matched tutor with a long memory timescale. When this happened
and the motor error was large, the tutor signal saturated and stopped growing in relation to the motor error
before the end of the motor program. In the extreme case of very long integration timescales, learning became
sequential: early features in the output were learned first, before later features were addressed, as in Figure 4B
and online Video 4. This is reminiscent of the learning rule described in (Memmesheimer et al. 2014).
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Figure 4: Effects of adding a constraint on the tutor firing rate to the simulations. A. Learning was slowed
down by the firing rate constraint, but the accuracy of the final rendition stayed the same (inset, shown here for
one of two simulated output channels). Here α = 0, β = −1, and τtutor = τ∗tutor = 40 ms. (See online Video 3.)
B. Sequential learning occurred when the firing rate constraint was imposed on a matched tutor with a long
memory scale. The plots show the evolution of the motor output for one of the two channels that were used in
the simulation. Here α = 24, β = 23, and τtutor = τ∗tutor = 1000 ms. (See online Video 4.)

Video 3: Effects of adding a constraint on tutor firing rates on the evolution of motor output during learning
in a rate-based simulation. The plasticity rule here was rate-based (α = 0). This video relates to Figure 4A.

Video 4: Evolution of the motor output showing sequential learning in a rate-based simulation, which occurs
when the firing rate constraint is imposed on a tutor with a long memory timescale. This video relates to
Figure 4B.

Nonlinearities can similarly affect the activities of student neurons. Our model can be readily extended
to describe efficient learning even in this case. The key result is that for efficient learning to occur, the
synaptic plasticity rule should depend not just on the tutor and conductor, but also on the activity of the
postsynaptic student neurons (details in Appendix). Such dependence on postsynaptic activity is commonly
seen in experiments (Chistiakova, Bannon, et al. 2014; Chistiakova and Volgushev 2009).

The relation between student neuron activations sj(t) and motor outputs ya(t) (Figure 2A) is in general
also nonlinear. Compared to the linear assumption that we used, the effect of a monotonic nonlinearity,

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2017. ; https://doi.org/10.1101/071910doi: bioRxiv preprint 

https://doi.org/10.1101/071910
http://creativecommons.org/licenses/by-nc-nd/4.0/


ya = Na(
∑
jMajsj), with Na an increasing function, is similar to modifying the loss function L, and does not

significantly change our results (see Appendix). We also checked that imposing a rectification constraint that
conductor–student weights Wij must be positive does not modify our results either (see Appendix). This shows
that our model continues to work with biologically realistic synapses that cannot change sign from excitatory
to inhibitory during learning.

2.5 Spiking neurons and birdsong

To apply our model to vocal learning in birds, we extended our analysis to networks of spiking neurons.
Juvenile songbirds produce a “babble” that converges through learning to an adult song strongly resembling
the tutor song. This is reflected in the song-aligned spiking patterns in pre-motor area RA, which become
more stereotyped and cluster in shorter, better-defined bursts as the bird matures (Figure 5A). We tested
whether our model could reproduce key statistics of spiking in RA over the course of song learning. In this
context, our theory of efficient learning, derived in a rate-based scenario, predicts a specific relation between
the teaching signal embedded in LMAN firing patterns, and the plasticity rule implemented in RA. We tested
whether these predictions continued to hold in the spiking context.

Following the experiments of Hahnloser, Kozhevnikov, and Fee (2002), we modeled each neuron in HVC
(the conductor) as firing one short, precisely timed burst of 5-6 spikes at a single moment in the motor program.
Thus the population of HVC neurons produced a precise timebase for the song. LMAN (tutor) neurons are
known to have highly variable firing patterns that facilitate experimentation, but also contain a corrective
bias (Andalman and Fee 2009). Thus we modeled LMAN as producing inhomogeneous Poisson spike trains
with a time-dependent firing rate given by eq. (5) in our model. Although biologically there are several LMAN
neurons projecting to each RA neuron, we again simplified by “summing” the LMAN inputs into a single,
effective tutor neuron, similarly to the approach in (Fiete, Fee, and Seung 2007). The LMAN-RA synapses
were modeled in a current-based approach as a mixture of AMPA and NMDA receptors, following the songbird
data (Garst-Orozco, Babadi, and Ölveczky 2014; Stark and Perkel 1999). The initial weights for all synapses
were tuned to produce RA firing patterns resembling juvenile birds (Ölveczky, Otchy, et al. 2011), subject
to constraints from direct measurements in slice recordings (Garst-Orozco, Babadi, and Ölveczky 2014) (see
Methods for details, and Figure 5B for a comparison between neural recordings and spiking in our model). In
contrast to the constant inhibitory bias that we used in our rate-based simulations, for the spiking simulations
we chose an activity-dependent global inhibition for RA neurons. We also tested that a constant bias produced
similar results (see Appendix).

Synaptic strength updates followed the same two-timescale dynamics that was used in the rate-based models
(Figure 2B). The firing rates ci(t) and gj(t) that appear in the plasticity equation were calculated in the spiking
model by filtering the spike trains from conductor and tutor neurons with exponential kernels. The synaptic
weights were constrained to be non-negative. (See Methods for details.)

As long as the tutor error integration timescale was not too large, learning proceeded effectively when
the tutor error integration timescale and the student plasticity rule were matched (see Figure 5C and online
Video 5), with mismatches slowing down or abolishing learning, just as in our rate-based study (compare
Figure 5D with Figure 3C). The rate of learning and the accuracy of the trained state were lower in the
spiking model compared to the rate-based model. The lower accuracy arises because the tutor neurons fire
stochastically, unlike the deterministic neurons used in the rate-based simulations. The stochastic nature of the
tutor firing also led to a decrease in learning accuracy as the tutor error integration timescale τtutor increased
(Figure 5D). This happens through two related effects: (1) the signal-to-noise ratio in the tutor guiding signal
decreases as τtutor increases once the tutor error integration timescale is longer than the duration T of the
motor program (see Appendix); and (2) the fluctuations in the conductor–student weights lead to some weights
getting clamped at 0 due to the positivity constraint, which leads to the motor program overshooting the target
(see Appendix). The latter effect can be reduced by either allowing for negative weights, or changing the motor
output to a push-pull architecture in which some student neurons enhance the output while others inhibit it.
The signal-to-noise ratio effect can be attenuated by increasing the gain of the tutor signal, which inhibits
early learning, but improves the quality of the guiding signal in the latter stages of the learning process. It is
also worth emphasizing that these effects only become relevant once the tutor error integration timescale τtutor

becomes significantly longer than the duration of the motor program, T , which for a birdsong motif would be
around 1 second.

Spiking in our model tends to be a little more regular than that in the recordings (compare Figure 5A
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Figure 5: Results from simulations in spiking neural networks. A. Spike patterns recorded from zebra finch
RA during song production, for a juvenile (top) and an adult (bottom). Each color corresponds to a single
neuron, and the song-aligned spikes for six renditions of the song are shown. Adapted from (Ölveczky, Otchy,
et al. 2011). B. Spike patterns from model student neurons in our simulations, for the untrained (top) and
trained (bottom) models. The training used α = 1, β = 0, and τtutor = 80 ms, and ran for 600 iterations of the
song. Each model neuron corresponds to a different output channel of the simulation. In this case, the targets
for each channel were chosen to roughly approximate the time course observed in the neural recordings. C.
Progression of reproduction error in the spiking simulation as a function of the number of repetitions for the
same conditions as in panel B. The inset shows the accuracy of reproduction in the trained model for one of
the output channels. (See online Video 5.) D. Effects of mismatch between student and tutor on reproduction
accuracy in the spiking model. The heatmap shows the final reproduction error of the motor output after 1000
learning cycles in a spiking simulation where a student with parameters α, β, τ1, and τ2 was paired with a
tutor with memory timescale τtutor. On the y axis, τ1 and τ2 were kept fixed at 80 ms and 40 ms, respectively,
while α and β were varied (subject to the constraint α− β = 1; see section 2.2). Different choices of α and β
lead to different optimal timescales τ∗tutor according to eq. (4). The diagonal elements correspond to matched
tutor and student, τtutor = τ∗tutor. Note that the color scale is logarithmic.

Video 5: Evolution of motor output during learning in a spiking simulation. The plasticity rule parameters were
α = 1, β = 0, and the tutor had a matching timescale τtutor = τ∗tutor = 80 ms. This video relates to Figure 5C.
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and Figure 5B). This could be due to sources of noise that are present in the brain which we did not model.
One detail that our model does not capture is the fact that many LMAN spikes occur in bursts, while in
our simulation LMAN firing is Poisson. Bursts are more likely to produce spikes in downstream RA neurons
particularly because of the NMDA dynamics, and thus a bursty LMAN will be more effective at injecting
variability into RA (Kojima, Kao, and Doupe 2013). Small inaccuracies in aligning the recorded spikes to the
song are also likely to contribute apparent variability between renditions in the experiment. Indeed, some of
the variability in Figure 5A looks like it could be due to time warping and global time shifts that were not
fully corrected.

2.6 Robust learning with credit assignment errors

The calculation of the tutor output in our rule involved estimating the motor error εj from eq. (2). This
required knowledge of the assignment between student activities and motor output, which in our model was
represented by the matrix Maj (Figure 2A). In our simulations, we typically chose an assignment in which
each student neuron contributed to a single output channel, mimicking the empirical findings for neurons
in bird RA. Mathematically, this implies that each column of Maj contained a single non-zero element. In
Figure 6A, we show what happened in the rate-based model when the tutor incorrectly assigned a certain
fraction of the neurons to the wrong output. Specifically, we considered two output channels, y1 and y2,
with half of the student neurons contributing only to y1 and the other half contributing only to y2. We then
scrambled a fraction ρ of this assignment when calculating the motor error, so that the tutor effectively had an
imperfect knowledge of the student–output relation. Figure 6A shows that learning is robust to this kind of
mis-assignment even for fairly large values of the error fraction ρ up to about 40%, but quickly deteriorates as
this fraction approaches 50%.

Due to environmental factors that affect development of different individuals in different ways, it is unlikely
that the student–output mapping can be innate. As such, the tutor circuit must learn the mapping. Indeed,
it is known that LMAN in the bird receives an indirect evaluation signal via Area X, which might be used
to effect this learning (Andalman and Fee 2009; Gadagkar et al. 2016; Hoffmann et al. 2016; Kubikova and
Košťál 2010). One way in which this can be achieved is through a reinforcement paradigm. We thus considered
a learning rule where the tutor circuit receives a reward signal that enables it to infer the student–output
mapping. In general the output of the tutor circuit should depend on an integral of the motor error, as in
eq. (3), to best instruct the student. For simplicity, we start with the memory-less case, τtutor = 0, in which
only the instantaneous value of the motor error is reflected in the tutor signal; we then show how to generalize
this for τtutor > 0.

As before, we took the tutor neurons to fire Poisson spikes with time-dependent rates fj(t), which were
initialized arbitrarily. Because of stochastic fluctuations, the actual tutor activity on any given trial, gj(t),
differs somewhat from the average, ḡj(t). Denoting the difference by ξj(t) = gj(t)− ḡj(t), the update rule for
the tutor firing rates was given by

∆fj(t) = ηtutor(R(t)− R̄)ξj(t) , (6)

where ηtutor is a learning rate, R(t) is the instantaneous reward signal, and R̄ is its average over recent renditions
of the motor program. In our implementation, R̄ is obtained by convolving R(t) with an exponential kernel
(timescale = 1 second). The reward R(tmax) at the end of one rendition becomes the baseline at the start
of the next rendition R(0). The baseline ḡj(t) of the tutor activity is calculated by averaging over recent
renditions of the song with exponentially decaying weights (one e-fold of decay for every 5 renditions). Further
implementation details are available in our code at https://github.com/ttesileanu/twostagelearning.

The intuition behind this rule is that, whenever a fluctuation in the tutor activity leads to better-than-
average reward (R(t) > R̄), the tutor firing rate changes in the direction of the fluctuation for subsequent trials,
“freezing in” the improvement. Conversely, the firing rate moves away from the directions in which fluctuations
tend to reduce the reward.

To test our learning rule, we ran simulations using this reinforcement strategy and found that learning again
converges to an accurate rendition of the target output (Figure 6B, inset and online Video 6). The number
of repetitions needed for training is greatly increased compared to the case in which the credit assignment is
assumed known by the tutor circuit (compare Figure 6B to Figure 5C). This is because the tutor needs to use
many training rounds for experimentation before it can guide the conductor–student plasticity. The rate of
learning in our model is similar to the songbird (i.e., order 10 000 repetitions for learning, given that a zebra
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Figure 6: Credit assignment and reinforcement learning. A. Effects of credit mis-assignment on learning
in a rate-based simulation. Here, the system learned output sequences for two independent channels. The
student–output weights Maj were chosen so that the tutor wrongly assigned a fraction of student neurons to
an output channel different from the one it actually mapped to. The graph shows how the accuracy of the
motor output after 1000 learning steps depended on the fraction of mis-assigned credit. B. Learning curve
and trained motor output (inset) for one of the channels showing two-stage reinforcement-based learning for
the memory-less tutor (τtutor = 0). The accuracy of the trained model is as good as in the case where the
tutor was assumed to have a perfect model of the student–output relation. However, the speed of learning
is reduced. (See online Video 6.) C. Learning curve and trained motor output (inset) for one of the output
channels showing two-stage reinforcement-based learning when the tutor circuit needs to integrate information
about the motor error on a certain timescale. Again, learning was slow, but the accuracy of the trained state
was unchanged. (See online Video 7.) D. Evolution of the average number of HVC inputs per RA neuron with
learning in a reinforcement example. Synapses were considered pruned if they admitted a current smaller than
1 nA after a pre-synaptic spike in our simulations.

Video 6: Evolution of motor output during learning in a spiking simulation with a reinforcement-based tutor.
Here the tutor was memory-less (τtutor = 0). This video relates to Figure 6B.

Video 7: Evolution of motor output during learning in a spiking simulation with a reinforcement-based tutor.
Here the tutor needed to integrate information about the motor error on a timescale τtutor = 440 ms. This
video relates to Figure 6C.
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finch typically sings about 1000 repetitions of its song each day, and takes about one month to fully develop
adult song).

Because of the extra training time needed for the tutor to adapt its signal, the motor output in our
reward-based simulations tends to initially overshoot the target (leading to the kink in the error at around
2000 repetitions in Figure 6B). Interestingly, the subsequent reduction in output that leads to convergence
of the motor program, combined with the positivity constraint on the synaptic strengths, leads to many
conductor–student connections being pruned (Figure 6D). This mirrors experiments on songbirds, where the
number of connections between HVC and RA first increases with learning and then decreases (Garst-Orozco,
Babadi, and Ölveczky 2014).

The reinforcement rule described above responds only to instantaneous values of the reward signal and
tutor firing rate fluctuations. In general, effective learning requires that the tutor keep a memory trace of its
activity over a timescale τtutor > 0, as in eq. (4). To achieve this in the reinforcement paradigm, we can use a
simple generalization of eq. (6) where the update rule is filtered over the tutor memory timescale:

∆fj(t) = ηtutor
1

τtutor

∫ t

dt′ (R(t′)− R̄)ξj(t
′)e−(t−t′)/τtutor . (7)

We tested that this rule leads to effective learning when paired with the corresponding student, i.e., one for
which eq. (4) is obeyed (Figure 6C and online Video 7).

The reinforcement rules proposed here are related to the learning rules from (Fiete, Fee, and Seung 2007;
Fiete and Seung 2006) and (Farries and Fairhall 2007). However, those models focused on learning in a single
pass, instead of the two-stage architecture that we studied. In particular, in (Fiete, Fee, and Seung 2007), area
LMAN was assumed to generate pure Poisson noise and reinforcement learning took place at the HVC–RA
synapses. In our model, which is in better agreement with recent evidence regarding the roles of RA and
LMAN in birdsong (Andalman and Fee 2009), reinforcement learning first takes place in the anterior forebrain
pathway (AFP), for which LMAN is the output. A reward-independent heterosynaptic plasticity rule then
solidifies the information in RA.

In our simulations, tutor neurons fire Poisson spikes with specific time-dependent rates which change during
learning. The timecourse of the firing rates in each repetition must then be stored somewhere in the brain.
In fact, in the songbird, there are indirect projections from HVC to LMAN, going through the basal ganglia
(Area X) and the dorso-lateral division of the medial thalamus (DLM) in the anterior forebrain pathway
(Figure 1A) (Perkel 2004). These synapses could store the required time-dependence of the tutor firing rates.
In addition, the same synapses can provide the timebase input that would ensure synchrony between LMAN
firing and RA output, as necessary for learning. Our reinforcement learning rule for the tutor area, eq. (6), can
be viewed as an effective model for plasticity in the projections between HVC, Area X, DLM, and LMAN,
as in (Fee and Goldberg 2011). In this picture, the indirect HVC–LMAN connections behave somewhat like
the “hedonistic synapses” from (Seung 2003), though we use a simpler synaptic model here. Implementing
the integral from eq. (7) would require further recurrent circuitry in LMAN which is beyond the scope of this
paper, but would be interesting to investigate in future work.

3 Discussion

We built a two-stage model of learning in which one area (the student) learns to perform a sequence of actions
under guidance from a tutor area. This architecture is inspired by the song system of zebra finches, where area
LMAN provides a corrective bias to the song that is then consolidated in the HVC–RA synapses. Using an
approach rooted in the efficient coding literature, we showed analytically that, in a simple model, the tutor
output that is most likely to lead to effective learning by the student involves an integral over the recent
magnitude of the motor error. We found that efficiency requires that the timescale for this integral should be
related to the synaptic plasticity rule used by the student. Using simulations, we tested our findings in more
general settings. In particular, we demonstrated that tutor-student matching is important for learning in a
spiking-neuron model constructed to reproduce spiking patterns similar to those measured in zebra finches.
Learning in this model changes the spiking statistics of student neurons in realistic ways, for example, by
producing more bursty, stereotyped firing events as learning progresses. Finally, we showed how the tutor can
build its error-correcting signal by means of reinforcement learning.
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If the birdsong system supports efficient learning, our model can predict the temporal structure of the firing
patterns of RA-projecting LMAN neurons, given the plasticity rule implemented at the HVC–RA synapses.
These predictions can be directly tested by recordings from LMAN neurons in singing birds, assuming that a
good measure of motor error is available, and that we can estimate how the neurons contribute to this error.
Moreover, recordings from a tutor circuit, such as LMAN, could be combined with a measure of motor error
to infer the plasticity rule in a downstream student circuit, such as RA. This could be compared with direct
measurements of the plasticity rule obtained in slice. Conversely, knowledge of the student plasticity rule could
be used to predict the time-dependence of tutor firing rates. According to our model, the firing rate should
reflect the integral of the motor error with the timescale predicted by the model. A different approach would
be to artificially tutor RA by stimulating LMAN neurons electrically or optogenetically. We would predict
that if the tutor signal is delivered appropriately (e.g., in conjunction with a particular syllable (Tumer and
Brainard 2007)), then the premotor bias produced by the stimulation should become incorporated into the
motor pathway faster when the timescale of the artificial LMAN signal is properly matched to the RA synaptic
plasticity rule.

Our model can be applied more generally to other systems in the brain exhibiting two-stage learning,
such as motor learning in mammals. If the plasticity mechanisms in these systems are different from those in
songbirds, our predictions for the structure of the guiding signal will vary correspondingly. This would allow
a further test of our model of “efficient learning” in the brain. It is worth pointing out that our model was
derived assuming a certain hierarchy among the timescales that model the student plasticity and the tutor
signal. A mismatch between the model predictions and observations could also imply a breakdown of these
approximations, rather than failure of the hypothesis that the particular system under study evolved to support
efficient learning. Of course our analysis could be extended by relaxing these assumptions, for example by
keeping more terms in the Taylor expansion that we used in our derivation of the matched tutor signal.

Applied to birdsong, our model is best seen as a mechanism for learning song syllables. The ordering of
syllables in song motifs seems to have a second level of control within HVC and perhaps beyond (Basista et al.
2014; Hamaguchi, Tanaka, and Mooney 2016). Songs can also be distorted by warping their timebase through
changes in HVC firing without alterations of the HVC–RA connectivity (Ali et al. 2013). In view of these
phenomena, it would be interesting to incorporate our model into a larger hierarchical framework in which the
sequencing and temporal structure of the syllables are also learned. A model of transitions between syllables
can be found in (Doya and Sejnowski 2000), where the authors use a “weight perturbation” optimization
scheme in which each HVC–RA synaptic weight is perturbed individually. We did not follow this approach
because there is no plausible mechanism for LMAN to provide separate guidance to each HVC–RA synapse; in
particular, there are not enough LMAN neurons (Fiete, Fee, and Seung 2007).

In this paper we assumed a two-stage architecture for learning, inspired by birdsong. An interesting question
is whether and under what conditions such an architecture is more effective than a single-step model. Possibly,
having two stages is better when a single tutor area is responsible for training several different dedicated
controllers, as is likely the case in motor learning. It would then be beneficial to have an area that can learn
arbitrary behaviors, perhaps at the cost of using more resources and having slower reaction times, along with
the ability to transfer these behaviors into low-level circuitry that is only capable of producing stereotyped
motor programs. The question then arises whether having more than two levels in this hierarchy could be
useful, what the other levels might do, and whether such hierarchical learning systems are implemented in the
brain.
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A Methods

A.1 Equations for rate-based model

The basic equations we used for describing our rate-based model (Figure 2A) are the following:

ya(t) =
∑
j

Majsj(t) ,

sj(t) =
∑
i

Wijci(t) + wgj(t)− xinh .
(A.1)

In simulations, we further filtered the output using an exponential kernel,

ỹa(t) =
∑
j

Maj

∫ t

0

sj(t
′) e−(t−t′)/τout dt′ , (A.2)

with a timescale τout that we typically set to 25 ms. The smoothing produces more realistic outputs by
mimicking the relatively slow reaction time of real muscles, and stabilizes learning by filtering out high-
frequency components of the motor output. The latter interfere with learning because of the delay between the
effect of conductor activity on synaptic strengths vs. motor output. This delay is of the order τ1,2 − τout (see
the plasticity rule below).

The conductor activity in the rate-based model is modeled after songbird HVC (Hahnloser, Kozhevnikov,
and Fee 2002): each neuron fires a single burst during the motor program. Each burst corresponds to a sharp
increase of the firing rate ci(t) from 0 to a constant value, and then a decrease 10 ms later. The activities of
the different neurons are spread out to tile the whole duration of the output program. Other choices for the
conductor activity also work, provided no patterns are repeated (see Appendix).

A.2 Mathematical description of plasticity rule

In our model the rate of change of the synaptic weights obeys a rule that depends on a filtered version of the
conductor signal (see Figure 2B). This is expressed mathematically as

dWij

dt
= η c̃i(t) (gj(t)− θ) , (A.3)

where η is a learning rate and c̃i = K ∗ ci, with the star representing convolution and K being a filtering kernel.
We considered a linear combination of two exponential kernels with timescales τ1 and τ2,

K(t) = αK1(t)− βK2(t) , (A.4)

with Ki(t) given by

Ki(t) =

{
τ−1
i e−t/τi for t ≥ 0,

0 else.
(A.5)

Different choices for the kernels give similar results (see Appendix). The overall scale of α and β can be
absorbed into the learning rate η in eq. (A.3). In our simulations, we fix α− β = 1 and keep the learning rate
constant as we change the plasticity rule (see eq. (3)).

In the spiking simulations with and without reinforcement learning in the tutor circuit, the firing rates ci(t)
and gj(t) were estimated by filtering spike trains with exponential kernels whose timescales were in the range
5 ms–40 ms. The reinforcement studies typically required longer timescales for stability, possibly because of
delays between conductor activity and reward signals.

A.3 Derivation of the matching tutor signal

To find the tutor signal that provides the most effective teaching for the student, we first calculate how much
synaptic weights change according to our plasticity rule, eq. (A.3). Then we require that this change matches
the gradient descent direction. We have

∆Wij =

∫ T

0

dWij

dt
dt = η

∫ T

0

c̃i(t)(gj(t)− θ) dt . (A.6)
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Because of the linearity assumptions in our model, it is sufficient to focus on a case in which each conductor
neuron, i, fires a single short burst, at a time ti. We write this as ci(t) = δ(t− ti), and so

∆Wij =

∫ T

0

dWij

dt
dt = η

∫ T

0

K(t− ti)(gj(t)− θ) dt , (A.7)

where we used the definition of c̃i(t). If the time constants τ1, τ2 are short compared to the timescale on which
the tutor input gj(t) varies, only the values of gj(t) around time ti will contribute to the integral. If we further
assume that T � ti, we can use a Taylor expansion of gj(t) around t = ti to perform the calculation:

∆Wij ≈ η
∫ ∞
ti

K(t− ti)
(
gj(ti)− θ + (t− ti)g′j(ti)

)
dt

= η(gj(ti)− θ)
∫ ∞

0

K(t) dt+ ηg′j(ti)

∫ ∞
0

tK(t) dt

= η(gj(ti)− θ)
∫ ∞

0

(
αK1(t)− βK2(t)

)
dt+ ηg′j(ti)

∫ ∞
0

t
(
αK1(t)− βK2(t)

)
dt .

(A.8)

Doing the integrals involving the exponential kernels K1 and K2, we get

∆Wij = η
[
(α− β) (gj(ti)− θ) + (ατ1 − βτ2)g′j(ti)

]
. (A.9)

We would like this synaptic change to optimally reduce a measure of mismatch between the output and
the desired target as measured by a loss function. A generic smooth loss function L(ya(t), ȳa(t)) can be
quadratically approximated when ya is sufficiently close to the target ȳa(t). With this in mind, we consider a
quadratic loss

L =
1

2

∑
a

∫ T

0

[
ya(t)− ȳa(t)

]2
dt . (A.10)

The loss function would decrease monotonically during learning if synaptic weights changed in proportion to
the negative gradient of L:

∆Wij = −γ ∂L

∂Wij
, (A.11)

where γ is a learning rate. This implies

∆Wij = −γ
∑
a

∫ T

0

Maj

[
ya(t)− ȳa(t)

]
ci(t) . (A.12)

Using again ci(t) = δ(t− ti), we obtain
∆Wij = −γεj(ti) , (A.13)

where we used the notation from eq. (2) for the motor error at student neuron j.
We now set (A.9) and (A.13) equal to each other. If the conductor fires densely in time, we need the

equality to hold for all times, and we thus get a differential equation for the tutor signal gj(t). This identifies
the tutor signal that leads to gradient descent learning as a function of the motor error εj(t), eq. (3) (with the
notation ζ = γ/η).

A.4 Spiking simulations

We used spiking models that were based on leaky integrate-and-fire neurons with current-based dynamics
for the synaptic inputs. The magnitude of synaptic potentials generated by the conductor–student synapses
was independent of the membrane potential, approximating AMPA receptor dynamics, while the synaptic
inputs from the tutor to the student were based on a mixture of AMPA and NMDA dynamics. Specifically, the
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equations describing the dynamics of the spiking model were:

τm
dVj
dt

= (VR − Vj) +R
(
IAMPA
j + INMDA

j

)
− Vinh , (except during refractory period)

dIAMPA
j

dt
= −

IAMPA
j

τAMPA
+
∑
i

Wij

∑
k

δ(t− tconductor #i
k ) + (1− r)w

∑
k

δ(t− ttutor
k ) ,

dINMDA
j

dt
= −

INMDA
j

τNMDA
+ rwG(Vj)

∑
k

δ(t− ttutor
k ) ,

Vinh =
ginh

Nstudent

∑
j

Sj(t) ,

dSj
dt

= − Sj
τinh

+
∑
k

δ(t− tstudent
k ) ,

G(V ) =

[
1 +

[Mg]

3.57 mM
exp(−V/16.13 mV)

]−1

.

(A.14)

Here Vj is the membrane potential of the jth student neuron and VR is the resting potential, as well as the
potential to which the membrane was reset after a spike. Spikes were registered whenever the membrane
potential went above a threshold Vth, after which a refractory period τref ensued. Apart from excitatory
AMPA and NMDA inputs modeled by the IAMPA

j and INMDA
j variables in our model, we also included a global

inhibitory signal Vinh which is proportional to the overall activity of student neurons averaged over a timescale
τinh. The averaging is performed using the auxiliary variables Sj which are convolutions of student spike
trains with an exponential kernel. These can be thought of as a simple model for the activities of inhibitory
interneurons in the student.

Table 1 gives the values of the parameters we used in the simulations. These values were chosen to match
the firing statistics of neurons in bird RA, as described below.

Parameter Symbol Value Parameter Symbol Value

No. of conductor neurons 300 No. of student neurons 80
Reset potential VR −72.3 mV Input resistance R 353 MΩ
Threshold potential Vth −48.6 mV Strength of inhibition ginh 1.80 mV
Membrane time constant τm 24.5 ms Fraction NMDA receptors r 0.9
Refractory period τref 1.1 ms Strength of synapses from

tutor
w 100 nA

AMPA time constant τAMPA 6.3 ms No. of conductor synapses
per student neuron

148

NMDA time constant τNMDA 81.5 ms Mean strength of synapses
from conductor

32.6 nA

Time constant for global in-
hibition

τinh 20 ms Standard deviation of
conductor–student weights

17.4 nA

Conductor firing rate during
bursts

632 Hz

Table 1: Values for parameters used in the spiking simulations.

The voltage dynamics for conductor and tutor neurons was not simulated explicitly. Instead, each conductor
neuron was assumed to fire a burst at a fixed time during the simulation. The onset of each burst had additive
timing jitter of ±0.3 ms and each spike in the burst had a jitter of ±0.2 ms. This modeled the uncertainty in
spike times that is observed in in vivo recordings in birdsong (Hahnloser, Kozhevnikov, and Fee 2002). Tutor
neurons fired Poisson spikes with a time-dependent firing rate that was set as described in the main text.

The initial connectivity between conductor and student neurons was chosen to be sparse (see Table 1).
The initial distribution of synaptic weights was log-normal, matching experimentally measured values for
zebra finches (Garst-Orozco, Babadi, and Ölveczky 2014). Since these measurements are done in the slice,
the absolute number of HVC synapses per RA neuron is likely to have been underestimated. The number
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of conductor–student synapses we start with in our simulations is thus chosen to be higher than the value
reported in that paper (see Table 1), and is allowed to change during learning. We checked that the learning
paradigm described here is robust to substantial changes in these parameters, but we have chosen values that
are faithful to birdsong experiments and which are thus able to imitate the RA spiking statistics during song.

The synapses projecting onto each student neuron from the tutor have a weight that is fixed during our
simulations reflecting the finding in (Garst-Orozco, Babadi, and Ölveczky 2014) that the average strength of
LMAN–RA synapses for zebra finches does not change with age. There is some evidence that individual LMAN–
RA synapses undergo plasticity concurrently with the HVC–RA synapses (Mehaffey and Doupe 2015) but we
did not seek to model this effect. There are also developmental changes in the kinetics of NMDA-mediated
synaptic currents in both HVC–RA and LMAN–RA synapses which we do not model (Stark and Perkel 1999).
These, however, happen early in development, and thus are unlikely to have an effect on song crystallization,
which is what our model focuses on. Stark and Perkel (1999) also observed changes in the relative contribution
of NMDA to AMPA responses in the HVC–RA synapses. We do not incorporate such effects in our model
since we do not explicitly model the dynamics of HVC neurons in this paper. However, this is an interesting
avenue for future work, especially since there is evidence that area HVC can also contribute to learning, in
particular in relation to the temporal structure of song (Ali et al. 2013).

A.5 Matching spiking statistics with experimental data

We used an optimization technique to choose parameters to maximize the similarity between the statistics
of spiking in our simulations and the firing statistics observed in neural recordings from the songbird. The
comparison was based on several descriptive statistics: the average firing rate; the coefficient of variation and
skewness of the distribution of inter-spike intervals; the frequency and average duration of bursts; and the
firing rate during bursts. For calculating these statistics, bursts were defined to start if the firing rate went
above 80 Hz and last until the rate decreased below 40 Hz.

To carry out such optimizations in the stochastic context of our simulations, we used an evolutionary
algorithm—the covariance matrix adaptation evolution strategy (CMA-ES) (Hansen 2006). The objective
function was based on the relative error between the simulation statistics xsim

i and the observed statistics xobs
i ,

error =

[∑
i

(
xsim
i

xobs
i

− 1

)2
]1/2

. (A.15)

Equal weight was placed on optimizing the firing statistics in the juvenile (based on a recording from a 43 dph
bird) and optimizing firing in the adult (based on a recording from a 160 dph bird). In this optimization there
was no learning between the juvenile and adult stages. We simply required that the number of HVC synapses
per RA neuron, and the mean and standard deviation of the corresponding synaptic weights were in the ranges
seen in the juvenile and adult by Garst-Orozco, Babadi, and Ölveczky (2014). The optimization was carried
out in Python (RRID:SCR_008394), using code from https://www.lri.fr/~hansen/cmaes_inmatlab.html.
The results fixed the parameter choices in Table 1 which were then used to study our learning paradigm. While
these choices are important for achieving firing statistics that are similar to those seen in recordings from the
bird, our learning paradigm is robust to large variations in the parameters in Table 1.

A.6 Software and data

We used custom-built Python (RRID:SCR_008394) code for simulations and data analysis. The software and
data that we used can be accessed online on GitHub (RRID:SCR_002630) at https://github.com/ttesileanu/
twostagelearning.
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B Appendix

B.1 Effect of nonlinearities

We can generalize the model from eq. (A.1) by using a nonlinear transfer function from student activities to
motor output, and a nonlinear activation function for student neurons:

ya(t) = Na

(∑
j

Majsj(t)
)
,

sj(t) = F
(∑

i

Wijci(t) + wgj(t)− xinh

)
.

(B.1)

Suppose further that we use a general loss function,

L =

∫ T

0

L
(
{ya(t)− ȳa(t)}

)
dt . (B.2)

Carrying out the same argument as that from section A.3, the gradient descent condition, eq. (A.11), implies

∆Wij = −γ
∫ T

0

∑
a

MajN
′
aF
′ci(t)

∂L
∂ya

∣∣∣∣
ya(t)−ȳa(t)

. (B.3)

The departure from the quadratic loss function, L 6= 1
2

∑
a(ya(t)− ȳa(t))2, and the nonlinearities in the output,

Na, have the effect of redefining the motor error,

εj(t) =
∑
a

MajN
′
a

∂L
∂ya

∣∣∣∣
ya(t)−ȳa(t)

. (B.4)

A proper loss function will be such that the derivatives ∂L/∂ya vanish when ya(t) = ȳa(t), and so the motor
error εj as defined here is zero when the rendition is perfect, as expected. If we use a tutor that ignores the
nonlinearities in a nonlinear system, i.e., if we use eq. (2) instead of eq. (B.4) to calculate the tutor signal
that is plugged into eq. (3), we still expect successful learning provided that N ′a > 0 and that L is itself an
increasing function of |ya − ȳa| (see section B.2). This is because replacing eq. (B.4) with eq. (2) would affect
the magnitude of the motor error without significantly changing its direction. In more complicated scenarios,
if the transfer function to the output is not monotonic, there is the potential that using eq. (2) would push
the system away from convergence instead of towards it. In such a case, an adaptive mechanism, such as the
reinforcement rules from eqns. (6) or (7) can be used to adapt to the local values of the derivatives N ′a and
∂L/∂ya.

Finally, the nonlinear activation function F introduces a dependence on the student output sj(t) in eq. (B.3),
since F ′ is evaluated at F−1(sj(t)). To obtain a good match between the student and the tutor in this context,
we can modify the student plasticity rule (A.3) by adding a dependence on the postsynaptic activity,

dWij

dt
= η c̃i(t) (gj(t)− θ)F ′(F−1(sj(t))) . (B.5)

In general, synaptic plasticity has been observed to indeed depend on postsynaptic activity (Chistiakova,
Bannon, et al. 2014; Chistiakova and Volgushev 2009). Our derivation suggests that the effectiveness of learning
could be improved by tuning this dependence of synaptic change on postsynaptic activity to the activation
function of postsynaptic neurons, according to eq. (B.5). It would be interesting to check whether such tuning
occurs in real neurons.

B.2 Effect of different output functions

In the main text, we assumed a linear mapping between student activities and motor output. Moreover, we
assumed a myotopic organization, in which each student neuron projected to a single muscle, leading to a
student–output assignment matrix Maj in which each column had a single non-zero entry. We also assumed
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that student neurons only contributed additively to the outputs, with no inhibitory activity. Here we show
that our results hold for other choices of student–output mappings.

For example, assume a push-pull architecture, in which half of the student neurons controlling one output
are excitatory and half are inhibitory. This can be used to decouple the overall firing rate in the student
from the magnitude of the outputs. Learning works just as effectively as in the case of the purely additive
student–output mapping when using matched tutors, Appendix Figures 1A and 1B. The consequences of
mismatching student and tutor circuits are also not significantly changed, Appendix Figures 1C and 1D.

We can also consider nonlinear mappings between the student activity and the final output. If there is a
monotonic output nonlinearity, as in eq. (B.1) with N ′a > 0, the tutor signal derived for the linear case, eq. (3),
can still achieve convergence, though at a slower rate and with a somewhat lower accuracy (see Appendix
Figure 1E for the case of a sigmoidal nonlinearity). For non-monotonic nonlinearities, the direction from which
the optimum is approached can be crucial, as learning can get stuck in local minima of the loss function.2

Studying this might provide an interesting avenue to test whether learning in songbirds is based on a gradient
descent-type rule or on a more sophisticated optimization technique.

B.3 Different inhibition models

In the spiking model, we used an activity-dependent inhibitory signal that was proportional to the average
student activity. Using a constant inhibition instead, Vinh = constant, does not significantly change the results:
see Appendix Figure 1F for an example.

B.4 Effect of changing plasticity kernels

In the main text, we used exponential kernels with τ1 = 80 ms and τ2 = 40 ms for the smoothing of the
conductor signal that enters the synaptic plasticity rule, eq. (A.3). We can generalize this in two ways: we can
use different timescales τ1, τ2, or we can use a different functional form for the kernels. (Note that in the main
text we showed the effects of varying the parameters α and β in the plasticity rule, while the timescales τ1 and
τ2 were kept fixed.)

The values for the timescales τ1,2 were chosen to roughly match the shape of the plasticity curve measured
in slices of zebra finch RA (Mehaffey and Doupe 2015) (see Figures 1C, 1D). The main predictions of our
model, that learning is most effective when the tutor signal is matched to the student plasticity rule, and that
large mismatches between tutor and student lead to impaired learning, hold well when the student timescales
change: see Appendix Figure 2A for the case when τ1 = 20 ms and τ2 = 10 ms. In the main text we saw
that the negative effects of tutor–student mismatch diminish for timescales that are shorter than ∼ τ1,2. In
Appendix Figure 2A, the range of timescales where a precise matching is not essential becomes very small
because the student timescales are short.

Another generalization of our plasticity rule can be obtained by changing the functional form of the kernels
used to smooth the conductor input. As an example, suppose K2 is kept exponential, while K1 is replaced by

K̄1(t) =

{
1
τ̄2
1
te−t/τ̄1 for t ≥ 0,

0 else.
(B.6)

An example of learning using an STDP rule based on kernels K̄1 and K2 where τ̄1 = τ2 is shown in Appendix
Figure 2B. The matching tutor has the same form as before, eq. (3) with timescale τtutor = τ∗tutor given by
eq. (4), but with τ1 = 2τ̄1 = 2τ2. We can see that learning is as effective as in the case of purely exponential
kernels.

B.5 More general conductor patterns

In the main text, we have focused on a conductor whose activity matches that observed in area HVC of
songbirds (Hahnloser, Kozhevnikov, and Fee 2002): each neuron fires a single burst during the motor program.
Our model, however, is not restricted to this case. We generated alternative conductor patterns by using
arbitrarily-placed bursts of activity, as in Appendix Figure 3A. The model converges to a good rendition of the

2We thank Josh Gold for this observation.
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Appendix figure 1: Robustness of learning. A. Error trace showing how average motor error evolves with
repetitions of the motor program for rate-based plasticity paired with a matching tutor, when the student–
output mapping has a push-pull architecture. The inset shows the final motor output (thick red line) compared
to the target output (dotted black line). The output on the first rendition and at two other stages of learning
are also shown. B. The error trace and final motor output shown for timing-based plasticity matched by a
tutor with a long integration timescale. C. Effects of mismatch between student and tutor on reproduction
accuracy when using a push-pull architecture for the student–output mapping. The heatmap shows the final
reproduction error of the motor output after 1000 learning cycles when a student with plasticity parameters
α and β is paired with a tutor with memory timescale τtutor. Here τ1 = 80 ms and τ2 = 40 ms. D. Error
evolution curves as a function of the mismatch between student and tutor. Each plot shows how the error in
the motor program changes during 1000 learning cycles for the same conditions as those shown in the heatmap.
The region shaded in light pink shows simulations where the mismatch between student and tutor leads to a
deteriorating instead of improving performance during learning. E. Convergence in the rate-based model with
a linear-nonlinear controller that uses a sigmoidal nonlinearity. F. Convergence in the spiking model when
inhibition is constant instead of activity-dependent (Vinh = constant).
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Appendix figure 2: Effect of changing conductor smoothing kernels in the plasticity rule. (A) Matrix showing
learning accuracy when using different timescales for the student plasticity rule. Each entry in the heatmap
shows the average rendition error after 1000 learning steps when pairing a tutor with timescale τtutor with a
non-matched student. Here the kernels are exponential, with timescales τ1 = 20 ms, τ2 = 10 ms. (B) Evolution
of motor error with learning using kernels ∼ e−t/τ and ∼ te−t/τ , instead of the two exponentials used in the
main text. The tutor signal is as before, eq. (3). The inset shows the final output for the trained model, for
one of the two output channels. Learning is as effective and fast as before.

target program, Appendix Figure 3B. Learning is harder in this case because many conductor neurons can
be active at the same time, and the weight updates affect not only the output of the system at the current
position in the motor program, but also at all the other positions where the conductor neurons fire. This is
in contrast to the HVC-like conductor, where each neuron fires at a single point in the motor program, and
thus the effect of weight updates is better localized. More generally, simulations show that the sparser the
conductor firing, the faster the convergence (data not shown). The accuracy of the final rendition of the motor
program (Appendix Figure 3B, inset) is also not as good as before.

B.6 Edge effects

In our derivation of the matching tutor rule, we assumed that the system has enough time to integrate all the
synaptic weight changes from eq. (A.3). However, some of these changes occur tens or hundreds of milliseconds
after the inputs that generated them, due to the timescales used in the plasticity kernel. Since our simulations
are only run for a finite amount of time, there will in general be edge effects, where periods of the motor
program towards the end of the simulations will have difficulty converging. To offset such numerical issues, we
ran the simulations for a few hundred milliseconds longer than the duration of the motor program, and ignored
the data from this extra period. Our simulations typically run for 600 ms, and the time reserved for relaxation
after the end of the program was set to 1200 ms. The long relaxation time was chosen to allow for cases where
the tutor was chosen to have a very long memory timescale.

B.7 Parameter optimization for reproducing juvenile and adult spiking statistics

We set the parameters in our simulations to reproduce spiking statistics from recordings in zebra finch RA as
closely as possible. Appendix Figure 4 shows how the distribution of summary statistics obtained from 50 runs
of the simulation compares to the distributions calculated from recordings in birds at various developmental
stages. Each plot shows a standard box and whisker plot superimposed over a kernel-density estimate of the
distribution of a given summary statistic, either over simulation runs or over recordings from birds at various
stages of song learning. We ran two sets of simulations, one for a bird with juvenile-like connectivity between
HVC and RA, and one with adult-like connectivity (see Methods). In these simulations there was no learning
to match the timecourse of songs—the goal was simply to identify parameters that lead to birdsong-like firing
statistics.
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Appendix figure 3: Learning with arbitrary conductor activity. A. Typical activity of conductor neurons. 20
of the 100 neurons included in the simulation are shown. The activity pattern is chosen so that about 10%
of the neurons are active at any given time. The pattern is chosen randomly but is fixed during learning.
Each conductor burst lasts 30 ms. B. Convergence curve and final rendition of the motor program (in inset).
Learning included two output channels but the final output is shown for only one of them.

The qualitative match between our simulations and recordings is good, but the simulations are less variable
than the measurements. This may be due to sources of variability that we have ignored—for example, all our
simulated neurons had exactly the same membrane time constants, refractory periods, and threshold potentials,
which is not the case for real neurons. Another reason might be that in our simulations, all the runs were
performed for the same network, while the measurements are from different cells in different birds.

B.8 Effect of spiking stochasticity on learning

As pointed out in the main text, learning is affected in the spiking simulations when the tutor error integration
timescale τtutor becomes very long. More specifically, two distinct effects occur. First, the fluctuations in the
motor output increase, leading to a poorer match to the shape of the target motor program. And second, the
whole output gets shifted up, towards higher muscle activation values. Both of these effects can be traced back
to the stochasticity of the tutor signal.

In the spiking simulations, tutor neurons are assumed to fire Poisson spikes following a time-dependent
firing rate that obeys eq. (5). By the nature of the Poisson process, the tutor output in this case will contain
fluctuations around the mean, g(t) ∼ ḡ(t) + ξ(t). Recall that the scale of g(t) is set by the threshold θ and
thus so is the scale of the variability ξ(t).

As long as the tutor error integration timescale is not very long, g(t) roughly corresponds to a smoothed
version of the motor error ε(t) (cf. eq. (5)). However, as τtutor grows past the duration T of the motor program,
the exponential term in eq. (5) becomes essentially constant, leading to a tutor signal ḡ(t) whose departures
from the center value θ decrease in proportion to the timescale τtutor. As far as the student is concerned, the
relevant signal is g(t)− θ (eq. (1)), and thus, when τtutor > T , the signal-to-noise ratio in the tutor guiding
signal starts to decrease as 1/τtutor. This ultimately leads to a very noisy rendition of the target program. One
way to improve this would be to increase the gain factor ζ that controls the relation between the motor error
and the tutor signal (see eq. (5)). This improves the ability of the system to converge onto its target in the
late stages of learning. In the early stages of learning, however, this could lead to saturation problems. One
way to fix this would be to use a variable gain factor ζ that ensures the whole range of tutor firing rates is used
without generating too much saturation. This would be an interesting avenue for future research.

Reducing the fluctuations in the tutor signal also decreases the fluctuations in the conductor–student
synaptic weights, which leads to fewer weights being clamped at 0 because of the positivity constraint. This
reduces the shift between the learned motor program and the target. As mentioned in the main text, another
approach to reducing or eliminating this shift is to allow for negative weights or (more realistically) to use a
push-pull mechanism, in which the activity of some student neurons acts to increase muscle output, while the
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Appendix figure 4: Violin plots showing how the spiking statistics from our simulation compared to the
statistics obtained from neural recordings. Each violin shows a kernel-density estimate of the distribution that
a particular summary statistic had in either several runs of a simulation, or in several recordings from behaving
birds. The circle and the box within each violin show the median and the interquartile range.
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activity of other student neurons acts as an inhibition on muscle output.

C Plasticity parameter values

In the heatmaps that appear in many of the figures in the main text and in the supplementary information,
we kept the timescales τ1 and τ2 constant while varying α and β to modify the student plasticity rule. Since
the overall scale of α and β is inconsequential as it can be absorbed into the learning rate (as explained in
section 2.2), we imposed the further constraint α − β = 1. This implies that we effectively focused on a
one-parameter family of student plasticity rule, as identified by the value of α (and the corresponding value for
β = α− 1). In the figures, we expressed this instead in terms of the timescale of the optimally-matching tutor,
τ∗tutor, as defined in eq. (4).

Below we give the explicit values of α and β that we used for each row in the heatmaps. These can be
calculated by solving for α in eq. (4), using β = α− 1, and assume that τ1 = 80 ms and τ2 = 40 ms.

τ∗tutor α β

10 −0.75 −1.75
20 −0.5 −1.5
40 0.0 −1.0
80 1.0 0.0

160 3.0 2.0
320 7.0 6.0
640 15.0 14.0

1280 31.0 30.0
2560 63.0 62.0
5120 127.0 126.0

10240 255.0 254.0
20480 511.0 510.0
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