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Most mutations are deleterious and cause a reduction in population mean
fitness known as the mutational load. In small populations, weakened selection
against slightly-deleterious mutations results in an additional reduction in fit-
ness: the drift load. Many studies have established that populations can evolve
a reduced mutational load by evolving mutational robustness, but it is uncertain
whether populations can evolve a reduced drift load. Here, using digital experi-
mental evolution, we show that small populations do evolve reduced drift loads,
that is, they evolve robustness to genetic drift, or “drift robustness”. We find
that, compared to genotypes from large populations, genotypes from small pop-
ulations have a decreased likelihood of small-effect deleterious mutations, thus
causing small-population genotypes to be drift-robust. We further show that
drift robustness is not under direct selection, but instead arises because small
populations preferentially adapt to drift-robust fitness peaks. These results have
implications for genome evolution in organisms with small effective population
sizes.

One consequence of the power of adaptation is that the majority of mutations reduce
their bearer’s fitness [1]. The recurring nature of these deleterious mutations results in an
equilibrium reduction of population fitness at mutation-selection balance. At the population
level, this reduction in fitness is known as the genetic or mutational load [2-5]. As selection
generally acts to increase a population’s mean fitness, one avenue for selection to increase
mean fitness is to reduce the mutational load by altering mutation-selection balance and
increasing mutational robustness [6,7]. The evolution of mutational robustness has been
demonstrated using theoretical modeling [8-11], digital experimental evolution [12-14], and
microbial experimental evolution [15-17].

Recurring deleterious mutations are not the only strain on fitness. In small populations,
genetic drift leads to the fixation of slightly-deleterious mutations that bring about a reduc-
tion in fitness called the drift load [18,19]. Over time, genetic drift can lead to continual
fitness declines and ultimately population extinction [20,21]. In asexual populations, this
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phenomenon of fitness decline is known as Muller’s Ratchet [22] and is thought to play
a role in the evolution of mitochondria [23], bacterial endosymbionts [24], the Y chromo-
some [25], and other obligate asexual lineages. Muller’s Ratchet may explain why there are
few long-lived obligate asexual species and may provide a selection pressure for the evolu-
tion of sexual recombination [26]. However, it was recently shown that small populations
do not continuously decline in fitness, but only do so until they reach drift-selection bal-
ance when the fixation of beneficial mutations counteracts the fixation of slightly-deleterious
mutations [18,27-29]. Furthermore, Muller’s ratchet may be limited in strength if small
populations can alter drift-selection balance and evolve drift robustness. However, it is un-
known if populations can evolve drift robustness and a reduced drift load, or what genetic
and evolutionary mechanisms could cause a reduced drift load.

To test whether populations could evolve drift robustness, we used the digital exper-
imental evolution system Avida [30]. As with microbial experimental evolution, digital
evolution makes it possible to study evolution as it occurs [31]. In Avida, a population
of self-replicating computer programs (“avidians”) compete for the resources necessary for
reproduction. During self-replication, random mutations occur, potentially altering the new
avidian’s reproduction speed. When an avidian successfully reproduces, its offspring replaces
a random individual in the population, resulting in genetic drift. As avidians that replicate
faster will produce more offspring per unit time than avidians with slower replication speeds,
faster replicators are selected for and spread mutations that enable faster replication. Be-
cause Avida populations undergo selection, mutation, and drift, they represent a digital
model system to study fundamental questions concerning evolutionary dynamics. Avida has
been previously used to study both the evolution of mutational robustness [12,13] and the
role of population size on evolutionary outcomes [14,32].

Results

Here, we evolved 100 replicate populations at small (10? individuals) and 100 populations
at large (10* individuals) population sizes. Small populations evolved for 10° generations
and large populations for 10* generations in order to equalize the number of mutations
each population experienced during the experiment. By keeping the experimental mutation
supply constant, we aimed to evolve all populations to similar levels of fitness (Fig. S1) in
order to reduce the effect of fitness differences on robustness. We hypothesized that small
populations would evolve robustness to genetic drift because these populations experienced
the stress of strong genetic drift during their initial adaptation. At the same time, we
surmised that large populations would not evolve drift robustness as drift is not a strong
factor in such environments.

To test for the evolution of drift robustness, we took the most abundant genotype from
each population (100 small-population genotypes and 100 large-population genotypes) and
measured these genotypes’ change in fitness when placed in an environment with strong
genetic drift (i.e., low population size). First, we measured the decrease in fitness after
103 generations of evolution in a population of 50 individuals (Fig. 1a). Small-population
genotypes decreased in fitness a median of 1%, while large-population genotypes decreased
in fitness a median of 6%. We next repeated the same test, except we evolved the genotypes
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Figure 1: Change in fitness during the drift robustness test for small-population and large-
population genotypes. Black (red) markers are for small-population (large-population) geno-
types. a) Relative fitness before and after 10° generations of evolution with test population
size of 50 individuals. Circles represent the median value of 10 replicates for one genotype;
error bars are 1st and 3rd quartile. b) Same experiment as in a), but across a range of test
population sizes. Each circle is the median of 1000 replicates (100 genotypes x 10 replicates),
error bars as in (a).

for 10* generations (i.e., an order of magnitude longer) in order to rule out the possibility
that small populations only take a greater number of generations to decrease in fitness.
Again, we found that small-population genotypes decreased in fitness (median = 2%) less
than large-population genotypes (median of 10%; Fig. S2). Finally, we performed this
test for drift robustness across a range of small population sizes (10" - 10? individuals) for
10® generations and found similar outcomes (Fig. 1b). These data demonstrate that small-
population genotypes are able to withstand the deleterious effects of genetic drift significantly
better than large-population genotypes: they are drift-robust.

Next, we explored why small-population genotypes were more robust to drift than large-
population genotypes. We first looked at differences in the distribution of fitness effects
(DFE) between small-population genotypes and large-population genotypes (Fig 2a). Both
show the typical DFE found in biological organisms: most mutations are either lethal or
have little effect [1]. However, there are some differences. Small-population genotypes have
an excess of neutral, beneficial, and strongly deleterious mutations (defined as deleterious
mutations with a fitness effect greater than or equal to 5%; Fig. 2b), while large-population
genotypes have an excess of small-effect deleterious mutations (defined as deleterious mu-
tations with a fitness effect less than 5%; Fig. 2c). Additionally, the average mutation is
more deleterious for small-population genotypes than large-population genotypes (median
s = —0.38 vs. median s = —0.33, Mann Whitney U=3048.0, n = 100, p < 9.30 x 107> one-
tailed; Fig 2d). We confirmed that these trends hold for the average fraction of mutation-
type per genotype (rather than averaging over genotypes) as well. Small populations had
more neutral mutations (median of 0.40 vs. median 0.30, Mann Whitney U=630.5, n = 100,
p < 6.64 x 10727 one-tailed), more large-effect deleterious mutations, including lethal muta-
tions (median of 0.44 vs. median 0.37, Mann Whitney U=2373.0, n = 100, p < 6.91 x 107!
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one-tailed), and fewer small-effect deleterious mutations (median of 0.12 vs. median 0.32,
Mann Whitney U=33.0, n = 100, p < 3.44 x 1073* one-tailed; Fig. 3a).

The difference in the fraction of small-effect deleterious mutations is striking, as drift-
caused fitness decreases depend on the fixation of deleterious mutations with a small effect
size. Therefore, differences in small-effect deleterious mutations may cause differences in drift
robustness. To test this relationship, we investigated the correlation between the fraction
of small-effect deleterious mutations (Fig. 3a) and the decrease in fitness in a strong drift
environment (Fig. 1a). These two variables are strongly anti-correlated (Pearson’s r = —0.92;
p < 4x107%), demonstrating that a genotype’s drift robustness is determined by the fraction
of small-effect mutational neighbors (Fig. 3b).

The experiments described above used organisms with a fixed genome size (50 instruc-
tions), one mode of reproduction (asexual), and one genomic mutation rate (0.1 muta-
tions/genome/generation). To test whether the evolution of drift robustness is a robust
phenomenon, we repeated the above experiments while relaxing each of these conditions.
We also performed experiments where the small populations had initially evolved for the
same number of generations as the large populations. These additional experiments showed
that small-population genotypes are still more robust to genetic drift than large-population
genotypes when the small population initial adaptation time was 10* generations (Fig. S3),
when genome size was variable (Fig. S4), when reproduction was sexual (Fig. S5), and when
the genomic mutation rate was 0.01 mutations/genomes/generation (Fig. S6). These results
confirm that the evolution of drift robustness in small populations holds for a broad set of
conditions.

We next explored the evolutionary pressure driving the evolution of drift robustness.
There are two possible explanations for the evolution of drift robustness: 1) selection drives
the evolution of drift robustness, or 2) drift robustness evolves not due to direct selection,
but due to some other process. To determine which of these two hypotheses likely explains
the evolution of drift robustness, we first performed competition experiments to test if drift
robustness is under selection in small populations. For these competitions, we used 3 small-
population genotypes and 12 large-population genotypes that evolved the exact same growth
rate (fitness) in the original experiments. By using genotypes with equal growth rates, we
were able to eliminate growth-rate differences as a factor in the competition outcomes, and
focus on the role of other traits.

We performed 100 competition experiments between each combination of small- and
large-population genotype in populations of 100 individuals. Based on these competitions, we
concluded that drift robustness was not under selection. While we confirmed a relationship
between the frequency of small-population genotype success and the ratio of small-effect
deleterious mutation fractions (Fig. S7, Pearson’s r = 0.34, p < 0.05), it is the opposite trend
one would expect if a lower fraction of small-effect deleterious mutations was under selection
(the correlation would have been negative). In addition, we found no significant relationship
between the frequency of small-population genotype success and the ratio of small-effect
deleterious mutation fractions when we analyzed the data for each small-population genotype
on its own (Table S1; Fig. ST7).

The results from these competitions suggest that drift robustness is not under posi-
tive selection. Previous work has shown that small populations evolve towards a dynamic
equilibrium where the fixation of slightly-deleterious mutations is balanced by the fixation
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Figure 2: Differences in mutational effects between small-population genotypes and large-
population genotypes. Colors as in Figure 1. For boxplots, red lines are medians, edges of
the box are first and third quartile, whiskers are at most 1.5 times the relevant quartile,
and the plus signs are outliers. a) The combined distribution of fitness effects (DFE) across
all 100 small-population genotypes and 100 large-population genotypes. b) Same data as in
panel a, but grouped into different classes of mutations. See main text for descriptions of
small-effect deleterious mutations and large-effect deleterious mutations. ¢) The frequency
of mutations with small selection coefficients across all 100 small-population genotypes and
100 large-population genotypes. Full DFE shown in panel a. d) The mean mutational effect
(selection coefficient) of every possible point mutation (1250 mutations) for each genotype.


https://doi.org/10.1101/071894
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/071894; this version posted August 27, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

0.40 T 1.02 T
N e b
| a L]
0.35 o Cone
1.00 gotnd o
oo o0 g °
0 0.30 caloy ™ o *, .
5 + .
3 + ! #0.98 o o3 .
®o0.25F ! 2 e, e
|
2 - — T «$ * %e
s 0.20 | q>) 0.96 [ e © .*.
g | 5 s Ssldaie .
20.15 2 e © %S ° o
S & 0.94 ®e %80 s
® ® e ®moe oo b
4L 0.10 LA LT °
! 0.92f B, po?
0.05 : °
0.00 - - - - 0.99 . . . . . . ° .
Small-Population Large-Population .00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Genotypes Genotypes Fraction of Mutations

Figure 3: Relationship between small-effect deleterious mutations and drift robustness. Col-
ors as in Figure 1. For boxplots, red lines are medians, edges of the box are first and third
quartile, whiskers are at most 1.5 times the relevant quartile, and the plus signs are outliers.
a) The fraction of point mutations that had a deleterious fitness effect less than 5% for
each genotype (i.e., small-effect deleterious mutations). b) Relationship between fraction of
small-effect deleterious mutations (panel a) and the median relative fitness from the drift
robustness test (Fig. 1la).

of beneficial mutations [28,29]. We wondered whether similar dynamics occurred in these
populations, and hypothesized that drift-selection balance limits the fraction of small-effect
deleterious mutations (Fig. 4a), that is, if a “drift-barrier” restricts the fraction of small-
effect deleterious mutations [33]. For a genotype with a fraction of small-effect deleterious
mutations above this line, drift will cause the fixation of small-effect deleterious mutations
and decrease the fraction of small-effect deleterious mutations. For a genotype with a frac-
tion of small-effect deleterious mutations below the drift-barrier, selection will cause the
fixation of small-effect beneficial mutations and increase the fraction of small-effect delete-
rious mutations. Small populations can still adapt to novel fitness peaks, but must do so
under this constraint. If this hypothesis is correct, small populations can then only adapt to
drift-robust fitness peaks (those with few small-effect deleterious mutations), as they cannot
persist on drift-fragile fitness peaks (those with many small-effect deleterious mutations).
This would explain why small-population and large-population genotypes possess different
DFEs, even if they are of similar fitness.

To test if population size limited the fraction of small-effect deleterious mutations in a
genotype’s DFE, we took the 3 small-population and 12 large-population genotypes used
in the competition experiments above and evolved them at the “opposite” population size
from which they originally evolved. As expected, small-population genotypes increased their
fraction of small-effect deleterious mutations after evolution in a large population (Fig. 4b).
Likewise, large-population genotypes decreased their fraction of small-effect deleterious mu-
tations after evolution in a small population (Fig. 4b). These results suggest that drift-
selection balance does limit the accumulation of small-effect deleterious mutations in the
DFEs of small populations.

Finally, to further test drift-selection balance as the evolutionary cause of drift robustness,
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Figure 4: Drift-selection balance limits the fraction of small-effect deleterious mutations in
small populations. a) Conceptual diagram of the balance between selection and drift and
how it limits the number of small-effect deleterious mutations as a function of population
size. b) The change in the fraction of small-effect deleterious mutations after evolution
at the “opposite” population size. Small-population genotypes (black) evolved in a large
population and large-population genotypes (red) evolved in a small population. Error bars
are 95% confidence intervals of the mean.

we repeated the initial adaptation phase of these experiments, except we reverted deleteri-
ous mutants to their parent genotype when they entered the population (as in [34]). This
setup prevents deleterious (but not lethal) mutations from entering the population and thus
prevents these mutations from fixing due to genetic drift. Under these conditions, geno-
types from small populations are not expected to evolve drift robustness, as drift cannot
cause small populations to fall off drift-fragile peaks. In this treatment, small-population
genotypes evolved on average greater fitness, compared to small-population genotypes that
evolved in the presence of deleterious mutations (Fig. 5a; median of 1.94 vs. median of
2.25, Mann Whitney U=2432.0, n = 100, p < 1.76 x 107! one-tailed). Furthermore, small-
population genotypes that evolved in the reversion treatment were more drift fragile than
the original small-population genotypes (Fig. 5b; median fitness decrease of 5% vs. median
fitness decrease of 1%). As expected from this result, the DFE of small-population genotypes
from the reversion treatment differs from the DFE of the original small-population genotypes
(Fig. 5c). These genotypes had fewer neutral mutations and more small-effect deleterious
mutations (Fig. 5d), more large-effect deleterious mutations, and more lethal mutations.
These results demonstrate that the evolution of drift robustness requires prior adaptation
under the hypothesized drift-selection balance dynamics.

Discussion

Our results suggest the following explanation for the evolution of drift robustness in small
populations. Genetic drift limits the number of small-effect beneficial mutations that can be
fixed by selection and as a consequence small populations must adapt to peaks with a limited
fraction of small-effect deleterious mutations. Genotypes in large populations are not under
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Figure 5: The evolution of drift robustness in small populations with or without deleterious
mutations in the initial adaptation experiments. Gray refers to genotypes from the original
experiments and blue refers to genotypes that evolved with deleterious mutations reverted
a) Relative fitness to the ancestral genotype after 10° generations of adaptation. Box plots
as in Fig. 2. b) Relative fitness before and after 10° generations of evolution with test
population size of 50 individuals. Circles represent the median value of 10 replicates for one
genotype; error bars are 1st and 3rd quartile. c¢) Distribution of fitness effects, separated
into different mutational classes. d) Distribution of fitness effects for mutations with small
selection coefficients.
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this adaptive constraint and can adapt to fitness peaks with an abundance of small-effect
deleterious mutations. However, this drift-selection constraint does not ultimately limit the
adaptive potential of small populations (although it does decrease the speed of adaptation).
Small populations can evolve towards fitness peaks of heights similar to those reached by
large populations, but they must do so while maintaining drift robustness (or they will fall
from these peaks). Therefore, small populations will evolve to drift-robust fitness peaks,
while large populations climb drift-fragile fitness peaks. How do small populations adapt to
drift-robust fitness peaks? It is likely they do so by fixing beneficial mutations that do not
subsequently increase the fraction of small-effect deleterious mutations, but instead those
that increase the fraction of neutral, large-effect deleterious, and lethal mutations.

Our data also suggest that the evolution of drift robustness in small populations is a
different phenomenon than the evolution of mutational robustness in small populations.
Previous studies provided two predictions for the evolution of mutational robustness in small
populations. First, small populations should preferentially evolve to lower fitness peaks
with more “redundancy,” defined as a decreased average deleterious mutational effect [9,14].
Second, small populations should evolve “global” robustness mechanisms, such as error-
correction mechanisms, that affect many loci [10, 11]. Neither of these predictions were
verified in our experiments. Small populations evolved to fitness peaks with an increased
average deleterious mutational effect (Fig. 2d). Furthermore, no global mechanism was
required for the evolution of drift robustness.

It is likely that the evolution of drift robustness has many consequences for the evolution-
ary dynamics of small populations. The trend of small populations evolving to drift-robust
fitness peaks provides another explanation for why small asexual populations can persist
in the presence of Muller’s ratchet, in addition to evidence that the ratchet can be bal-
anced by beneficial mutations [28,29]. The difference in DFEs between small-population
genotypes and large-population genotypes also suggests that genetic drift may cause small
populations to evolve different genomic architectures than large populations, as previously
proposed [35,36]. However, we leave the study of the role of population size and genetic drift
in the evolution of genome architecture to future work.

Candidates for organisms with drift-robust genomes include bacterial endosymbionts [24],
genome-containing eukaryotic organelles (such as mitochondria) [37], and RNA viruses [38],
all of which go through bottlenecks at some point in their life cycle, and multicellular eukary-
otes with small effective population sizes [39]. There is evidence that both bacterial endosym-
bionts [17,40-42] and RNA viruses [43,44] have evolved alternate genome architectures in
response to their population-genetic environment. Additionally, genomic-architecture traits
found in eukaryotes may be the result of genetic drift [36]. A recent study has suggested
that humans have a greater likelihood of strongly-deleterious and slightly-beneficial muta-
tions than Drosophila melanogaster and this is related to humans’ smaller effective population
size [45]. This result is similar to the relationship between the distribution of fitness effects
and population size that we found here. However, there has been no systematic study of
how different organisms respond to strong genetic drift. Future work with biological organ-
isms should establish the circumstances that cause organisms to vary in their robustness to
genetic drift. Furthermore, experimental evolution may be able to produce organisms with
drift-robust genomes whose architecture can be studied directly.
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Online Methods
Avida

Experimental evolution was carried out using the digital evolution system Avida version
2.14. In Avida, a population of self-replicating computer programs is subject to Darwinian
evolution as follows. Each of the programs (“avidians”) consists of a genome of sequential
computer instructions, drawn from an alphabet of twenty-six possible instructions. Together,
these loci encode the ability for an avidian to create a new daughter avidian, copy its genome
into the new avidian, and divide off the offspring. During this process, mutations can be
introduced into the offspring’s genome at a controlled rate, introducing genetic variation into
the population. When a new offspring is placed into the population (and the population is
at carrying capacity), a random individual is replaced by the new avidian, a process that
introduces genetic drift into Avida populations. Avidians differ in their replication speed due
to different genomic sequences, so that avidians that can replicate faster will out-compete
slower-replicating types. Therefore, because variation is heritable, and because this variation
leads to differential reproduction, an Avida population undergoes Darwinian evolution by
natural selection. Avida has previously been used to study many concepts that are difficult
to test with biological systems [46-52].

The Avida world consists of a toroidal grid of N cells, where NV is the maximum population
size. Each cell can be occupied by at most one avidian, although a cell may be empty. Upon
reproduction, the offspring avidian is placed into an empty cell (if the population is below
capacity) or into a random cell, where it replaces the already-present avidian. Although
the default Avida setting places offspring into one of nine neighboring cells (including the
parent) so as to emulate growth on a surface, in the present experiments any cell may be
selected for replacement, to simulate a well-mixed environment.

Time in Avida is set according to “updates” (the time it takes for an avidian population
to execute a give number of instructions). During each update, 30N instructions are executed
across the population, where N is again the population size. In order to be able to execute its
code, and avidian must have a resource, measured as “Single Instruction Processing” units
(SIPs). At the beginning of each update, SIPs are distributed to programs in the population
in proportion to a quantity called “merit”, which is related to a genotype’s ability to exploit
the environment (see [30] for details).

In most of the experiments performed here, merit was held constant across all individuals,
so on average 30 SIPs were distributed to each individual every update. The one treatment
were merit could vary between individuals was the treatment where genome size was not
fixed and could evolve. Merit is proportional to genome size in order to offset the decreased
replication speed that comes with a larger genome; individuals with larger genomes thus
have greater merits.

It should be noted that in most Avida experiments, populations can evolve the ability
to perform certain Boolean logic calculations that can improve their merit and hence their
fitness [48]. In the experiments performed here, the evolution of these logic calculations
was set to be neutral and not under positive selection. Instead, the route for an avidian to
improve its fitness was solely by reducing the number of instruction executions needed to
copy its genome. A population will typically evolve a faster replication speed by increasing
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the number of instructions that copy instructions from the parent genome to the offspring
genome. When this copy number increase occurs, more instructions are copied per update,
resulting in faster replication and greater fitness.

Reproduction is asexual in all but one of the treatments performed here. We also tested
a treatment where avidians could reproduce sexually (see [53] for a more in-depth overview
of sexual reproduction in Avida). In this treatment, when an avidian successfully copies its
genome and executes a divide instruction, the new offspring’s genome is not immediately
placed into the population. Instead, the program waits until another avidian has executed a
divide instruction. Then, the program selects a contiguous section of the genome from each
offspring and swaps them, after which both offspring are placed into the population as usual.

Although Avida uses the update as its unit of time, experiments such as those performed
here are often run for a given number of generations (the time it takes for the entire popu-
lation to be replaced). The experiment ends when the average generation across all of the
individuals in the population reaches a pre-specified number. Each individual’s generation
counter is equal to its parent’s generation plus one. Therefore, while Avida experiments oc-
cur for a set number of generations, the population does not evolve with discrete generations.
If fitness differs between individuals and lineages in the population, there can be variation
in the individuals’ generations in the population.

Experimental Design

The experiments performed for this study can be broken up into five sections. First, initial
adaptation experiments were performed to generate genotypes adapted to small and large
population size environments. For most treatments, the small populations (10% individu-
als) evolved for 10° generations and the large populations (10* individuals) evolved for 10*
generations. This choice kept the total number of mutations during the course of the ex-
periment constant on average. We also performed a set of experiments where we evolved
the small populations for 10* generations only (i.e., the same amount of time as the large
populations) to show that the unequal time of initial adaptation does not alter the results.
All of these treatments had a genomic mutation rate of 10~! mutations/generation/genome.
We also performed a low mutation rate treatment with a genomic mutation rate of 1072
mutations/generation/genome. For this treatment, the small populations evolved for 107
generations and the large populations evolved for 10° generations to compensate for the
lower mutation rate. For every treatment, the ancestor organism for the initial adaptation
treatments was the default Avida ancestor of 100 instructions, but with an altered genome
length of 50 instructions. This alteration was performed by removing 50 nop-C instructions
from the default genome (these instructions are inert). For each treatment and population
size we performed 100 replicate experiments.

The second experimental step was to perform a test to measure the drift robustness of
individuals evolved at a small population size versus individuals evolved at a large population
size. From each small and large population, we used the most abundant individual to form
a set of 100 small-population genotypes and 100 large-population genotypes per treatment.
For each of these genotypes, we evolved 10 populations (2000 replicates in total) at various
small population sizes for 10% generations (although the genotypes that evolved at a lower
mutation rate were evolved during this test for 10* generations). For all treatments, this test
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was performed at a population size of 50 individuals. For the main treatment, the test was
also performed at population sizes ranging from 10 individuals to 100 individuals. We also
evolved 10 populations of each genotype (2000 replicates in total) at a population size of 50
individuals for 10* generations for the main treatment. All treatment parameters were kept
constant between the initial adaptation experiments and these tests, except for population
size.

The third set of experiments tested whether drift robust small-population genotypes had
a competitive advantage over large-population genotypes. We took three small-population
genotypes and 12 large-population genotypes from the main treatment that had evolved the
same reproduction speed. Then, for every combination of small-population genotype and
large-population genotype (3 x 12 = 36 combinations) we competed the two genotypes at
an initial 1:1 ratio in a population of 100 individuals for 10® generations. We subsequently
determined which of the two genotypes was the ancestor of the entire current population (in
all competitions, one genotype eventually out-competes the other).

The fourth set of experiments tested whether population size determined the fraction
of small-effect deleterious mutations in a genotype’s DFE. To determine this, we evolved
10 replicates of the small-population genotypes from the competition experiments above for
a further 10* generations in populations of 10* individuals. We also evolved ten replicates
of twelve large-population genotypes for a further 10* generations in populations of 10?
individuals, then measured the change in fraction of small-effect deleterious mutations.

The final set of experiments tested whether deleterious mutations were responsible for
the evolution of drift robustness in small populations. We repeated the initial adaptation
experiment and the drift robustness test with 50 individuals under the same parameter
settings as the experiments featured in the main text. However, during the initial adaptation
experiment, we reverted any deleterious mutations that appeared in the population [34]. In
this setup, the Avida world examines the fitness cost of every new point mutation. If this
new mutant has decreased fitness relative to its parent, the mutant is removed from the
population and an exact copy of its parent is placed into the population instead.

Data Analysis

We calculated statistics for the evolved avidians using Avida’s Analyze Mode [30]. In Analyze
Mode, the experimenter can run an avidian through its life-cycle (until reproduction) and
calculate several genotype characteristics. Fitness was calculated as the ratio between the
number of instructions in the genome (the sequence length) to the number of instruction
executions needed to copy the genome and reproduce (this is an unbiased predictor of the
actual number of offspring).

In order to calculate the distribution of fitness effects for each genotype and other related
mutational measures, each point mutation was generated for each genotype (25x L mutations,
where L is the number of instructions in the genome). The fitness effect of each mutation
was calculated as s = ‘fy—’g — 1, where w,, is the fitness of the mutant and wy was the fitness
of the genotype. The average mutational effect of each genotype is the arithmetic mean of
these fitness effects. The fraction of mutations of a given fitness effect was calculated as the
number of mutations with that fitness effect divided by 25L.
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Statistical analyses were performed using the NumPy [54], SciPy [55], and Pandas [56]
Python modules. Figures were created with the Matplotlib [57] Python module.

Code Availability

The Avida software is available for free use (https://github.com/devosoft /avida). Avida con-
figuration scripts and data from Avida experiments is available at the Dryad data repository
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