
Virus genomes reveal the factors that spread and sustained

the West African Ebola epidemic.

Gytis Dudas1,2,
∗
, Luiz Max Carvalho1, Trevor Bedford2, Andrew J. Tatem3,4, Guy Baele5,

Nuno Faria6, Daniel J. Park7, Jason Ladner8, Armando Arias9,10, Danny Asogun11,12, Filip
Bielejec5, Sarah Caddy9, Matt Cotten13, Jonathan Dambrozio8, Simon Dellicour5, Antonino
Di Caro14,12, Joseph W. Diclaro II15, Sophie Duraffour16,12, Mike Elmore17, Lawrence Fakoli18,

Merle Gilbert8, Sahr M Gevao19, Stephen Gire7,20, Adrianne Gladden-Young7, Andreas
Gnirke7, Augustine Goba21,22, Donald S. Grant21,22, Bart Haagmans23, Julian A. Hiscox24,25,

Umaru Jah26, Brima Kargbo22, Jeffrey Kugelman8, Di Liu27, Jia Lu9, Christine M.
Malboeuf7, Suzanne Mate8, David A. Matthews28, Christian B. Matranga7, Luke

Meredith9,26, James Qu7, Joshua Quick29, Susan D. Pas23, My VT Phan13, Georgios
Poliakis24, Chantal Reusken23, Mariano Sanchez-Lockhart8,30, Stephen F. Schaffner7, John S.

Schieffelin31, Rachel S. Sealfon7, Etienne Simon-Loriere32,33, Saskia L. Smits23, Kilian
Stoecker34,12, Lucy Thorne9, Ekaete A. Tobin11,12, Mohamed A. Vandi21,22, Simon J.

Watson13, Kendra West7, Shannon Whitmer35,†, Michael R. Wiley8,30, Sarah M. Winnicki7,20,
Shirlee Wohl7,20, Roman Wölfel34,12, Nathan L. Yozwiak7,20, Kristian G. Andersen36,37,7,
Sylvia Blyden22, Fatorma Bolay18, Miles Carroll17,12, Bernice Dahn38, Boubacar Diallo39,

Pierre Formenty40, Christophe Fraser41, George F. Gao27,42, Robert F. Garry43, Ian
Goodfellow9,26, Stephan Günther16,12, Christian Happi44, Edward C Holmes45, Brima
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Summary

The 2013-2016 epidemic of Ebola virus disease in West Africa was of unprecedented magnitude, duration and
impact. Extensive collaborative sequencing projects have produced a large collection of over 1600 Ebola virus
genomes, representing over 5% of known cases, unmatched for any single human epidemic. In a comprehensive
analysis of this entire dataset, we reconstruct in detail the history of migration, proliferation and decline of
Ebola virus throughout the region. We test the association of geography, climate, administrative boundaries,
demography and culture with viral movement among 56 administrative regions. Our results show that during
the outbreak viral lineages moved according to a classic ‘gravity’ model, with more intense migration between
larger and more proximate population centers. Despite a strong attenuation of international dispersal after
border closures, localized cross-border transmission beforehand had already set the seeds for an international
epidemic, rendering these measures relatively ineffective in curbing the epidemic. We use this empirical
evidence to address why the epidemic did not spread into neighboring countries, showing that although these
regions were susceptible to developing significant outbreaks, they were also at lower risk of viral introductions.
Finally, viral genome sequence data uniquely reveals this large epidemic to be a heterogeneous and spatially
dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will
help inform approaches to intervention in such epidemics in the future.

Main text

At least 28,000 cases and 11,000 deaths (World Health Organization, 2016a) have been attributed to the
Makona variant of Ebola virus (EBOV) (Kuhn et al., 2014) in the two and a half years that it circulated in
West Africa. The epidemic is thought to have begun in December 2013 in Guinea, but was not detected
and reported until March 2014 (Baize et al., 2014). Initial efforts to control the outbreak in Guinea were
considered to be succeeding (World Health Organization Regional Office for Africa, 2014), but in early 2014
the virus crossed international borders into neighbouring Liberia (first cases diagnosed in late March) and
Sierra Leone (first documented case in late February (Goba et al., 2016; Sack et al., 2014), first diagnosed
cases in May (Gire et al., 2014)). Viral genomes sequenced from three patients in Guinea early in the
epidemic (Baize et al., 2014) helped to establish that the progenitor of the Makona variant originated in
Central Africa and arrived in West Africa within the last 15 years (Dudas and Rambaut, 2014; Gire et al.,
2014). Rapid sequencing of the first reported cases in Sierra Leone confirmed that EBOV had crossed the
border from Guinea and they were not the result of an independent zoonotic introduction (Gire et al., 2014).
Subsequent studies analysed the genetic makeup of the Makona variant but focused on infections in either
Guinea (Carroll et al., 2015; Quick et al., 2016; Simon-Loriere et al., 2015), Sierra Leone (Arias et al., 2016;
Park et al., 2015) or Liberia (Kugelman et al., 2015; Ladner et al., 2015), identifying local viral lineages and
patterns of transmission within each country.

Although virus sequencing has covered considerable fractions of the epidemic in each country, individual
studies focused on either limited geographical areas or periods of time, so that the regional level patterns and
drivers of the epidemic across its entire duration have remained uncertain. Using 1610 genome sequences
collected throughout the epidemic, which represent over 5% of known Ebola virus disease (EVD) cases
(Figures 1 & S1), we apply phylogenetic approaches to reconstruct a detailed history of the movement of
the virus within and among the three most affected countries. Using a recently developed approach for
integrating covariates of spatial spread within a phylogeographic model (Lemey et al., 2014), we test which
features of each region (administrative, economic, climatic, infrastructural and demographic) were important
in shaping the spatial dynamics of EBOV. We also examine the effectiveness of international border closures
on controlling virus dissemination. Finally, we investigate why regions that immediately border the most
affected countries did not develop protracted outbreaks similar to those that ravaged Sierra Leone, Guinea
and Liberia.

Origin, ignition and trajectory of the epidemic.

Molecular clock dating indicates that the most recent common ancestor of the epidemic existed in early
December 2013 (95% highest posterior density interval: Oct 2013, Feb 2014) and phylogeographic estimation
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assigns this ancestor to the Guéckédou préfecture with a high degree of confidence (96% posterior support)
(Figure 2). In addition, we find that initial lineages deriving from this common ancestor circulated among
Guéckédou and its neighbouring préfectures of Macenta and Kissidougou until late February 2014 (Figure 2).
These results, based on a comprehensive sample of EBOV genomes, support the epidemiological evidence
that the West African epidemic began in late 2013 in Guéckédou préfecture of Guinea (Baize et al., 2014).

The first introduction of EBOV from Guinea into another country that resulted in sustained transmission is
estimated to have occurred in early April 2014 (Figure 2), when the virus spread to the Kailahun district of
Sierra Leone (Goba et al., 2016; Sack et al., 2014). This lineage was first detected in Kailahun at the end of
May 2014, from where it spread across the region (Figure 3 & S2). From Kailahun EBOV spread extremely
rapidly in May 2014 into several counties of Liberia (Lofa, Montserrado and Margibi) (Ladner et al., 2015)
and Guinea (Conakry, back into Guéckédou) (Carroll et al., 2015; Simon-Loriere et al., 2015). The virus
continued to spread westwards through Sierra Leone, and by July 2014 it was present in the capital city,
Freetown.

By mid-September 2014 Liberia was reporting >500 new EVD cases per week, mostly driven by a large
outbreak in Montserrado county, which encompasses the capital city, Monrovia. Sierra Leone reported as
many as 700 new cases per week by mid-November, driven by large outbreaks in Port Loko, Western Urban
(Freetown) and Western Rural districts (Freetown suburbs). December 2014 brought the first signs that
efforts to control the epidemic in Sierra Leone were effective as EVD incidence began dropping. By March
2015 the epidemic was largely under control in Liberia and eastern Guinea, although sustained transmission
was still occurring in western Guinea and western Sierra Leone, near the border between the two countries.
By the following month prevalence had declined such that only a handful of relatively distantly related
lineages survived from the exponential growth phase of the epidemic (Arias et al., 2016; Quick et al., 2016)
(Figure 3).

The last Ebola virus resulting from a conventionally-acquired infection was collected and sequenced in
October 2015 in Forecariah préfecture (Guinea) (Quick et al., 2016). Following this, only sporadic cases of
EVD were detected: in Margibi (Liberia) in June 2015, Montserrado (Liberia) in November 2015, Tonkolili
(Sierra Leone) in January and February 2016, and Nzérékoré (Guinea) in March 2016. All these sporadic
cases likely result from transmission from EVD survivors with established persistent infections (Blackley
et al., 2016; Mate et al., 2015).

Factors associated with EBOV dispersal.

To determine the factors that influenced the spread of EBOV among administrative regions at the district
(Sierra Leone), préfecture (Guinea) and county (Liberia) levels we employed a phylogeographic generalized
linear model (GLM) (Lemey et al., 2014). Of the 25 factors assessed (see Table S2 for a full list and description)
five were included in the model with categorical support (Table 1). In summary, EBOV migration events
tend to occur between geographically close regions (great circle distance: Bayes factor (BF) support for
inclusion BF>50). Half of all virus lineage movements occurred between locations <72 km apart and only
5% involved movement over 232 km (Figure 5a). Population sizes are very strongly (BF>50) positively
correlated with viral dissemination, with a stronger effect for the population size of the origin location than
that for the destination population size. The result, when combined with the inverse effect of geographic
distance, implies that the epidemic’s spread followed a classic gravity-model dynamic. Gravity models, widely
used in economic and geographic studies, describe the movement of people between locations as a function
of their population sizes and distance apart. They are a natural choice for modelling infectious disease
transmission (Truscott and Ferguson, 2012; Viboud et al., 2006) and have been used in spatio-temporal
modelling of EBOV transmission in Sierra Leone (Yang et al., 2015). Here we use viral genomes to provide
empirical evidence that such a process drove viral dissemination during the epidemic.

In addition to geographical distance, we found a significant propensity for migration events to occur among
administrative regions within each country, as opposed to international viral dispersal (National effect,
BF>50), suggesting that country borders acted to curb the geographic spread of EBOV. Within-country
viral migration is higher than international movement even after the direct effect of distance is accounted for.
When international migrations do take place, they are more intense between administrative regions that
meet on an international border (IntBoSh, BF>50).
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We also tested whether sharing of any of 17 vernacular languages explains virus spread, as this might that
reflect local cultural links including those between non-contiguous or international regions, but we found no
evidence that such linguistic links were correlated with EBOV spread. A variety of other variables that might
intuitively contribute to EBOV transmission, such as aspects of urbanization (economic output, population
density, travel times to large settlements) and climatic effects were not found to be significantly associated
with EBOV migration. However, these factors may have contributed to the size and longevity of outbreaks
after their introduction to a region (see below).

Factors associated with local EBOV proliferation.

The analysis above identified factors that predict virus movement between administrative regions. These
factors represent the degree of importation risk, i.e. the likelihood that a viral lineage initiates at least one
infection in a new region, and are dominated by geographical and administrative factors. However, the
epidemiological consequences of each introduction — the size and duration of resulting transmission chains

— may be affected by different factors. To investigate this we explored which demographic, economic and
climatic factors might predict cumulative case counts (World Health Organization, 2016a) for each region
(Bayesian generalized linear model; see Supplementary Methods).

We find that cumulative case counts in each location were associated with factors related to urbanization
(Table 2): primarily population sizes (PopSize, BF 29.6) and a significant inverse association with travel times
to the nearest settlement with >50,000 inhabitants (tt50K, BF 32.4). These results confirm the common
perception that, compared to previous EVD outbreaks, widespread transmission within urban regions in
West Africa was a major contributing factor to the scale of the epidemic of the Makona variant.

As the epidemic in West Africa progressed there were fears that increased rainfall and humidity might make
the Ebola virus more environmentally stable, especially in light of frequent post-mortem transmission of
the virus (Fischer et al., 2015). Although we found no evidence of an association between EBOV migration
and any aspects of local climate, we find that regions with less seasonal variation in temperature, and more
rainfall, tended to have larger EVD outbreaks (TempSS, BF >50 and Precip, BF 4.4 respectively).

Did international travel restrictions have an effect?

It has been suggested that porous borders between Liberia, Sierra Leone and Guinea allowed unimpeded
spread of EBOV during the 2013-2016 epidemic (Bausch and Schwarz, 2014; Chan, 2014; Wesolowski et al.,
2014). Our results suggest that, on average, international borders were associated with a decreased rate of
transmission events compared to national borders (Figure S3), but there were still frequent international cross-
border transmission events. Specifically, these events were concentrated in Guéckédou (Guinea), Kailahun
(Sierra Leone) and Lofa (Liberia) during the early phases of the epidemic (Figure S4b), and in the later
stage of the epidemic (Figure S4b) between neighbouring Forécariah (Guinea) and Kambia (Sierra Leone).
These later movements significantly hindered efforts to interrupt the final chains of transmission in late 2015,
with a number of such chains moving back and forth across this border (Arias et al., 2016; Goodfellow et al.,
2015; Quick et al., 2016). Sierra Leone announced border closures on 11 June 2014, followed by Liberia
on 27 July 2014, and Guinea on 9 August 2014, although there is little information on what these border
closures actually entailed. As a consequence, even though our results show that international viral spread was
more intense before these borders were closed (mean change point: Aug-Sept 2014; 80.0% posterior support;
(Figure 3b; see also Figure S5), it is difficult to ascertain whether it was the border closures themselves that
were responsible for the apparent reduction in cross-border transmissions, as opposed to concomitant control
efforts or public information campaigns. Overall, these results suggest that border closures may have reduced
international traffic, particularly over longer distances and between larger population centres, but by the
time Sierra Leone and later Liberia closed their borders the epidemic had become firmly established in both
countries (Figure 3).
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Why did the epidemic not spread further?

With the exception of a few documented exportations (Abdoulaye et al., 2015; Folarin et al., 2016; Hoenen
et al., 2015), the West African Ebola virus epidemic did not spread into neighbouring regions of Guinea-Bissau,
Senegal, Mali, or Côte d’Ivoire, and no cases were reported in seven préfectures of northern Guinea. By
extending our GLM (i.e., the supported predictors and their estimated coefficients) to include these regions
we can address whether these regions were spared EBOV cases through good fortune, or because they
had an inherently lower risk of EBOV spread and transmission. We estimated the degree to which these,
apparently EVD-free, regions had the potential to be exposed to viral introductions from regions with cases
(see supplementary methods). Overall, the contiguous regions in neighbouring countries were all predicted
to low numbers of introductions (Figure 4a). They were not, however, predicted to have particularly low
levels of transmission if an outbreak had been seeded (Figure 4b). Thus, it is likely that some of these
surrounding regions and their countries overall were at risk of an EVD epidemic, but that their geographical
distance from areas of active transmission and the attenuating effect of international borders prevented their
epidemic potential from being realized. The Kati region in Mali and Tonkpi region in Côte d’Ivoire are to
some extent exceptions to this general result, being more susceptible to viral introductions under the gravity
model because of their large populations (Kati, 1 million; Tonkpi 950,000), (Figure 4a) and are predicted to
have experienced many cases had EVD become established (Figure 4b).

The metapopulation structure and dynamics of the epidemic.

Figure 3 shows that after the initial establishment of transmission in Sierra Leone and Liberia, Guinea
experienced repeated reintroductions of viral lineages from the escalating epidemics in these other two
countries. From the 5% of cases that were sequenced, our analysis reveals that there were at least 21 (95%
credible interval, CI: 18 - 24) re-introductions into Guinea from April 2014 to February 2015. Although an
early epidemic lineage was established in the region around the Guinean capital, Conakry, and persisted
for the duration of the epidemic (GN-1 in Figures 2 & 3), the continual ‘seeding’ of EBOV lineages into
Guinea without a clear peak in transmission suggests that the virus may have been struggling to maintain
transmission in that country. There were also numerous introductions into Sierra Leone over a similar time
period (median: 9, 95% CI: 7 - 11) but the resulting transmission chains constituted a tiny proportion of the
Sierra Leonean epidemic, with the bulk of transmission resulting from one early introduction (Figure 3a).

The importance of repeated seeding as a factor in the longevity of the epidemic is also suggested by the pattern
of viral movement among administrative regions within each country (Figure S6). Regional epidemics were
the result of multiple overlapping introduction events followed by within-region spread and occasional onward
transmission to other regions. This observation suggests a metapopulation model in which viral persistence is
driven by introduction into novel contact networks rather than by mass-action susceptible-infectious-recovered
(SIR) dynamics (Ferrari et al., 2008). We find that, on average, EBOV migrates between administrative
regions at a rate of 0.85 events per lineage per year (95% CI: 0.72, 0.97). If we assume a serial interval of
15.3 days (WHO Ebola Response Team, 2014), this translates to a 3.6% chance (95% CI: 3.0%, 4.1%) that a
single step in the transmission chain migrates between regions. The detection and isolation of these mobile
cases may have a disproportionate effect on the control of the epidemic.

Many regions experienced numerous independent introductions (Figure 5b) but the size of the clusters of
cases that result from these introductions was generally small (with a mean cluster size of 4.3 and only 5%
larger than 17 in our sample; Figure 5c) and their persistence of limited duration (a mean persistence time of
41.3 days with only 5% greater than 181 days; Figure 5d). Here, we define a ‘cluster’ as a group of sequenced
cases that derive from a single introduction event into a region without including subsequent infections in
other regions and persistence as the time between the introduction event and the last sampled case in the
cluster. These definitions are conservative with regards to sampling intensity as we expect additional samples
would split apart clusters rather than join them. Furthermore, introductions that were not detected will be
disproportionately smaller, and so the cluster size estimate will be biased towards larger sizes. Thus, with
5.8% sampling, we arrive at a conservative estimate of approximately 75 regional cases per introduction
event. Although larger population centres, in particular the capital cities, generally had more introductions
(Figure S7a) the cluster sizes are less strongly associated with population size (Figure S7b). The frequent
extinction of these clusters even though a small fraction of individuals were infected suggests that they were
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constrained by the degree of connectedness among contact networks. Thus, it appears the West African
epidemic was sustained by frequent seeding that resulted in numerous small local clusters of cases, some of
which went on to seed further local clusters.

Viral genomics as a tool for outbreak response.

The 2013-2016 EVD epidemic in West Africa has unfortunately become a costly lesson in dealing with
an infectious disease outbreak when both the exposed population and the international community are
unprepared. It also demonstrates the value of pathogen genome sequencing in a public healthcare emergency
situation and the value of timely pre-publication data sharing in order to identify the origins of imported
lineages, to track viral transmission as the epidemic progresses, and to follow up on individual cases as
the epidemic subsides. Real-time virus genome sequencing at the point of diagnosis can provide additional
insights, especially when conventional epidemiological contact tracing is challenging. Other sources of human
mobility data, mobile phone network data in particular, are promising but currently such data is difficult to
obtain in a timely fashion (Wesolowski et al., 2014). It is inevitable that as sequencing becomes cheaper, more
portable and accurate, real-time viral surveillance and molecular epidemiology will be routinely deployed
on the frontlines of infectious disease outbreaks (Gardy et al., 2015; Yozwiak et al., 2015; Woolhouse et al.,
2015; Quick et al., 2016). As viral genome sequencing is scaled up and gets closer to the time-scale of
viral evolution, the pressure will increasingly fall on analysis techniques to provide the necessary temporal
resolution to inform outbreak response. The analysis of the comprehensive EBOV genome set collected
during the 2013-2016 epidemic, including the findings presented here and in other studies (Arias et al.,
2016; Carroll et al., 2015; Gire et al., 2014; Kugelman et al., 2015; Ladner et al., 2015; Park et al., 2015;
Simon-Loriere et al., 2015; Stadler et al., 2014; Tong et al., 2015) will provide a framework for predicting the
behaviour of future outbreaks for EBOV, other filoviruses, and perhaps other human pathogens.

Many open questions remain about the biology of EBOV. As sustained human-to-human transmission waned,
West Africa experienced several instances of recrudescent transmission, often in regions that had not seen
cases for many months as a result of persistent sub-clinical infections (Blackley et al., 2016; Mate et al., 2015;
World Health Organization, 2016c,b) . Although, in hindsight, such sequelae were not entirely unexpected
(Rowe et al., 1999), the magnitude of the 2013-2016 epidemic has put the region at ongoing risk of sporadic
EVD re-emergence. Similarly, the nature of the reservoir of EBOV, and its geographic distribution, remain
as fundamental gaps in our knowledge. Resolving these questions is critical to predicting the risk of zoonotic
transmission and hence of future outbreaks of this devastating disease.

Methods Summary

A total of 1610 nearly complete EBOV genome sequences were collated, aligned and annotated with date of
sampling and likely location of infection (all data available from https://github.com/ebov/space-time).
Geographical, demographic and climatic variables were collated for each of 63 regions in three focal countries,
and for a further 18 regions in surrounding countries that reported no cases or no sustained transmission (see
supplemental information for details). Time structured phylogenies were inferred using BEAST (Drummond
et al., 2012; Ayres et al., 2012) and these formed the basis of a phylogenetic generalized linear model (Lemey
et al., 2014) that infers the probability of inclusion, and degree of correlation, of each of the predictor
variables for the spatial pattern of virus lineage migration. Along each branch of the tree we infer change
among regions (Minin and Suchard, 2008). For those variables in the model with significant support, we
extended the analysis to allow a single step-change in coefficient and inferred the time of this change-point.
Furthermore, we used the inferred spatial model to estimate the expected number of migrations into regions
which experience no known cases of EVD including in the surrounding countries. Finally, to assess which of
the demographic and climatic variable were predictive of the magnitude of outbreak once introduced into a
region, we employed generalized linear models and Bayesian model averaging, with cumulative case counts in
each affected region as a response variable.
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Supplementary Methods

Sequence data

We compiled a data set of 1610 publicly available full Ebola virus (EBOV) genomes sampled between 17
March 2014 and 24 October 2015 (see https://github/ebov/space-time/data/ for full list and metadata).
The number of sequences and the proportion of cases sequenced varies with country; our data set contains
209 sequences from Liberia (3.8% of known and suspected cases), 982 from Sierra Leone (8.0%) and 368 from
Guinea (9.2%) (Table S1). Most (1100) genomes are of high quality, with ambiguous sites and gaps comprising
less than 1% of total alignment length, followed by sequences with between 1% and 2% of sites comprised of
ambiguous bases or gaps (266), 98 sequences with 2-5%, 120 sequences with 5-10% and 26 sequences with more
than 10% of sites that are ambiguous or are gaps. Sequences known to be associated with sexual transmission
or latent infections were excluded, as these viruses often exhibit anomalous molecular clock signals (Blackley
et al., 2016; Mate et al., 2015). Sequences were aligned using MAFFT (Katoh et al., 2002) and edited
manually. The alignment was partitioned into coding regions and non-coding intergenic regions with a final
alignment length of 18992 nucleotides (available from https://github/ebov/space-time/data/).

Masking putative ADAR edited sites

As noticed by Tong et al. (2015), Park et al. (2015) and other studies, some EBOV isolates contain clusters of
T-to-C mutations within relatively short stretches of the genome. Interferon-inducible adenosine deaminases
acting on RNA (ADAR) are known to induce adenosine to inosine hypermutations in double-stranded RNA
(Bass and Weintraub, 1988). ADARs have been suggested to act on RNAs from numerous groups of viruses
(Gélinas et al., 2011). When negative sense single stranded RNA virus genomes are edited by ADARs,
A-to-G hypermutations seem to preferentially occur on the negative strand, which results in U/T-to-C
mutations on the positive strand (Cattaneo et al., 1988; Rueda et al., 1994; Carpenter et al., 2009). Multiple
T-to-C mutations are introduced simultaneously via ADAR-mediated RNA editing which would interfere
with molecular clock estimates and, by extension, the tree topology. We thus designate four or more T-to-C
mutations within 300 nucleotides of each other as a putative hypermutation tract, whenever there is evidence
that all T-to-C mutations within such stretches were introduced at the same time, i.e. every T-to-C mutation
in a stretch occurred on a single branch. We detect a total of 15 hypermutation patterns with up to 13
T-to-C mutations within 35 to 145 nucleotides. Of these patterns, 11 are unique to a single genome and 4 are
shared across multiple isolates, suggesting that occasionally viruses survive hypermutation are transmitted
(Smits et al., 2015). Putative tracts of T-to-C hypermutation almost exclusively occur within non-coding
intergenic regions, where their effects on viral fitness are presumably minimal. In each case we mask out
these sites as ambiguous nucleotides but leave the first T-to-C mutation unmasked to provide phylogenetic
information on the relatedness of these sequences.

Phylogenetic inference

Molecular evolution was modelled according to a HKY+Γ4 (Hasegawa et al., 1985; Yang, 1994) substitution
model independently across four partitions (codon positions 1, 2, 3 and non-coding intergenic regions). Site-
specific rates were scaled by relative rates in the four partitions. Evolutionary rates were allowed to vary across
the tree according to a relaxed molecular clock that draws branch-specific rates from a log-normal distribution
(Drummond et al., 2006). A non-parametric coalescent ‘Skygrid’ tree prior was employed for demographic
inference (Gill et al., 2013). The overall evolutionary rate was given an uninformative continuous-time Markov
chain (CTMC) reference prior (Ferreira and Suchard, 2008), while the rate multipliers for each partition were
given an uninformative uniform prior over their bounds. All other priors used to infer the phylogenetic tree were
left at their default values. BEAST XML files are available from https://github/ebov/space-time/data/.
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Geographic history reconstruction

The level of administrative regions within each country was chosen so that population sizes between regions
are comparable. For each country the appropriate administrative regions were: préfecture for Guinea
(administrative subdivision level 2), county for Liberia (level 1) and district for Sierra Leone (level 2). We
refer to them as regions (63 in total but only 56 are recorded to have had EVD cases) and each sequence,
where available, was assigned the region where the patient was recorded to have been infected as a discrete
trait. When the region within a country was unknown (N=222), we inferred the sequence location as a latent
variable with equal prior probability over all available regions within that country. In the absence of any
geographic information (N=2) we inferred both the country and the region of a sequence.

We deploy an asymmetric continuous-time Markov chain (CTMC) (Lemey et al., 2009; Edwards et al., 2011)
matrix to infer instantaneous transitions between regions. For 56 regions with recorded EVD cases, a total
of 3080 independent transition rates would be challenging to infer from one realisation of the process, even
when reduced to a sparse migration matrix using stochastic search variable selection (SSVS) (Lemey et al.,
2009).

Thus, to infer the spatial phylogenetic diffusion history between the K = 56 locations, we adopt a sparse
generalized linear model (GLM) formulation of continuous-time Markov chain (CTMC) diffusion (Lemey et al.,
2014). This model parameterizes the instantaneous movement rate Λij from location i to location j as a log-

linear function of P potential predictors Xij = (xij1, . . . , xijP )
′

with unknown coefficients β = (β1, . . . , βP )
′

and diagonal matrix δ with entries (δ1, . . . , δP ). These latter unknown indicators δp ∈ {0, 1} determine
predictor p’s inclusion in or exclusion from the model. We generalize this formulation here to include two-way
random effects that allow for location origin- and destination-specific variability. Our two-way random effects
GLM becomes

log Λij = X
′
ijδβ + εi + εj ,

εk ∼ Normal(0, σ2) for k = 1, . . . ,K, and

σ2 ∼ Inverse-Gamma(0.001, 0.001),

(1)

where ε = (ε1, . . . , εK) are the location-specific effects. These random effects account for unexplained
variability in the diffusion process that may otherwise lead to spurious inclusion of predictors.

We follow Lemey et al. (2014) in specifying that a priori all βp are independent and normally distributed
with mean 0 and a relatively large variance of 4 and in assigning independent Bernoulli prior probability
distributions on δp.

Let q be the inclusion probability and w be the probability of no predictors being included. Then, using the
distribution function of a binomial random variable it is straightforward to see that q = 1− w1/P , where P
is the number of predictors, as before. We use a small success probability on each predictor’s inclusion that
reflects a 50% prior probability (w) on no predictors being included.

In our main analysis, we consider 25 individual predictors that can be classified as geographic, administrative,
demographic, cultural and climatic covariates of spatial spread (Table S2). Where measures are region-specific
(rather than pairwise region measures), we specify both an origin and destination predictor. We also tested
for sampling bias by including an additional origin and destination predictor based on the residuals for the
regression of sample size against case count (cfr. Fig. S1), but these predictors did not yield any noticeable
support (data not shown).

To draw posterior inference, we follow Lemey et al. (2014) integrating β and δ, and further employ a
random-walk Metropolis transition kernel on ε and sample σ2 directly from its full conditional distribution
using Gibbs sampling.

To obtain a joint posterior estimate from this joint genetic and phylogeographic model, two independent
MCMC chains were run in BEAST 1.8.4 (Drummond et al., 2012) for 100 million states, sampling every 10
000 states. The first 1000 samples in each chain were removed as burnin, and the remaining 18 000 samples
combined between the two runs. These 18 000 samples were used to estimate a maximum clade credibility
tree and to estimate posterior densities for individual parameters.

To obtain realisations of the phylogenetic CTMC process, including both transitions (Markov jumps) between
states and waiting times (Markov rewards) within states, we employ posterior inference of the complete
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Markov jump history through time (Minin and Suchard, 2008; Lemey et al., 2014). In addition to transitions
‘within’ the phylogeny, we also estimate the expected number of transitions ‘from’ origin location i in the
phylogeographic tree to arbitrary ‘destination’ location j as follows:

ζij = τiµΛijπi/c (2)

where τi is the waiting time (or Markov reward) in ‘origin’ state i throughout the phylogeny, µ is the overall
rate scalar of the location transition process, πi is the equilibrium frequency of ‘origin’ state i and c is
the normalising constant applied to the CTMC rate matrices in BEAST. To obtain the expected number
of transitions to a particular destination location from any phylogeographic location (integrating over all
possible locations across the phylogeny), we sum over all 56 origin locations included in the analysis. We
note that the destination location can also be a location that was not included in the analysis because we
only need to consider destination j in the instantaneous movement rates Λij ; since the log of these rates
are parameterised as a log linear function of the predictors, we can obtain these rate through the coefficient
estimates from the analysis and and predictors extended to include these additional locations. Specifically,
we use this to predict introductions in regions in Guinea, for which no cases were reported (n = 7) and
for regions in neighbouring countries along the borders with Guinea or Liberia that remained disease free
(n = 18). To calculate the expected number of transitions from a particular phylogeographic location to any
destination location, we sum over all destination locations (with and without cases, n = 81). To obtain such
estimates under different predictors or predictor combinations, we perform a specific analysis under the GLM
model including only the relevant predictors or predictor combinations without the two-way random effects.
For computational expedience, we performed these analyses, as well as the time-inhomogeneous analyses
below, by conditioning on a set of 1000 trees from the posterior distribution of the main phylogenetic analysis
(Lemey et al., 2014). We summarise mean posterior estimates for the transition expectations based on the
samples obtained by our MCMC analysis; we note that also the value of c is sample-specific.

To consider time-inhomogeneity in the spatial diffusion process, we start by borrowing epoch modelling
concepts from Bielejec et al. (2014). The epoch GLM parameterizes the instantaneous movement rate Λijt from

state i to state j within epoch t as a log-linear function of P epoch-specific predictors Xijt = (xijt1, . . . , xijtP )
′

with constant-through-time, unknown coefficients β. We generalize this model to incorporate time-varying
contribution of the predictors through time-varying coefficients β(t) using a series of change-point processes.
Specifically, the time-varying epoch GLM models

log Λijt = X
′
ijtβ(t)

β(t) = [I− φ(t)]βB + [φ(t)]βA,
(3)

where βB = (βB1, . . . , βBP )
′

are the unknown coefficients before the change-points, βA = (βA1, . . . , βAP )
′

are
the unknown coefficients after the change-points, diagonal matrix φ(t) has entries (1t>t1(t), . . . , 1t>tP (t)),
1(·)(t) is the indicator function and T = (t1, . . . , tP ) are the unknown change-point times. In this general
form, the contribution of predictor p before its change-point time tp is βBp and its contribution after is βAp

for p = 1, . . . , P . Fixing tp to be less than the time of the first epoch or greater than the time of the last
epoch results in a time-invariant coefficient for that predictor.

Similar to the constant-through-time GLM, we specify that a priori all βBp and βAp are independent and
normally distributed with mean 0 and a relatively large variance of 4. Under the prior, each tp is equally
likely to lie before any epoch.

We employ random-walk Metropolis transition kernels on βB, βA and T .

In a first epoch GLM analysis, we keep the five predictors that are convincingly supported by the time-
homogeneous analysis included in the model and estimate an independent change-point tp for their associated
effect sizes: distance (tdis), within country effect (twco), shared international border (tsib) and origin and
destination population size (tpopo and tpopd) change-points. To quantify the evidence in favour of each
change-point, we calculate Bayes factor support based on the prior and posterior odds that tp is less than the
time of the first epoch or greater than the time of the last epoch. Because we find only very strong support
for a change-point in the within country effect, we subsequently estimate the effect sizes before and after
twco, keeping the remaining four predictors homogeneous through time.
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Within-location generalized linear models

Case counts

Ebola virus disease (EVD) case numbers are reported by the WHO for every country division (region) at the
appropriate administrative level, split by epidemiological week. For every region and for each epidemiological
week four numbers are reported: new cases in the patient and situation report databases as well as whether
the new cases are confirmed or probable. At the height of the epidemic many cases went unconfirmed, even
though they were likely to have been genuine EVD. As such, we treat probable EVD cases in WHO reports
as confirmed and combine them with lab-confirmed EVD case numbers. Following this we take the higher
combined case number of situation report and patient databases. The latest situation report in our data goes
up to the epidemiological week spanning 8 to 14 February 2016, with all case numbers being downloaded on
22 February 2016. There are apparent discrepancies between cumulative case numbers reported for each
country over the entire epidemic and case numbers reported per administrative division over time, such that
our estimate for the final size of the epidemic, based on case numbers over time reported by the WHO, is on
the order of 22 000 confirmed and suspected cases of EVD compared to the official estimate of around 28 000
cases across the entire epidemic . This likely arose because case numbers are easier to track at the country
level, but become more difficult to narrow down to administrative subdivision level, especially over time
(only 86% of the genome sequence have known location of infection).

We studied the association between disease case counts using generalized linear models in a very similar
fashion to the framework presented above. A list of the location-level predictors we used for these analyses
can be found in Table S2. We also employed SSVS as described above, in order to compute Bayes factors (BF)
for each predictor. In keeping with the genetic GLM analyses, we also set the prior inclusion probabilities
such that there was a 50% probability of no predictors being included.

Yi ∼ NegBin(pi, r)

pi =
r

(r + λi)

log(λi) = α+ β1δ1xi1 + . . .+ βP δPxiP

where r is the over-dispersion parameter, δi are the indicators as before. Prior distributions on model
parameters for these analyses were the same as those used for the genetic analyses whenever possible. We
then employed this model to predict how many cases the locations which reported zero EVD cases would
have gathered, that is, the potential size of the epidemic in each location.

Computational details

To fit the models described above we took advantage of the routines already built in BEAST (https://
github.com/beast-dev/beast-mcmc) but in a non-phylogenetic setting. Once again, posterior distributions
for the parameters were explored using Markov chain Monte Carlo (MCMC). We ran each chain for 50
million iterations and discarded at least 10% of the samples as burn-in. Convergence was checked by visual
inspection of the chains and checking that all parameters had effective sample sizes (ESS) greater than 200.
We ran multiple chains to ensure results were consistent.

To make predictions, we used 50,000 Monte Carlo samples from the posterior distribution of coefficients and
the overdispersion parameter (r) to simulate case counts for all locations with zero recorded EVD cases.
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Figure 1. Distribution of EBV cases and virus sequences. Administrative regions within Guinea (green), Sierra
Leone (blue) and Liberia (red); shading is proportional to the cumulative number of known and suspected EVD cases
in each region. Darkest shades represent 784 cases for Guinea (Macenta), 3219 cases for Sierra Leone (Western Urban)
and 2925 cases for Liberia (Montserrado); hatched areas indicate regions without any reported EVD cases. Circle
diameters are proportional to the number of sequences available from that region over the entire epidemic with the
largest circle representing 152 sequences. Crosses mark regions for which no sequences are available. Circles and crosses
are positioned at population centroids within each region. The number of sequences and number of cases for each
region where cases were recorded are strongly correlated (Spearman rank correlation coefficient 0.93; Supplementary
Figure S1).
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Figure 2. Summary of early epidemic events. a) The time-scaled phylogeny of the early sampled cases in
Guéckédou, Guinea and their relationships to the initial dispersal events into other neighbouring and more distant
regions. Stacked bars at the root of the tree indicate posterior probabilities for the origin of the epidemic (0.96 for
Guéckédou, 0.02 for Macenta, 0.01 for Lofa and negligible probabilities for other locations). 95% posterior densities
of the time of the common ancestor of all lineages (grey) and far-dispersing lineages into Kailahun district (blue,
introduction gave rise to SL lineages) and to Conakry préfecture (green, introduction leads to lineage GN-1) are shown
at the bottom of the tree. Nodes with three or more tips have posterior probabilities shown if > 0.3. b) These same
dispersal events (marked by dashed lineages on the phylogeny) projected on a map with directionality indicated by
colour intensity (from white to red). Lineages that migrated to Conakry and Kailahun have led to the vast majority of
cases throughout the region.
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GN-1

Figure 3. Time-scaled phylogeny deconstructed into country-specific transmission chains arising from
independent international movements. a) EBOV lineages, tracked until the sampling date of their last known
descendants, sorted by country (Guinea, green; Sierra Leone, blue; Liberia, red) and earliest possible introduction date.
Tips are shared by longitude (lightest to the West, darkest to the East). Circles at root of each subtree denote the
country of origin for the introduced lineage. The four introductions into Liberia in May-June 2014 are all inferred
to have come from Kailahun, Sierra Leone. These may represent a few, or just one, movement events; however, the
genetic similarity of these Liberian genomes to viruses from Kailahun makes further resolution impossible. In contrast,
the multiple introductions into Guinea are very likely the result of multiple separate movement events over a 10
month period. b) Epoch estimates of the change point probability (primary Y-axis) and log coefficient (mean and
credible interval; secondary Y-axis) for the within country-effect (the only effect with support for epoch dynamics; see
Supplementary Information). The highest change point probability and an associated doubling of log effect size for
within country transmission is estimated between August and September 2014 (blue columns). Vertical lines represent
dates of border closures by the respective countries (Sierra Leone, blue; Liberia, red; Guinea, green).
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Figure 4. Predicted destinations and consequences of viral migrations. a) Predicted number of imports
into each of 63 regions in Guinea, Sierra Leone and Liberia (including 7 with no recorded cases in Guinea) and the
surrounding 18 regions from the neighbouring countries of Guinea-Bissau, Senegal, Mali and Côte d’Ivoire. The
expected number of exports from locations in the phylogeographic tree and imports to any location are calculated based
on the phylogeographic GLM model estimates and associated predictors that were extended to apparently EVD-free
locations (see Supplementary Methods). b) Predicted outbreak sizes from the generalized linear model fitted to case
data.
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Figure 5. The metapopulation structure of the epidemic. a) Kernel density estimate (KDE) of distance for
all inferred migrations: 50% occur over distances <72 km and <5% occur over distances >232 km. b) KDE of the
number of independent introductions into each administrative region: 50% have fewer than 4.8 and <5% greater than
21.3. c) KDE of the mean size of sampled cases resulting from each introduction with at least 2 sampled cases: 50% <
5.3, 95% <32. d) KDE of the persistence of clusters in days (from time of introduction to time of the last sampled
case): 50% < 36 days, 95% < 181 days.
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Tables

Predictor Description Coefficient Inclusion probability B.F.

-1 0 1 2 3 4 mean [95% C.I.] 0.0 1.0

IntBoSh Two locations share an international border 3.46 [2.46, 4.50] >50

National Two locations are in the same country 3.13 [2.46, 3.85] >50

OrPop Population size in the origin location 1.42 [0.95, 2.01] >50

Distances Great circle distances between the locations’ population 
centroids -0.76 [-0.91, -0.63] >50

DestPop Population size in the destination location 0.57 [-0.00, 0.97] >50

DestPopDens Population density in the destination location 0.15 [0.00, 0.72] 12.6

LibGinAsym Asymmetry between Liberia and Guinea 0.17 [0.00, 1.37] 5.6

-1 0 1 2 3 4 3 15 50

B.F. Threshold

Table 1. Summary of the phylogenetic generalized linear model results. The estimated coefficients and
model inclusion probabilities for spatial movement predictors supported with a Bayes factor (BF) > 3. Positive
coefficients are shown in green, negative in red. The remainder are not supported and are not shown (see supplementary
document for a full list).

Predictor Description Coefficient Inclusion probability B.F.

-1 0 1 mean [95% C.I.] 0.0 1.0

TempSS Temperature seasonality -1.1 [-1.6, -0.5] >50

tt50K Time to travel to a population centre of 50,000 people -0.9 [-1.4, -0.4] 32.4

PopSize Population size 0.9 [0.3, 1.6] 29.6

Precip Precipitation 0.8 [0.2, 1.3] 4.4

tt100K Time to travel to a population centre of 0.1 million people -0.8 [-1.7, -0.1] 3.8

-1 0 1 3 15 50

B.F. Threshold

Table 2. Summary of generalized linear model results with case counts as the response variable. The
estimated coefficients and model inclusion probabilities for per-region predictors supported with a Bayes factor (BF) >
3. Positive coefficients are shown in green, negative in red. The remainder are not supported and are not shown (see
supplementary document for a full list).
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Supplementary Information

Tables

Table S1. Number of cases and sampled sequences per region and country, where ‘Admin’ is the name of the
administrative level used (‘préfect..’ being préfecture and ‘départ.’ being département) and ‘Sampling’ is sequences/cases
× 100.

Country Name Admin. Population Sequences Cases Sampling

GIN Beyla préfect. 218,698 4 52 7.69
GIN Boffa préfect. 195,019 0 52 0
GIN Boké préfect. 465,824 18 36 50
GIN Conakry préfect. 1,513,554 73 630 11.61
GIN Coyah préfect. 108,104 26 258 10.12
GIN Dabola préfect. 156,599 0 15 0
GIN Dalaba préfect. 178,343 3 10 30
GIN Dinguiraye préfect. 178,550 0 1 0
GIN Dubréka préfect. 273,945 22 167 13.17
GIN Faranah préfect. 187,820 8 88 9.09
GIN Forécariah préfect. 389,052 60 503 11.95
GIN Fria préfect. 115,696 3 16 18.75
GIN Gaoual préfect. 171,616 0 0 NA
GIN Guéckédou préfect. 720,289 58 390 14.87
GIN Kankan préfect. 374,445 4 38 10.53
GIN Kérouané préfect. 259,648 10 176 5.68
GIN Kindia préfect. 466,987 2 132 1.53
GIN Kissidougou préfect. 275,182 18 138 13.04
GIN Koubia préfect. 111,176 0 0 NA
GIN Koundara préfect. 108,639 0 0 NA
GIN Kouroussa préfect. 197,242 2 22 9.09
GIN Labé préfect. 313,715 0 0 NA
GIN Lélouma préfect. 144,433 0 0 NA
GIN Lola préfect. 214,082 2 118 1.69
GIN Macenta préfect. 495,845 40 787 5.1
GIN Mali préfect. 208,339 0 5 0
GIN Mamou préfect. 371,426 0 0 NA
GIN Mandiana préfect. 252,272 0 0 NA
GIN Nzérékoré préfect. 372,266 9 269 3.35
GIN Pita préfect. 263,471 0 8 0
GIN Siguiri préfect. 427,947 3 38 7.89
GIN Télimélé préfect. 258,398 0 43 0
GIN Tougué préfect. 152,448 0 2 0
GIN Yamou préfect. 300,674 0 12 0
LBR Bomi county 124,080 5 220 2.27
LBR Bong county 334,921 2 219 0.91
LBR Gbapolu county 91,366 1 28 3.57
LBR GrandBassa county 219,024 14 164 8.54
LBR Grand Cape Mount county 132,777 4 207 1.93
LBR GrandGedeh county 127,295 0 4 0
LBR GrandKru county 64,797 2 25 8
LBR Lofa county 287,555 13 511 2.54
LBR Margibi county 335,736 21 878 2.39
LBR Maryland county 132,024 0 7 0
LBR Montserrado county 1,016,221 67 2925 2.29
LBR Nimba county 483,036 5 282 1.77
LBR River Cess county 73,960 2 48 4.17

S1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2016. ; https://doi.org/10.1101/071779doi: bioRxiv preprint 

https://doi.org/10.1101/071779
http://creativecommons.org/licenses/by-nd/4.0/


LBR River Gee county 83,020 1 13 7.69
LBR Sinoe county 103,789 3 33 9.09

SLE Bo district 552,742 13 450 2.89
SLE Bombali district 443,868 108 1212 9.82
SLE Bonthe district 148,892 1 5 20
SLE Kailahun district 409,182 101 756 13.36
SLE Kambia district 302,083 74 326 19.33
SLE Kenema district 563,021 75 553 13.56
SLE Koinadugu district 299,798 11 185 5.95
SLE Kono district 324,103 39 568 6.87
SLE Moyamba district 263,788 23 317 7.26
SLE Port Loko district 540,439 150 2208 6.75
SLE Pujehun district 278,897 9 68 13.24
SLE Tonkolili district 386,112 19 630 3.01
SLE Western Rural district 435,323 88 1736 4.84
SLE Western Urban district 528,224 152 3219 4.04

SEN Kédougou départ. 70,072 0 0 NA
SEN Salémata départ. 19,887 0 0 NA
SEN Saraya départ. 55,879 0 0 NA
SEN Vélingara départ. 254,319 0 0 NA
SEN Tambacounda départ. 259,657 0 0 NA

MLI Kéniéba cercle 195,927 0 0 NA
MLI Kita cercle 451,019 0 0 NA
MLI Kangaba cercle 103,684 0 0 NA
MLI Kati cercle 1,076,713 0 0 NA
MLI Yanfolila cercle 217,429 0 0 NA

GNB Gabu region 220,218 0 0 NA
GNB Tombali region 102,893 0 0 NA

CIV San-Pédro région 185,465 0 0 NA
CIV Folon région 88,493 0 0 NA
CIV Kabadougou région 212,545 0 0 NA
CIV Cavally région 421,559 0 0 NA
CIV Tonkpi région 946,740 0 0 NA
CIV Bafing région 188,328 0 0 NA
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Table S2. Predictors included in the time-homogenous GLM.

Predictor type Abbreviation Predictor description

Geographic Distances Great circle distances between the locations’
population centroids, log-transformed, stan-
dardized

Administrative National Two locations are in the same country

Administrative IntBoSh Location pairs that are in different countries
and share a border

Administrative NatBoSh Location pairs that are in the same country
and share a border

Administrative LibGinAsym Between Liberia-Guinea asymmetry

Administrative LibSLeAsym Between Liberia-Sierra Leone asymmetry

Administrative GinSLeAsym Between Guinea-Sierra Leone asymmetry

Demographic OrPop Origin population size, log-transformed, stan-
dardized

Demographic DestPop Destination population size, log-transformed,
standardized

Demographic OrPopDens Origin population density, log-transformed,
standardized

Demographic DestPopDens Destination population density, log-
transformed, standardized

Demographic orTT100k Estimated mean travel time in minutes to
reach the nearest major settlement of at least
100,000 people at origin, log-transformed,
standardized

Demographic destinationTT100k estimated mean travel time in minutes to
reach the nearest major settlement of at
least 100,000 people at destination, log-
transformed, standardized

Demographic OrGrEcon Origin Gridded economic output, log-
transformed, standardized

Demographic DestGrEcon Destination Gridded economic output, log-
transformed, standardized

Cultural IntLangShared Location pairs that are in different countries
and share at least one of 17 vernacular lan-
guages

Cultural NatLangShared Location pairs that are in the same coun-
try and share at least one of 17 vernacular
languages

Climatic OrTemp Temperature annual mean at origin, log-
transformed, standardized

Climatic DestTemp Temperature annual mean at destination, log-
transformed, standardized

Climatic OrTempSS Index of temperature seasonality at origin,
log-transformed, standardized

Climatic DestTempSS Index of temperature seasonality at destina-
tion, log-transformed, standardized

Climatic OrPrecip Precipitation annual mean at origin, log-
transformed, standardized

Climatic DestPrecip Precipitation annual mean at destination, log-
transformed, standardized

Climatic OrPrecipSS Index of precipitation seasonality at origin,
log-transformed, standardized
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Climatic DestPrecipSS Index of precipitation seasonality at destina-
tion, log-transformed, standardized
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Figure S1. Correlation between number of cases and number of sequences for each location. A plot of
number of EBOV genomes sampled against the known and suspected cumulative EVD case numbers. Regions in
Guinea are denoted in green, Sierra Leone in blue and Liberia in red. Spearman correlation coefficient: 0.93.
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Figure S2. Dispersal of virus lineages over time. Virus dispersal between administrative regions estimated
under the GLM phylogeography model (see Supplementary Methods). The arcs are between population centroids of
each region, show directionality from thin end to thick end and are coloured in a scale denoting time from December
2013 in blue to October 2015 in yellow. Countries are coloured with Liberia in red, Guinea in green and Sierra Leone
in blue.
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Figure S3. The effect of borders on EBOV migration rates between regions. Posterior densities of the
migration rates between locations that share a geographical border (left) and those that do not (right) for international
migrations and national migrations. Where two regions share a border, national migrations are only marginally more
frequent than international migrations showing that both types of borders are porous to short local movement. Where
the two regions are not adjacent, international migrations are much rarer than national migrations.
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Figure S4. Summarized epidemic international migration history. All viral movement events between counties
(Guinea, green; Sierra Leone, blue; Liberia, red) are shown split by whether they are between a) geographically distant
regions or b) regions that share the international border. Curved lines indicate median (intermediate colour intensity),
and 95% highest posterior density intervals (lightest and darkest colour intensities) for the number of migrations that
are inferred to have taken place between countries.
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Figure S5. Summary of migration intensity over time in the region. Each cell shows the posterior probability
density of temporal migration intensity. Vertical lines within each cell indicate the dates of declared border closures by
each of the three countries: 11 June 2014 in Sierra Leone (blue), 27 July 2014 in Liberia (red), and 09 August 2014 in
Guinea (green). Densities are rescaled and directly comparable across cells.
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Population

Figure S6. Region specific introductions,
cluster sizes and persistence. Independent
introductions into each administrative region
and the size of each resulting cluster . The hor-
izontal lines represent the persistence of each
cluster from the time of introduction to the last
sampled case. The areas of the circles in the
middle of the lines are proportional to the num-
ber of sampled cases in the cluster. The areas
of the circles next to the labels represent the
population sizes of each administrative region.
Vertical lines within each cell indicate the dates
of declared border closures by each of the three
countries: 11 June 2014 in Sierra Leone (blue),
27 July 2014 in Liberia (red), and 09 August
2014 in Guinea (green).
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Figure S7. Relationship of cluster size, introductions and persistence to population size. a) The mean
number of introductions into each location against (log) population sizes. The WesternArea (in Sierra Leone) received
the most introductions, whilst Conakry and Montserrado were closer to the average. The association between population
sizes and number of introductions was not very strong (R2 = 0.28, pearson correlation = 0.54, Spearman correlation =
0.57). b) The mean cluster size for each location plotted against (log) population sizes. The association here is weaker
(R2 = 0.11, pearson correlation = 0.35, Spearman correlation = 0.57). c) The mean persistence times (per cluster,
in days) against population sizes. A similarly weak association is observed (R2 = 0.12, pearson correlation = 0.37,
Spearman correlation = 0.36). All computations based on a sample of 10, 000 trees from the posterior distribution.
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