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ABSTRACT

We report a robust nonparametric descriptor, J′(r), for quantifying the spatial organization of molecules in single-
molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any
parameter as an input for analyzing point patterns. We show that J′(r) displays a valley shape in the presence of
clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. More
importantly, the position of the J′(r) valley (rJ′m) depends exclusively on the density of clustering molecules (ρc).
Therefore, it is ideal for direct measurements of clustering density of molecules in single-molecule localization
microscopy.

Introduction

Single-molecule localization microscopy (SMLM) has been utilized broadly in imaging biological molecules –
proteins, DNA, and RNA – in various biological systems.1–5 More importantly, by localizing individual molecules,
SMLM has allowed quantitative analyses on the spatial organizations and patterns of these molecules, and produced
new, quantitative and crucial information that was not accessible previously. New mechanisms of various cellular
and molecular organizations and activities at the single-cell level have been unraveled using SMLM.6–15

Many algorithms have been adopted, utilized, or developed, in the field of SMLM for analyzing localization data
of molecules and quantifying inter-molecular organizations.13, 14, 16–23 These methods provide means to distinguish
single molecules from clusters of molecules, to examine complex patterns of molecular organization, and to quantify
features of spatial organizations. For example, pair-correlation analysis has been applied to SMLM data on membrane
proteins to detect the presence of clusters, as well as various cluster features, such as the density of molecules in a
cluster and overall size of a cluster.16 In addition, density-based algorithms such as DBSCAN (density-based spatial
clustering of applications with noise)24, 25 and OPTICS (ordering points to identify the clustering structure)26, 27

have been exploited to identify clusters of proteins and nucleic acids, as well as to probe the clustering structures, in
both bacteria and animal cells.13, 14, 17–19 Another method that has been used for analyzing SMLM data is Ripley’s
K function and its derivatives.20, 21 More recently, Bayesian analysis and Voronoı̈ diagrams have been utilized to
identify and analyze the clustering of biological molecules.22, 23

However, a general problem in some of these methods or algorithms is the need of input parameters. For
example, DBSCAN and OPTICS need two parameters (a radius, eps, and the minimum number of points in the
neighborhood for a point to be considered as a core point, minPts),24–27 and they are known to be sensitive to
the chosen parameters.18, 28 The identification of clusters in the Voronoı̈ diagram based method also requires a
density threshold to determine whether points form clusters.23 Although various techniques have been proposed to
determine “appropriate” parameters for use,23, 25, 27, 29 bias is inevitably introduced by the choice of parameters in
these algorithms. As a result, a robust nonparametric method is desired for the quantification of clustering features
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of molecules.
Here we present a descriptor based on nearest neighbor distribution functions for quantifying the spatial pattern

of molecules in SMLM. We examined nearest neighbor function,30 G(r), spherical contact distribution function,30

F(r), and the J-function,31, 32 J(r) = (1−G(r))/(1−F(r)), and found that the associated derivative functions,
G′(r) and J′(r), reliably report the clustering features of points. In the presence of clusters, G′(r) and J′(r) are
peak/valley shaped. More importantly, we observed that rJ′m , the position of the J′(r) valley, depends exclusively
on the density of clustering points (ρc). Therefore, it is ideal for direct measurements of the clustering density of
molecules in SMLM. We expect that this nonparametric descriptor J′(r) is useful in a broad range of applications in
SMLM.

Results

G(r), F(r) and J(r), and their derivatives
When quantifying the spatial organization of biological molecules in SMLM data, of particular interest in certain
situations is the clustering or aggregation of molecules,33–36 which is featured by an enhancement in the local
density of molecules. This enhancement in density has been used to identify clusters methods such as DBSCAN,
OPTICS, and Voronoı̈ tessellation.13, 14, 17–23 On the other hand, the enhancement in the molecular density is also
accompanied by the decrease of intermolecular distances, which could be described by functions based on nearest
neighbor distances, such as pair-wise correlation function,16 nearest neighbor function G(r), and spherical contact
distribution function F(r).30 The nearest neighbor function G(r) is the distribution function of the distance r of a
point (existing in the data) to the nearest other point, while the spherical contact distribution F(r) is the distribution
function of the distance r of an arbitrary point in the space (not necessarily existing in the data) to the nearest point
in the data.30 In addition, another function, J(r), has been suggested by van Lieshout and Baddeley in 1996,31

J(r) = 1−G(r)
1−F(r) , as a better nonparametric test to determine whether data were from a Poisson process.

We first explored how G(r), F(r) and J(r) functions depends on the clustering features of points using numerical
simulations. Briefly, we generated points forming various clusters in the presence of noises (i.e., Poisson random
points) in a region of interest, and computed these three functions. In a two-dimensional Poisson random process
where points were not forming clusters (Fig. 1A), the nearest neighbor functions gave the expected curves,
Gp(r) = Fp(r) = 1−exp(−λπr2) and Jp(r) = 1 (Fig. 1C). However, when points aggregated into clusters (Fig. 1B),
both G(r) and J(r) deviated significantly from random points, while F(r) became only slightly different (Fig. 1D).
We observed that J(r) drops quickly from 1 to ∼ 0.4 when r increases from 0 to 5 nm, while G(r) raises quickly in
the same r-range (0–5 nm). This observation indicates that G(r) and J(r) could be used for detection of clusters.

Furthermore, to remove accumulative effects, and inspired by Kiskowski et.al.,37 we calculated the derivatives
of these functions (G′(r), F ′(r) and J′(r)). Striking peaks or valleys appeared in G′(r) and J′(r) if points formed
clusters (Fig. 1F). In contrast, these derivative functions remain essentially flat for random points (Fig. 1E). On the
other hand, F ′(r)’s were very similar in the two cases (Fig. 1E–F).

Dependence of G′(r) and J′(r) functions on clustering features.
To explore quantitative applications of G′(r) and J′(r), we examined how they differ when the clustering features of
points vary. Here we focus on the following features: the radius of clusters, Rc, the density of points in clusters,
ρc, the number of clusters, nc, the density of (random) noise points, ρr, and the width (W ) and height (H) of the
region of interest. The first three features, Rc, ρc and nc, are directly related to the properties of clusters in the data,
while ρr is an indicator of the noise level. By varying one feature at a time, we observed that changes in ρc, ρr, or Rc

resulted in horizontal shifting or vertical scaling of both G′(r) and J′(r) (Fig. 2A–C). For example, both G′(r) and
J′(r) shift to the left and scale up when the clusters become denser (ρc increases). If the clusters become bigger
(Rc increases) while keeping the clustering density constant, little horizontal translation was observed (Fig. 2C),
although both G′(r) and J′(r) scale up too. In contrast, G′(r) and J′(r) are insensitive to the number of clusters (Nc)
or the size of the region of interest, W and H (Fig. 2D–F).

We further quantified the dependence of G′(r) and J′(r) on the clustering features. By fitting G′(r) and J′(r)
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Figure 1. G(r), F(r) and J(r) functions, and their derivatives. (A) Simulated noise points. (B) Simulated points
forming clusters with a radius of R = 30 nm, in the presence of noise points. (C, D) G(r), F(r) and J(r) functions
calculated from the points in (A) and (B), respectively. (E, F) Derivatives, G′(r), F ′(r) and J′(r), calculated from
the points in (A) and (B), respectively.

with polynomials, both the amplitude (height G′m for G′(r), or depth J′m for J′(r)) and the positions (rG′m and rJ′m) of
the peaks and valleys were determined. The dependence of these values on the clustering features are shown in Fig.
3, S1, S2 and S3. We observed that both G′m and J′m depend on all the clustering features (Fig. S1 and S3), but rG′m
and rJ′m are most sensitive to the density of clustering points ρc (Fig. 3 and S2). Most interestingly, rJ′m is essentially
independent on all the clustering features except the density of clustering points ρc (Fig. 3), providing a way to
correlate rJ′m with directly measuring the clustering densities of molecules, as shown below.

Direct measurement of the density of clustering points by rJ′m
To explore the possibility of using rJ′m for direct measurements of clustering densities of molecules, we first confirm
that the rJ′m–ρc relation is independent on other clustering features even if we simultaneously vary both ρc and Rc,
or Nc, or ρr · · · . We found that the the rJ′m–ρc relation from all the simulations collapse onto a single curve (Fig.
4A). Fitting all the data with a power-law function rJ′m = A ·ρ−α

c +b gives α = 0.76±0.03, yielding a “calibration”
curve for measuring clustering densities in any point patterns. We note that the rJ′m–ρc relation is monotonic over
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Figure 2. Changes in G′(r) and J′(r) by varying a cluster feature at a time. (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W ,
and (F) H.

a larger range of ρc (Fig. 3A); however, more complicated mathematical forms other than a single power-law are
needed to fit the “calibration” curve.

To verify the capability of using the rJ′m–ρc “calibration” curve to directly measure the clustering density of
molecules in SMLM data, we exploited numerical simulations again, for which we know the ground-truth clustering
density. Briefly, we generated 50 simulated data with a “unknown” clustering density (ρ t

c = 0.0103 nm−2), and
computed J′(r) and rJ′m for each simulation. The “measured” clustering density ρm

c is then obtained from the rJ′m–ρc

“calibration” curve, ρc =
(
(rJ′m−b)/A

)−1/α . We found that the “measured” clustering densities ρm
c are very close

to the the ground-truth density ρ t
c: the relative error, δρc = |ρm

c − ρ t
c|/ρ t

c× 100%, is below 4.6% for all the 50
simulations, and the average relative error is 2.5%.
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Figure 3. Dependence of rJ′m on the clustering features: (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W , and (F) H.

4

6

8

10

0.004 0.008 0.012 0.016

ρc (nm−2)

r J
m'

(n
m

)

Varying
ρr

Rc

Nc

W
H

●
●●●
●

●●●●●

●●●●●

●
●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

4

6

8

0.004 0.008 0.012

ρc (nm−2)

r J
m'

(n
m

)

H (nm)
●

●

●

●

●

300
400
500
600
700

●
●
●●
●

●●
●●●

●●●
●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

4

6

8

10

0.004 0.008 0.012

ρc (nm−2)

r J
m'

(n
m

)

W (nm)
●

●

●

●

●

1500
2000
2500
3000
3500

●
●●
●●

●
●
●
●
●

●
●●●●

●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

4

6

8

0.004 0.008 0.012

ρc (nm−2)

r J
m'

(n
m

)

Rc (nm)
●

●

●

●

●

30
40
50
60
70

●
●●●

●
●●●

●●●●

●●●●
●●●●

●●●●
●●●●

●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

4

6

8

0.004 0.008 0.012

ρc (nm−2)

r J
m'

(n
m

)

Nc

●

●

●

●

5
10
15
20

●

●
●●
●

●●●●
●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

4

6

8

10

0.004 0.008 0.012

ρc (nm−2)

r J
m'

(n
m

)

ρr (nm−2)
●

●

●

●

●

4.0E−05
8.0E−05
1.2E−04
1.6E−04
2.0E−04

(A) (B) (C)

(D) (E) (F)

Figure 4. The rJ′m – ρc relation is independent on all the other cluster features, Rc, ρr, Nc, W , and H. All data
points collapse onto a single power-law curve, rJ′m = A ·ρc

−α +b. Least-square fitting gives α = 0.76±0.03.

Robustness of the rJ′m–ρc relation
“Noises” are almost always present in SMLM data, due to individual molecules not forming clusters, non-specific
labeling, and/or false-positive localizations. Amazingly, we found that rJ′m is independent on the density of random
points in the data, as shown in Fig. 3B and 4, strongly suggesting that the use of rJ′m–ρc relation for measuring
clustering densities is robust.

To further assess the robustness of the rJ′m–ρc relation, we systematically investigated, given a density of
clustering point (ρc), how rJ′m deviates in the presence of various amount of noises. The noise level is defined as
β = nrp/ncp, where nrp is the number of (random) noise points, and ncp is the number of clustering points, in the
whole region of interest. We found that rJ′m remains constant (with relative errors δrJ′m

below 5%) even if there are ≈
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Figure 5. Robustness of the rJ′m – ρc relation. Given a certain density of clustering points (ρc), rJ′m remain (almost)
constant (i.e., the relative error δrJ′m

is < 5%) until there are 10 times more noise points than clustering points
(β ≤ 10).

10 times more noise points than clustering points (Fig. 5), demonstrating that the rJ′m–ρc relation is extremely robust.

J′(r) as a global descriptor for heterogeneous clusters.
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Figure 6. G′(r) and J′(r) for data with heterogeneous clusters with two different clustering densities.

It’s known that, in certain applications, molecules of interest might form heterogeneous clusters.16, 23 We
examined heterogeneity arising from either clustering radius (Rc) or clustering density (ρc). Briefly, simulations were
run for clusters with two different clustering radii (Rc1 and Rc2), or two different clustering densities (ρc1 and ρc2),
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in the presence of random noises. We noticed that J′(ρc1,ρc2)
(r) from heterogeneous clusters with different clustering

densities shifted both horizontally and vertically, and fell between the two curves from homogeneous clusters, J′ρc1
(r)

and J′ρc2
(r) (Fig. 6). In addition, we observed that J′(ρc1,ρc2)

(r) overlapped very well with J′ρ̄c
(r) from a homogeneous

sample with a clustering density equal to the algebraic mean, ρ̄c = (ρc1 +ρc2)/2 (Fig. 6). It is noted that G′(r)
shows a similar behavior. In contrast, for heterogeneous clusters with different radii, J′(Rc1,Rc2

(r) shifted only in the
vertical direction. rJ′m does not change for heterogeneous clusters with different radii (Fig. S4), which is expected
because the rJ′m–ρc relation does not depend on Rc anyway. In addition, we found that J′(Rc1,Rc2)

(r) is equivalent to

J′R̄c
(r) from homogeneous clusters with a radius of R̄c =

√(
R2

c1 +R2
c2

)
/2 (Fig. S4). In summary, we conclude that

G′(r) and J′(r) are descriptors reporting the “global” clustering density throughout the region of interest.

Discussion

To conclude, we explored the possibility of utilizing nearest neighbor functions to quantify spatial patterns of
molecules in single-molecule localization microscopy. We observed that the associated derivative functions, G′(r)
and J′(r), could reliably report the clustering features of point patterns. We found that J′(r) is particularly useful
because its position, rJ′m , relies exclusively on the density of clustering points (ρc). More importantly, we showed
that this rJ′m–ρc relation is very robust in the presence of up to ∼ 10 times more noise points than clustering points.

In the current study, we chose not to exploit any border correction when computing the nearest neighbor functions.
A simplest approach for border correction is the “reduced sample” method,38 which focuses on the points lying more
than r away from the boundary of the region of interest. However, the “reduced sample” method discards much of the
data, and therefore unacceptably wasteful. In addition, it’s particularly inappropriate in certain applications where
points are preferentially located at the boundary, an example of which is the spatial organization of high-copy number
plasmids in bacteria.14 We note that more sophisticated methods for border correction are available, including the
Kaplan-Meier correction39 and the Hanisch correction,40 both are provided in the spatstat R-package.41, 42 These
edge corrections can readily used in our method. However, for the sake of simplicity, uncorrected estimators for the
nearest neighbor functions have been used in the current study.

We would like to emphasize that the current method based on nearest neighbor functions is nonparametric and
robust. Computing the nearest neighbor functions and their derivatives does not require any parameters as human
inputs, eliminating possible subjective biases that might exist in other algorithms such as DBSCAN and OPTICS. In
addition, the performance of this method is robust, even in the presence of 10 times more noise points than clustering
points. The nonparametric nature and robustness of the current method would allow broad applications in the field
of single-molecule localization microscopy.

We expect several types of applications of our method in the field of SMLM. First, it can be used as a direct
quantification of the clustering density (ρc) of molecules in biological samples. Second, although our method does
not identify clusters by itself, it provides objective means to determine parameters (i.e., clustering density) that
could be used in other clustering-identification algorithm such as DBSCAN and Voronoı̈ tessellation. In addition, in
the current work, we focused on the rJ′m−ρc relation for non-parametric measurement of the clustering density of
molecules; however, it’s possible to design a way to figure out other cluster features (such as Rc and ρr) by taking
advantage of the dependence of G′m and J′m on those features (Fig. S1 and S3), together with the information of ρc.

Finally, we would like to mention that, although the current study shows that the nearest neighbor functions
are global descriptors, which cannot dinstinguish heterogeneous clusters, more sophisticated algorithms based on
the nearest neighbor functions might be developed in order to detect heterogeneities in the data. For example, it’s
possible to divide the region of interest into sub-regions, perform computations on J′(r), and report heterogeneous
features on different sub-regions.
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Methods

Spherical contact distribution function F(r), nearest-neighbor distribution function G(r), and the
J function J(r)
In a set of points, X , in the k-dimensional space, the spherical contact distribution function, or sometimes referred to
as the empty space function, F(r), of X is defined as F(r) = P{d(y,X)≤ r}, where d(y,X) = min{|y− x| : x ∈ X}
is the distance from an arbitrary point, y, to the nearest point of the point process, X .30 For a Poisson process
in the k-d space, Fp(r) = 1− exp

(
−λkπrk

)
.30 The nearest-neighbor distribution function G(r) is very similar to

F(r): G(r) = Py {d(y,X)≤ r} where Py is the Palm distribution, which is the conditional distribution of the entire
process given that y is one point in X .30 Therefore, G(r) is the distribution function of the distance from a point
of the process to the nearest other point of the process, i.e., the “nearest-neighbor”. For a Poisson process in the
k-d space, Gp(r) = 1− exp

(
−λπrk

)
= Fp(r).30 In 1996, van Lieshout and Baddeley suggested using the quotient

J(r) = 1−G(r)
1−F(r) to characterize a point process.31 For a Poisson process, Jp(r) = 1.

Simulation and computation of G(r), F(r), J(r) and their derivatives.
Sets of points were generated in R programing language.43 In a region of interest with a width (W ) and a height (H),
nc circular clusters with radii of Rc were randomly distributed. Each cluster contains random points at a density of
ρc. Poisson noise points were added randomly to the whole region of interest, with a density ρr. The total number
of clustering points (ncp = nc ·ρc ·πR2

c) and the total number of noise points (nrp = ρr ·WH) define the noise level
β = nrp/ncp.

Simulations were run using various sets of cluster features (W , H, ρr, ρc, nc, Rc). For each set of features,
50–200 trials were run. The G(r), F(r), J(r) functions and their derivatives were computed using the spatstat
package,41, 42 without applying any edge corrections.
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Figure S1. Dependence of G′m on the clustering features: (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W , and (F) H.
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Figure S2. Dependence of rG′m on the clustering features: (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W , and (F) H.
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Figure S3. Dependence of J′m on the clustering features: (A) ρc, (B) ρr, (C) Rc, (D) Nc, (E) W , and (F) H.
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