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Recent advances in the scale and diversity of population genomic datasets for bacteria now provide 28 
the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual 29 
bases. The major human pathogen Streptococcus pneumoniae represents the first bacterial organism 30 
for which densely enough sampled population data became available for such an analysis. Here we 31 
describe a new statistical method, genomeDCA, which uses recent advances in computational 32 
structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. 33 
Genome data from over three thousand pneumococcal isolates identified 5,199 putative epistatic 34 
interactions between 1,936 sites. Over three-quarters of the links were between sites within the 35 
pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility 36 
to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that 37 
encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from 38 
these resistance genes, a large network component of 384 protein coding sequences encompassed 39 
many genes critical in basic cellular functions, while another distinct component included genes 40 
associated with virulence. These results have the potential both to identify previously unsuspected 41 
protein-protein interactions, as well as genes making independent contributions to the same 42 
phenotype. This approach greatly enhances the future potential of epistasis analysis for systems 43 
biology, and can complement genome-wide association studies as a means of formulating 44 
hypotheses for experimental work. 45 

Author Summary 46 

Epistatic interactions between polymorphisms in DNA are recognized as important drivers of 47 
evolution in numerous organisms. Study of epistasis in bacteria has been hampered by the lack of 48 
both densely sampled population genomic data, suitable statistical models and powerful inference 49 
algorithms for extremely high-dimensional parameter spaces. We introduce the first model-based 50 
method for genome-wide epistasis analysis and use the largest available bacterial population 51 
genome data set on Streptococcus pneumoniae (the pneumococcus) to demonstrate its potential for 52 
biological discovery. Our approach reveals interacting networks of resistance, virulence and core 53 
machinery genes in the pneumococcus, which highlights putative candidates for novel drug targets. 54 
Our method significantly enhances the future potential of epistasis analysis for systems biology, and 55 
can complement genome-wide association studies as a means of formulating hypotheses for 56 
experimental work. 57 

Introduction 58 

The study of co-evolution in recombining populations of bacteria has been limited by the scale and 59 
polymorphisms present in population samples for which whole genome sequences are available. 60 
Even the most recent population genomic studies of bacterial pathogens have been constrained in 61 
this respect, such as focusing on a particular genotype(1-3), biasing sampling towards particular 62 
clinical outcomes(4-6), or surveying organisms in which limited genetic diversity and strong linkage 63 
disequilibrium (LD) masks the signals of shared selection pressures(7, 8). For whole genome-scale 64 
modeling of co-evolution, sampling should span the entirety of diverse, recombining species in an 65 
unbiased manner. 66 

The first organism satisfying all the above-mentioned desiderata is Streptococcus pneumoniae (the 67 
pneumococcus), for which over 3,000 genome sequences from a well-defined, limited study 68 
population were recently published(9). As the pneumococcus is an obligate nasopharyngeal 69 
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commensal and pathogen, the bacterial population was evenly sampled through a structured survey 70 
of the hosts. The diverse multi-strain population structure, coupled with the naturally transformable 71 
nature of S. pneumoniae, results in low LD across the genome. Hence this set of pneumococci can be 72 
considered as an ideal set for detecting genes that evolve under shared selection pressure.  73 

Analyzing sets of co-evolving polymorphisms is a powerful means of identifying sites that interact 74 
directly, through protein-protein contacts, and indirectly, through epistatic interactions that affect 75 
the same phenotype. The former type of selection pressure has previously been studied on the scale 76 
of individual proteins. It has been known for more than 20 years that the correlations of amino acids 77 
in two columns in a multiple sequence alignment (MSA), contain exploitable information and 78 
provide a non-trivial predictor of spatial proximity(10, 11). Detection of co-evolving mutations in 79 
genomes is in the statistical sense analogous to this structural prediction problem, as both 80 
phenomena are consequences of joint selection pressures. The latest advances in computational 81 
structural biology have shown that by changing the modeling framework from correlations to high-82 
dimensional model learning one can improve protein contact predictions significantly(12-15). 83 
Furthermore, including considerations of epistatic interactions between sites has recently been 84 
shown to significantly improve the mapping between genotype and phenotype for a beta lactamase 85 
protein(16). 86 

Co-evolving sites do not necessarily directly interact, however; instead, changes at distinct sites may 87 
represent selection for a particular phenotype determined by multiple polymorphic loci. However, 88 
the complexity of the possible set of interactions has mostly limited previous analyses of epistasis to 89 
viral datasets of limited diversity; nevertheless, these studies have shown epistasis to be an 90 
important factor in evolution. An application of a phylogenetically-informed method to influenza 91 
subtypes H1N1 and H3N2 identified patterns of substitutions associated with the emergence of 92 
resistance to oseltamivir(17), and many sites were found to be undergoing coordinated evolution 93 
within the hepatitis C virus(18). However, the non-linear increase in the number of interactions as 94 
the genome length and diversity rises limits the application of such methods to the study of bacterial 95 
populations. In recent work, pairwise statistical correlation analysis was demonstrated to 96 
successfully reveal certain types of co-evolutionary patterns across the genome for 51 Vibrio 97 
parahaemolyticus isolates(19). Nevertheless, pairwise analyses of association are subject to 98 
Simpson’s paradox which may cause spurious links to emerge(20-22), and furthermore, the necessity 99 
of correcting for a quadratically increasing number of multiple hypothesis tests seriously hampers 100 
the statistical power to detect the true positive associations as sample sizes increase. 101 

Here we demonstrate a new method able to identify co-evolving polymorphisms from bacterial 102 
genome sequence alignments named genomeDCA and made freely available at 103 
www.helsinki.fi/bsg/software/genomeDCA. By considering the evolution of polymorphic sites 104 
simultaneously and using the inference tools for regularized statistical model learning one avoids 105 
both the problems that drive high levels of false positives and negatives when the number of 106 
pairwise interactions grows. The methods introduced here may offer a powerful alternative to 107 
traditional GWAS analyses for multiple unknown phenotypes in the emerging era of massive 108 
population sequencing for bacteria.  109 

   110 

Results 111 
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Genome-wide identification of coupled loci 112 

The whole genome alignment used in this analysis consists of short-read data for over 3,000 113 
systematically-sampled pneumococcal isolates (9) each aligned to the reference sequence of S. 114 
pneumoniae ATCC 700669 (23). Filtering this alignment for biallelic loci at which the minor allele 115 
frequency was >1% and >85% of isolates had a base called identified 81,560 polymorphic sites. Of 116 
these, 88.3% were within protein coding sequences (CDSs), a slight enrichment relative to the 87.2% 117 
of the S. pneumoniae ATCC 700669 reference sequence that was annotated as CDSs. Following the 118 
genome-wide linkage analysis (see Methods), estimates of association strength were retained from 119 
102,551 couplings (Table S1). A Gumbel distribution fitted to this sample (Fig. 1; μ = 0.096 and β = 120 
0.028) significantly diverged from the empirical data above a coupling strength of 0.129. The 5,199 121 
couplings (Table S2) exceeding this threshold were considered as putative epistatic interactions; 122 
these affected 1,936 sites, 89.0% of which were within CDSs. As closely proximal sites were excluded 123 
from this analysis, these coupled sites had a mean separation of 587.4 kb, with only two sites less 124 
than five kilobases apart (Fig. 2). Hence these associations are unlikely to be artifacts of genetic 125 
linkage. 126 

Fig 1 Divergence between theoretical and empirical distributions of coupling strengths between 127 
sites. Left panel (A) shows the two distributions such that the vertical axis corresponds to the log10 128 
probability of a coupling coefficient exceeding the value of the curve on the horizontal axis. The 129 
dashed vertical line depicts the significance threshold; 5199 out of 102,551 couplings exceed the 130 
threshold. Right panel (B) displays the absolute difference between the fitted cumulative Gumbel 131 
distribution and the empirical cumulative distribution (on log10-scale) as a function of the coupling 132 
strength. The dashed vertical line marks the smallest coupling (0.129) which has a difference of more 133 
than six standard deviations among the first 50,000 empirical-Gumbel differences. 134 

Fig 2. The 5199 significant couplings shown by lines connecting genomic positions. The thickness of 135 
lines is proportional to the number of linked positions within the corresponding chromosomal 136 
elements. The red markers show the positions of sites identified in an earlier GWAS study of 137 
resistance determining variation in the pneumococcal genomes. The green markers indicate 138 
locations of protein coding sequences where significant couplings are present. 139 

 140 

Strong epistatic links between penicillin-binding proteins 141 

The putative epistatic interactions were used to generate a network (Fig. 3). The nodes, each 142 
corresponding to a CDS, were colored according to function and scaled according to the number of 143 
epistatic links with which they were associated. The edges were weighted according to the number 144 
of interactions between CDS pairs. Most of the annotated functional categories were represented in 145 
the network, with the notable exception of mobile genetic element genes. This was almost entirely 146 
the consequence of the absence of informative sites in these regions of the genome, owing to their 147 
high variability across the population. By contrast, the functional category most over-represented in 148 
the dataset was surface-associated proteins. Although previous work has suggested immune 149 
selection might drive epistasis between antigens (24), in fact this enrichment was entirely the 150 
consequence of selection for antibiotic resistance. Of the 4,617 links represented in this network, 151 
3,578 (77.5%) involved 175 sites found in one of three genes encoding penicillin-binding proteins 152 
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(PBPs; Fig. 3A): SPN23F03080 (pbp2x), SPN23F03410 (pbp1a) and SPN23F16740 (pbp2b). These PBPs 153 
have been experimentally demonstrated to be the major determinants of resistance to beta lactams 154 
(25), with changes to each individual protein reducing its affinity for beta lactam antibiotics while 155 
retaining its the ability to bind its natural substrates(26, 27). This link between genotype and 156 
phenotype was also identified by a genome-wide association study (GWAS) using this dataset(28). Of 157 
the 858 sites found to be significantly associated with beta lactam resistance by this GWAS, 403 158 
were within these three coding sequences for PBPs; of these, 216 met the criteria to be analysed in 159 
this study. Correspondingly, 161 of the 175 sites identified within the same genes by this analysis 160 
were significantly associated with beta lactam resistance by the GWAS (Fisher exact test, OR = 112.1, 161 
p < 2.2x10-16), indicating the couplings between sites in these genes represent the set of changes 162 
that distinguish pneumococci with differing sensitivities to beta lactam antibiotics. This was in 163 
congruence with the distribution of these alleles across the population (Fig S1), which also confirmed 164 
that none of the identified associations correlated with the expansion of a single clone, indicating 165 
the method’s correction for the effects of population structure was effective. 166 

Fig 3 Network of coupled protein coding sequences. This undirected network shows all significant 167 
couplings between protein coding sequences (CDSs). Each node is a CDS, colored according to its 168 
functional annotation, and scaled according to the logarithm of the number of significant coupled 169 
loci it contained. Edges are weighted according to the logarithm of the number of significant coupled 170 
loci linking two CDSs. (A) Network component containing the genes pbp2x, pbp1a and pbp2b. (B) 171 
Network component containing the smc gene. (C) Network component containing the tRNA 172 
synthetase gene pheS and a coding sequence for another putative tRNA-binding protein. (D) 173 
Network component containing the genes for pspA and divIVA. 174 

Changes in these genes are strongly epistatic, as for pneumococci to develop non-susceptibility to a 175 
broad range of beta lactam antibiotics, alterations of all three PBPs are necessary. Consequently, the 176 
emergence of multidrug-resistant pneumococci is associated with transformation events that alter 177 
all three over very short evolutionary timescales (29-31). Another factor that might underlie both 178 
the concerted changes at all three loci, rather than a gradual emergence of resistance, as well as the 179 
non-uniform distribution of coupled sites across these genes (Fig. 4) is the potential for alterations in 180 
only one protein disrupting direct protein-protein interactions:. As these proteins perform similar 181 
functions on the same substrate, and are all co-localised to the cell wall, it has been hypothesised 182 
that they function as constituents of a multi-enzyme complex(32). Some evidence from co-183 
immunoprecipitation and crosslinking experimental work has supported this idea(33, 34). Hence the 184 
distribution of coupled sites between the PBPs was investigated in greater detail.  185 

Fig 4 Distribution of couplings between sites in different PBPs.  The red markers are defined as in Fig. 186 
2. 187 

 188 

Structural distribution of coupled sites in PBPs 189 

Couplings were identified between all three PBPs, although almost 95% involved pbp2x. This might 190 
reflect that pbp2x has to be altered for resistance to both penicillins and cephalosporins, whereas 191 
modifications of pbp1a are important primarily for cephalosporin resistance (35), and modifications 192 
to pbp2b are important primarily for penicillin resistance (36). Alternatively, if these proteins do 193 
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interact, these data suggest pbp2x would be central to any potential protein-protein interactions. 194 
The coupled sites are distributed broadly across pbp2x, with the exception of the PBP dimerization 195 
domain, despite the identification of sites within this region by GWAS.  196 

Co-evolving sites within pbp1a are more narrowly distributed and involve stronger interactions with 197 
pbp2x than with pbp2b (Fig 4, Table S2). The links between PBP1A and PBP2X are distributed 198 
between two domains and a further structural analysis (Fig 5,Table S3) showed how the identified 199 
positions in pbp1a with the strongest couplings were located in strand β-4 and the loop connecting 200 
strands β-3 and β-4, near the transpeptidase active site but not overlapping with the conserved 201 
catalytic residues. The counterpositions in pbp2x showed a spatially less focused pattern with linked 202 
positions near the active site, including the typically conserved active site residues Ser395 and 203 
Asn397, as well as links to positions not in direct spatial proximity of the active site, but structurally 204 
linked to that region through helical secondary structure elements. Alterations in the active site 205 
surroundings can interfere with inhibitor binding with only minor effect to catalytic function as was 206 
evident for substitutions in the identified β-3/β-4 loop region residues 574 -577 which were strongly 207 
linked to beta-lactam resistance(37). Resistant strain pbp1a likewise showed amino acid 208 
substitutions at the identified positions 583 and 585 in strand β-4 in comparison to a beta-lactam 209 
susceptible strain(37) (resistant strain PDB code 2V2F). Position 580 at the N-terminal end of β-4 210 
(typically a proline) in pbp1a was linked to position 363 in pbp2x, which is part of an ionic interaction 211 
(Glu363 to Arg372) present in all current crystal structures of S. pneumoniae pbp2x (see Methods for 212 
details) and may play a structural role by stabilising the α-2/α-4 loop region proximal to the pbp2x 213 
active site. Residues at PBP2X positions 401, 404, 412 and 413 are all buried within the protein, but 214 
are connected to active site residues Asn397 and Ser395 via helix α-5. It is possible that these 215 
positions are implicated in active-site shaping as well. For pbp2b, structural mapping of the top 216 
ranking co-evolved sites revealed two major groupings: positions in the α-2/α-4 loop region that, 217 
similarly to the pbp1a case, partially cover the active site, and positions that, similarly to the pbp2x 218 
side of pbp2x – pbp1a couplings, were spatially more distant but structurally linked to the active site. 219 
As in pbp1a, observed flexibility in the α-2/α-4 loop region proximal to the active site points to a 220 
potential role in antibiotic resistance of this structural feature(38). 221 

Fig 5 Structural models of pbp1a, pbp2x, pbp2b with the 100 strongest couplings listed in Table S3 222 
indicated. The figures show the transpeptidase domains of each PBP with catalytic/active site 223 
residues shown in cyan and coupled positions as sticks with other colors. Active site bound 224 
antibiotic/inhibitor is rendered as a space-filling volume when present in the crystal structure. Panels 225 
A-D depict: pbp1a with couplings to pbp2x, green colored residues are coupled with green residues 226 
in panel B; orange colored residues in B are coupled with both green and yellow residues in A (A), 227 
pbp2x with couplings to pbp1a (B), pbp2x with couplings to pbp2b in orange (C), pbp2b with 228 
couplings to pbp2x in orange (D). 229 

Associations with other resistance phenotypes 230 

The PBPs are confined to a single network component that contains ten other proteins. Seven of 231 
these are found in close proximity to the three PBPs, and likely represent sequences altered when 232 
resistance-associated alleles of the PBP genes were acquired through transformation events, which 233 
often span tens of kilobases (29, 31). However, it is also possible these could play a role in 234 
‘compensating’ for deleterious side-effects of the changes in the PBP proteins. One of these CDSs 235 
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proximal to a penicillin-binding protein gene is mraY, directly downstream of pbp2x and encoding a 236 
phospho-N-acetylemuramoyl-pentapeptide-transferase also involved in cell wall biogenesis (Table 237 
S2, Fig 3). It was previously predicted that mutations in this transferase associated with beta lactam 238 
resistance could represent compensatory changes ameliorating the costs of evolving beta lactam 239 
resistance(28). Another CDS, gpsB, is shortly upstream of pbp1a and encodes a paralogue of DivIVA 240 
that also plays an important role in peptidoglycan metabolism (39). 241 

The three proteins in the network component that were not proximal to a PBP-encoding CDS were 242 
dyr (also known as folA or dhfR), encoding dihydrofolate reductase, and three nearby genes (Table 243 
S2, Fig 3). Mutations in the dyr gene cause resistance to trimethoprim (40). The earlier GWAS 244 
study(28) found a significant association between both dyr and folP with beta lactam resistance, 245 
despite no functional link to such a phenotype, nor any likely reason why they would directly 246 
interact with PBPs. Hence the detected interaction between dyr and the pbp genes is most likely 247 
explained by the co-selection for resistances that have accumulated in the same genetic background, 248 
resulting in the multi-drug resistant genotypes observed to have emerged over recent decades(41).  249 

Couplings between core genome proteins 250 

To identify other functional roles that might underlie the distinct sets of couplings represented in 251 
Fig. 3, a gene ontology (GO) analysis was performed for each network component containing more 252 
than two nodes. This identified five significant signals, including that for penicillin-binding associated 253 
with the previously described component (GO:0008658, Fisher’s exact test, OR = 337.3, p = 0.00048 254 
after Benjamini-Hochberg correction). However, the strongest association was that of the largest 255 
network component, containing 384 CDSs (Fig. 3B), with ATP binding activity (GO: 0005524, Fisher’s 256 
exact test, OR = 2.89, p = 8.75x10-7). Other GO terms significantly associated with this component 257 
were GO:0005737, corresponding to cytosolic localisation (Fisher exact test, OR = 3.44, p = 0.00010 258 
after Benjamini-Hochberg correction), and GO:0016021, corresponding to integral membrane 259 
proteins (Fisher exact test, OR = 2.32, p = 0.043 after Benjamini-Hochberg correction). These 260 
associations partly reflect the preponderance of cytosolic ATP-hydrolysing tRNA synthetases, of 261 
which enzymes for the processing of eleven amino acids were present among these CDSs, and 262 
membrane-associated ATP-hydrolysing ABC transporters. The most highly connected node in the 263 
component, linking to 22 other CDSs, was another ATPase. SPN23F11420, encoded the Smc protein, 264 
is critical in organizing the chromosome and forms the basis of a multi-protein complex in both 265 
prokaryotes and eukaryotes (42). Hence this large diverse set of coupled CDSs included many 266 
components of the essential cytosolic machinery, the interactions of which are critical to the basic 267 
functioning of the cell. 268 

The fourth significant enrichment of GO terms also involved tRNAs (GO:0000049 - tRNA binding; 269 
Fisher exact test, OR = 869.1, p = 0.00048 after Benjamini-Hochberg correction), which applied to a 270 
component containing three nodes (Fig 3C). One corresponded to pheS, a phenylalanyl tRNA 271 
synthetase, while the other was SPN23F19340, annotated as encoding a tRNA binding protein of 272 
unknown function. Attempting to identify a more specific functional prediction using the CDD 273 
database (43) we found this protein possessed a “tRNA_bind_bactPheRS” domain, specifically 274 
involved in processing phenylalanyl-tRNAs, and only otherwise found in PheT, which directly 275 
interacts with PheS in the phenylalanyl-tRNA synthetase. Hence this coupling may represent a 276 
previously unexpected direct protein-protein interaction. 277 
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The CDS directly downstream of pheS, encoding a putative membrane-associated nuclease 278 
(SPN23F05260), was coupled to a tRNA methyltransferase adjacent to pspA in a separate network 279 
component (Fig. 3D). The pspA gene, encoding a surface-associated protein involved in pathogenesis 280 
and immune evasion, was itself present in the same network component, and engaged in some of 281 
the strongest coupling interactions in the dataset. These linked to the divIVA, encoding a cell 282 
morphogenesis regulator paralogous with GpsB (39), and three CDSs upstream of ply, encoding the 283 
major pneumococcal toxin pneumolysin(44) which, like pspA, is critically important in pneumococcal 284 
virulence and upregulated during infection(45). These three CDSs (SPN23F19480-SPN23F19500) are 285 
likely to play a role in localising or transporting ply from the cytosol into the cell wall(44). This could 286 
be the consequence of these virulence proteins engaging in interactions at the surface of the cell. 287 

This set of interactions was also detectable when a bipartite network was constructed that displayed 288 
couplings between coding sequences and upstream untranslated regions (Fig S2). In general, these 289 
components mirrored those in Fig. 3, suggesting the same couplings were being represented, rather 290 
than epistatic interactions involving direct protein-DNA interactions. Correspondingly, neither DNA 291 
binding (GO: 0003677) nor RNA binding (GO:0003723) were enriched in this network. 292 

 293 

Discussion 294 

 295 
Natural selection continuously performs experiments in bacterial populations, leading to purging of 296 
deleterious sequence variation and maintenance of beneficial mutations. Laboratory experiments 297 
provide the gold-standard method for establishing underlying mechanisms among observed variable 298 
sites. However, they also necessitate the definition of a measurable phenotype, which may be a 299 
daunting task for many complex traits relevant for survival and proliferation of bacterial strains. The 300 
exponentially increasing size of the genome sequence databases provide a valuable resource for 301 
generation of hypotheses for experimental work. In eukaryotes, GWAS methods have been used for 302 
more than a decade to probe DNA variation which could explain phenotypic differences(46, 47). In 303 
bacteria, use of GWAS for this purpose is of much more recent origin and has been demonstrated to 304 
hold a considerable promise in the light of more densely sampled populations(28, 48-50). However, 305 
GWAS is not the only way in which wealth of bacterial sequence information has been proposed to 306 
be used to gauge which genes could potentially be targets of positive selection and to generate 307 
hypotheses for experimental work. For example, Li et al. screened genome sequences of closely 308 
related pairs of isolates in a densely sampled pneumococcal population which would differ at 309 
particular genes of interest to provide candidate targets for phenotypic tests(51).   310 

 311 

By leveraging from the most recent advances in computational protein structure prediction and 312 
statistical machine learning, we have been able to introduce a method that promises to complement 313 
the popular GWAS approach for understanding how polymorphisms affect phenotypic variation. This 314 
work identified many different coupled sites across the genome, which network analysis revealed to 315 
define separate clusters of genes involved in resistance, virulence, and core cell functions. Our study 316 
represents the first attempt to use statistical modeling to fully exploit large-scale bacterial 317 
population genomics to identify patterns of co-evolution in sequence variation. Importantly, as we 318 
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have demonstrated, it is not necessary to specify the relevant phenotypes a priori for this approach 319 
to work successfully. Hence this a single analysis with this method may simultaneously reveal co-320 
selected sites for a multitude of different traits, and provide an indication of their relative influence 321 
on evolutionary patterns, as illustrated by the results on the pneumococcus. Since our approach is 322 
widely applicable to data generated by bacterial population studies, it has considerable potential to 323 
identify important targets for experimental work to gain system level understanding about the 324 
evolution and function of bacteria.   325 

Materials and Methods 326 
 327 

Genome data  328 
The 3,156 genomes used in our study are obtained from the study by Chewapreecha et al(9). We 329 
used their genome alignment of the total length 2,221,305 bp, in which 388,755 SNP loci were 330 
present, out of which 134,037 loci had a minor allele frequency (MAF) of at least 0.01. Out of these 331 
we selected 81,560  loci that had coverage of at least 84.1%, i.e. not more than 500 genomes with a 332 
gap/unresolved base pair at the considered sequence position. As the analysis focused solely on the 333 
biallelic loci, the observed nucleotides have been replaced, so that the entire alignment was 334 
composed of only three letters (two representing observed allele (major/minor) and one 335 
gap/unobserved allele). This was done in the interest of reducing the number of parameters of 336 
learnt models approximately 3-fold. 337 

Regularized model learning 338 
The model we use for joint evolution of SNP loci is the Potts generalization of the Ising model(52), 339 
the latter characterizing interactions between Boolean variables based on an exponential family of 340 
distributions with parameters for every possible pair of loci. In the three state case (minor/major 341 
allele and gap) the Potts model specifies couplings between pairs of loci through 3x3 parameter 342 
matrices, and consequently the parametric dimensionality grows by the number of loci squared, i.e. 343 
is here on the order of ~1010, whereas the number of observations is on the order of 103. Models are 344 
therefore regularized as discussed in Ekeberg et al(53). The relevant predictions from the model are 345 
the strongest interactions obtained and a threshold for significant interactions was determined using 346 
the statistical theory of extreme value distributions as explained below.  347 

Pseudolikelihood inference and parameter scoring 348 
Pseudolikelihood was originally introduced in the early 1970’s to enable estimation of parameters in 349 
spatial statistical models with intractable likelihood functions(54, 55). This inference technique has 350 
experienced a strong revival in the recent years for high-dimensional applications where the number 351 
of possible model parameters greatly exceeds the number of observations, known as the ‘small n, 352 
large p’ problem(56). In particular, pseudolikelihood provides consistent estimators of the model 353 
parameters unlike the traditional variational inference methods(57). The outcome of the inference is 354 
a set of real numbers Jij describing the interactions between loci i and j. We score these numbers by 355 
their absolute values |Jij|, which corresponds to the Frobenius norm scoring of interaction matrices 356 
in the contact prediction problem. The pseudolikelihood method allows an efficient correction for 357 
population structure by the reweighting scheme used for MSA in protein analysis(53), which ensures 358 
that highly similar sequences are not artificially inflating the support for direct dependence between 359 
alleles.      360 
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Resampling procedure  361 
The number of parameters in our model is far larger than has hereto been considered in analogous 362 
studies. Also, neighboring loci are most often in LD which has a confounding biological effect on their 363 
interaction. For both these reasons, we have chosen to dissect the pneumococcal core chromosome 364 
into approximately 1,500 non-overlapping segments and apply pseudolikelihood inference on 365 
subsets of the loci, chosen randomly from each genomic window of average size of 1500 nt. For each 366 
such sample we learned about 106 parameters, scored them as described above and saved only the 367 
3000 largest interaction parameters to reduce memory consumption. The whole re-sampling and 368 
model fitting procedure was repeated 38,000 times to ensure stable inference about the 369 
parameters. Interaction estimates were averaged for any pairs of sites that occurred multiple times 370 
among the saved parameters, which resulted in 102,551 pairs of sites with non-negligible coupling 371 
coefficients from the aggregated re-sampling results (Table S1). This set is approximately five orders 372 
of magnitude smaller than the set of all possible interactions for the 81,560 considered loci. 373 
Software implementing both the resampling procedure and the parameter inference is made freely 374 
available at www.helsinki.fi/bsg/software/genomeDCA. 375 

Choice of significance threshold for interactions 376 

To select a list of highest scoring interactions among the 102,551 estimates which are unlikely a 377 
result of neutral and sampling variation in the studied population, we employed the statistical 378 
theory of extreme value distributions (58). Since in each resampling step the largest 3000 379 
parameters were saved, these can under a null model of random interactions between loci be 380 
considered as a sample from an extreme value distribution, such as the Gumbel distribution. We 381 
fitted a Gumbel distribution to the distribution of the estimated parameters using least squares 382 
minimization between the fitted distribution and the empirical rank distribution of the coefficients 383 
located between 25% and 75% quantiles. Fig 1A shows the fitted distribution which has a remarkably 384 
good fit to the vast majority (95%) of the coefficients. To select a threshold for a significant deviation 385 
from the null model we identified the first value for which the predicted curve was more than six 386 
standard deviations (SD) away from the empirical distributions (Fig 1B). The SD was estimated using 387 
the deviances for the 50,000 smallest coefficients. The 5199 couplings exceeding the threshold 0.129 388 
are listed in Table S2 and in addition the 500 strongest couplings in Table S3. The latter were used in 389 
the structural plots for the PBPs. 390 

A resampling-based analysis of haplotypes generated randomly from a population by merging alleles 391 
sampled from the marginal allele frequency distribution of each SNP locus showed that couplings as 392 
large as those exceeding the threshold chosen for the coefficients in the original data were never 393 
encountered (Fig S3). In the analysis we used 5000 replicates of the haplotype re-sampling based on 394 
the same chromosomal windows as in the analysis of the original data. Hence, our approach was 395 
concluded to maintain a strict control of false positive interactions for unlinked loci stemming from 396 
population sampling variation.  397 

Functional analysis and structural modeling 398 

Networks were displayed and analysed using Cytoscape (59). GO terms were inferred from applying 399 
Interpro scan (60) and CD-search (43) to the S. pneumonia ATCC 700669 genome [EMBL accession: 400 
FM211187]. These were matched to network components, and a Fisher exact test used to test for 401 
enrichment of 139 instances of GO terms that featured in a network component twice or more, 402 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2016. ; https://doi.org/10.1101/071696doi: bioRxiv preprint 

https://doi.org/10.1101/071696


relative to the CDSs that contained sites analyzed in this study, but not found to include a 403 
significantly coupled loci. The p values were corrected for multiple testing using the method of 404 
Benjamini and Hochberg (61). 405 

Crystal structures of S. pneumoniae PBPs with the following IDs: 2C5W (pbp1a), 2WAF (pbp2b), 2ZC3 406 
(pbp2x) were retrieved from the Protein Data Bank(62) (www.rcsb.org; accession date January 8, 407 
2016) and visualized in The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC. 408 
Inferred co-evolving sites were visualized using the Circos software(63). 409 
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 580 

Supplementary information captions 581 

 582 

Figure S1 Comparing the distributions of coupled sites in penicillin-binding protein genes with those 583 
identified by a genome-wide association study for polymorphisms associated with beta lactam 584 
resistance. (A) Domain annotation of the PBP2X, PBP1A and PBP2B proteins, based on analysis with 585 
the Pfam database. (B) Distribution of coupled loci identified by this analysis. The columns 586 
corresponding to polymorphic loci identified as being significantly coupled with others by this 587 
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analysis are coloured according to the base present in each isolate in the collection, ordered 588 
according to the whole genome phylogeny shown on the left. (C) Distribution of loci found to be 589 
significantly associated with beta lactam resistance through a genome-wide association study of this 590 
Maela population by Chewapreecha et al. Only those sites that match the inclusion criteria for this 591 
study (i.e. biallelic with <15% of sites missing across the population), and are within the three 592 
displayed genes, are shown. 593 

 594 

 595 

Figure S2 Bipartite network showing the couplings between coding sequences and upstream 596 
untranslated regions. The network is displayed as in Fig. 3, except that untranslated regions are 597 
shown as black triangles. (A) Network component showing the links between pbp2x, pbp2b and the 598 
upstream regions around pbp1a. (B) Network component showing the coupling between smc and 599 
upstream regions. (C) Network component showing the pspA and divIVA genes. 600 

 601 

Figure S3 Distributions of estimated coupling coefficients for the original data and for haplotypes 602 
generated randomly from a population by merging alleles sampled from the marginal allele 603 
frequency distribution of each SNP locus. The red curve is generated from 5000 replicates of the 604 
haplotype re-sampling based on the same chromosomal windows as used in the analysis of the 605 
original data. 606 
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